东北三省(黑吉辽)高三数学第一次大联考试题 文 新人教A版
- 格式:doc
- 大小:342.50 KB
- 文档页数:9
2019届东北三省名校高三第一次联合考试文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.已知复数312iz =-(i 是虚数单位),则复数z 的共轭复数z = A .36i 55+ B .36i 55- C .12i 55- D .12i 55+2.已知集合{}04A x x =∈<<Z ,{}(1)(2)0B x x x =+-<,则AB =A .(0,2)B .(1-,2)C .{0,1}D .{1} 3.在等差数列{}n a 中,前n 项和n S 满足9235S S -=,则6a 的值是A .5B .7C .9D .34.军训时,甲、乙两名同学进行射击比赛,共比赛10场,每场比赛各射击四次,且用每场击中环数之和作为该场比赛的成绩.数学老师将甲、乙两名同学的10场比赛成绩 绘成如图所示的茎叶图,并给出下列4个结论:(1)甲的平均成绩比乙的平均成绩高;(2)甲的成绩的极差是29;甲 8 3 2 7 6 5 4 2 0 7 乙91 3 4 8 9 0 1 1 30 12 3(3)乙的成绩的众数是21;(4)乙的成绩的中位数是18. 则这4个结论中,正确结论的个数为A .1B .2C .3D .45.已知向量a =(1,,||1=b ,向量a 与b 的夹角为120 ,则||+a b 的值为 A.7 D .136.实数x ,y 满足约束条件22010220x y x y x y +-⎧⎪-+⎨⎪--⎩≤≥≤ ,则2z x y =- 的最小值是A .5B .4C .5-D .6- 7.某几何体的三视图如图所示, 则该几何体的体积为A .4B .6C .2D .88.执行右面的程序框图,则输出的S 的值是A .30B .126C .62D .-1269.学校根据课程计划拟定同时实施“科普之旅”和“红色之旅”两个主题的研学旅行,现在小芳和小敏都已经报名参加此次的研学旅行,则两人选择的恰好是同一研学旅行主题的概率为A .14B .12C .13D .3410.在三棱锥P ABC -中,已知PA AB AC ==,BAC PAC ∠=∠,点D ,E 分别为棱BC ,PC 的中点,则下列结论正确的是A .直线DE ⊥直线ADB .直线DE ⊥直线PAC .直线DE ⊥直线ACD .直线DE ⊥直线AB11.已知斜率为1-的直线过抛物线22(0)y px p =>的焦点,且与该抛物线交于A ,B 两点,若线段AB 的中点的纵坐标为2-,则该抛物线的准线方程为A .2x =B .1x =C .2x =-D .1x =-12.若函数32()ln f x x x x x ax =-+-有两个不同的零点,则实数a 的取值范围是A .(0,+∞)B .(0,1]C .[1-,0)D .(-∞,0)第Ⅱ卷 (非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是 . 14.若33sin()25απ-=,则cos 2α的值是 . 15.在平面直角坐标系xOy 中,过x 轴上的点P 作双曲线C :22221x y a b -= (0a >,0)b >的一条渐近线的垂线,垂足为M ,若OM =,PM =,则双曲线C 的离心率的值是 .16.在各项为正数的等比数列{}n a 中,若2a 与10a 3438log log a a +的值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别是ABC ∆的三个内角A ,B ,C 的对边,若10a =,角B 是最小的内角,且34sin 3cos c a B b A =+.(Ⅰ)求sin B 的值; (Ⅱ)若14c =,求b 的值. 18.(本小题满分12分)“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1∶4∶3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率. 19.(本小题满分12分)如图,在正三棱柱111ABC A B C -中,12AB AA ==,E ,F 分别为AB ,11B C 的中点. (Ⅰ)求证:1B E ∥平面ACF ; (Ⅱ)求三棱锥1B ACF -的体积.20.(本小题满分12分)已知点M (2,1)在椭圆C :22221(0)x y a b a b+=>>上,A ,B 是长轴的两个端点,且3MA MB ⋅=-.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知点E (1,0),过点M (2,1) 的直线l 与椭圆的另一个交点为N ,若点E 总在 以MN 为直径的圆内,求直线l 的斜率的取值范围.E21.(本小题满分12分)已知函数:()ln 3(0)f x x ax a =--≠. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 有最大值M ,且5M a >-,求实数a 的取值范围.※考生注意:请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线1C 的极坐标方程为2sin ρθ=,直线l的参数方程为122x ty ⎧=⎪⎨=+⎪⎩(t 为参数).(Ⅰ)求曲线1C 的参数方程和直线l 的直角坐标方程;(Ⅱ)设D 为曲线1C 上在第二象限内的点,且在点D 处的切线与直线l 平行,求点D 的直角坐标.23.(本小题满分10分)选修4—5:不等式选讲已知函数1()||||f x x a x a=++-. (Ⅰ)当a =1时,解不等式()5f x ≥;(Ⅱ)若x ∀∈R ,()|1|f x m -≥恒成立,求实数m 的取值范围.数学参考答案与评分标准 (文科)一、选择题(每小题5分,共60分)B D AC B C A C B CD D二、填空题(每小题5分,共20分)13、8-;14、725-;1516、1-三、解答题17.解:(Ⅰ)由34sin 3cos c a B b A =+、A B C π++=及正弦定理得3sin()4sin sin 3sin cos A B A B B A +=+ ……3分由于sin 0A >,整理可得3cos 4sin B B =,又sin 0B >,因此得3sin 5B =……6分 (Ⅱ)因为角B 是最小的内角,所以03B π<≤,又由(Ⅰ)知3sin 5B =,因此得4cos 5B = ……9分由余弦定理得2224141021410725b =+-⨯⨯⨯=,即b =……12分18.解:(Ⅰ)所抽取的40人中,该天行走20008000步的人数:男12人,女14人……2分,400位参与“微信运动”的微信好友中,每天行走20008000步的人数约为:2640026040⨯=人……4分; (Ⅱ)该天抽取的步数在800010000的人数:男6人,女3人,共9人,再按男女比例分层抽取6人,则其中男4人,女2人. ……6分列出6选2的所有情况15种……8分,至少1个女性有9种……10分 , 设“其中至少有一位女性微信好友被采访”为事件A , 则所求概率93()155P A == ……12分19.(Ⅰ)证明:取AC 的中点M ,连结EM ,FM ,在ABC ∆中,因为E 、M 分别为AB ,AC 的中点,所以EM BC ∥且12EM BC =,又F 为11B C 的中点,11B C BC ∥,所以1B BC ∥F 且112B F BC =,即1EM B F ∥且1EM B F =, 故四边形1EMFB 为平行四边形,所以1B E FM ∥ ……3分,又MF ⊂平面ACF ,1B E ⊄平面ACF ,所以1B E ∥平面ACF ……6分(Ⅱ)解:设O 为BC 的中点,因棱柱底面是正三角形,所以有AO =AO ⊥平面11BCC B ……8分于是11111123323B ACF A B CF B CFV V S AO --==⨯⨯=⨯⨯ ……12分 20.解:(Ⅰ)由已知可得(2,1)(2,1)3a a ---⋅--=-,解得28a =,又点(2,1)M 在椭圆C 上,即2222118b +=,解得22b =, 所以椭圆C 的标准方程为22182x y += ……4分 (Ⅱ)设11(,)N x y ,当直线l 垂直于x 轴时,点E 在以MN 为直径的圆上,不合题意, 因此设直线l 的方程为(2)1y k x =-+,代入椭圆方程消去y 得2222(41)4(24)4(441)0k x k k x k k ++-+--= ……6分则有2124(441)241k k x k --=+,即2122(441)41k k x k --=+,21244141k k y k --+=+ ……8分 又点E 总在以MN 为直径的圆内,所以必有0EM EN ⋅<,即有1111(1,)(1,1)10x y x y -=+-<……10分将1x ,1y 代入得222248344104141k k k k k k ----++<++,解得16k >-, 所以满足条件的直线l 的斜率的取值范围是1(,)6-+∞……12分21.解: (Ⅰ)()f x 的定义域为(0,+∞), 由已知得1()f x a x'=- ……2分 当0a <时,()f x '>0恒成立,所以,()f x 在(0,)+∞内单调递增,无减区间; 当0a >时,令()f x '=0,得1x a =,所以当1(0,)x a∈时()f x '>0,()f x 单调递增; 当1(,)x a∈+∞时()f x '<0,()f x 单调递减 ……6分(Ⅱ)由(Ⅰ)知,当0a <时, ()f x 在(0,)+∞内单调递增,无最大值 ……7分当0a >时,函数()f x 在1x a=取得最大值, 即max 11()()ln4ln 4f x f a a a==-=--, 因此有ln 45a a -->-,得ln 10a a +-<……10分 设()ln 1g a a a =+-,则1()10g a a'=+>,所以()g a 在(0,)+∞内单调递增, 又(1)0g =,所以()(1)g a g <,得01a <<, 故实数a 的取值范围是(0,1)……12分22.解:(Ⅰ)由已知得22sin ρρθ=,得222x y y +=,即22(1)1x y +-=,所以1C 的参数方程为cos 1sin x y αα=⎧⎨=+⎩(α为参数)……3分直线l 20x y -+=……5分(Ⅱ)由(Ⅰ)知曲线1C 是以C (0,1)为圆心、半径为1的圆, 设点(cos ,1sin )D αα+,因为点D 在第二象限,所以直线CD 的斜率CD k =tan α=……7分得56πα=,得点D 的直角坐标为(32)……10分 23.解:(Ⅰ)1a =时,()|1||1|f x x x =++-,当1()1125x f x x x x -=---+=-≤时,≥,解得52x -≤; 当11()1125x f x x x -<<=+-+=时,≥,解集为∅; 当1()1125x f x x x x =++-=≥时,≥,解得52x ≥; 综上:当a =1时,不等式()5f x ≥的解集为55(,][,)22-∞-+∞ ……5分(Ⅱ)显然有0a ≠,由绝对值的三角不等式得1111()||||||||||||2f x x a x x a x a a a a a a=++-+-+=+=+≥≥……7分 所以|1|m -2≤,解得13m -≤≤, 即[1,3]m ∈-……10分。
东北三省三校2019年高三第一次联合模拟考试文科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码 区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求. 1.已知集合2{0,},{30},A b B x Z x x ==∈-<若,AB ≠∅则b 等于( )A .1B .2C . 3D . 1或2 2.复数212ii+=-( )A.i B.i - C.2(2)i + D.1i +3. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,则“a b >”是“cos2cos2A B <”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.向量a,b 满足1,2,()(2),==+⊥-a b a b a b 则向量a 与b 的夹角为( ) A.45︒ B. 60︒ C. 90︒ D. 120︒5.实数m 是[]0,6上的随机数,则关于x 的方程240x mx -+=有实根的概率为( )A.14 B. 13 C.12 D.236.已知三棱锥的三视图,则该三棱锥的体积是 ( )A .63 B. 263 C.362 D. 627.椭圆2214x y +=两个焦点分别是12,F F ,点P 是椭圆上 任意一点,则12PF PF ⋅的取值范围是( )A. []1,4 B. []1,3 C. []2,1- D. []1,1-8.半径为1的球面上有四个点A,B,C,D,球心为点O,AB 过点O,CA CB =,DA DB =,1DC =, 则三棱锥A BCD -的体积为( ) A .36 B.33C.3 D.6 9. 已知数列{}n a 满足*312ln ln ln ln 32()258312n a a a a n n N n +⋅⋅⋅⋅=∈-,则 10a =( )A.26e B. 29e C.32e D.35e10.执行如图所示的程序框图,要使输出的S 的值小于1,则输入的t 值不能是下面的( ) A.8 B.9 C.10 D.1111.若函数32()236f x x mx x =-+在区间()2,+∞上为增函数,则实数m 的取值范围是( )A.(),2-∞ B.(],2-∞ C.5,2⎛⎫-∞ ⎪⎝⎭ D.5,2⎛⎤-∞ ⎥⎝⎦12.函数()lg(1)sin2f x x x =+-的零点个数为( )A.9 B.10 C.11 D.12开始结束输入t=S1=k3sinπk S S += t k >1+=k k输出S否是(第10题图)(第6题图)222 22正视图侧视图俯视图第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答. 二.填空题(本大题共4小题,每小题5分.) 13.若等差数列{}n a 中,满足46201020128a a a a +++=,则2015S =_________.14.若变量,x y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .15.已知双曲线C :221164y x -=,点P 与双曲线C 的焦点不重合.若点P关于双曲线C的上、下焦点的对称点分别为A 、B ,点Q 在双曲线C 的上支上,点P 关于点Q 的对称点为1P ,则11PA PB -=____. 16.若函数()f x 满足: (ⅰ)函数()f x 的定义域是R ; (ⅱ)对任意12,x x ∈R 有121212()()2()()f x x f x x f x f x ++-=;(ⅲ)3(1)2f =. 则下列命题中正确的是_____. (写出所有正确命题的序号)①函数()f x 是奇函数;②函数()f x 是偶函数;③对任意12,n n ∈N ,若12n n <,则12()()f n f n <;④ 对任意x R ∈,有()1f x ≥-.三.解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知ABC ∆的面积为,2且满足04,AB AC →→<⋅≤设→AB 和→AC 的夹角为θ. (Ⅰ)求θ的取值范围; (Ⅱ)求函数θθπθ2cos 3)4(sin 2)(2-+=f 的值域.18.(本题满分12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:3/g m μ)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量0.0010.002 0.003 0.004 0.005 0.006 0.007 0.008频率 组距空气污染指数 (3/g m μ)50100 150 200DCBAFE级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2019年1月某日某省x 个监测点数据统计如下:空气污染指数 (单位:3/g m μ) []0,50(]50,100(]100,150(]150,200监测点个数1540y10(Ⅰ)根据所给统计表和频率分布直方图中的信息求出,x y 的值,并完成频率分布直方图; (Ⅱ)若A 市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A “其中至少有一个为良”发生的概率是多少?19.(本题满分12分)如图,多面体ABCDEF 中,底面ABCD 是菱形, 60BCD ∠=,四边形BDEF 是正方形,且DE ⊥平面ABCD .(Ⅰ)求证: //CF 平面AED ;(Ⅱ)若2AE =,求多面体ABCDEF 的体积V .20.(本题满分12分)在平面直角坐标系xOy 中,已知动圆过点(2,0),且被y 轴所截得的弦长为4. (Ⅰ) 求动圆圆心的轨迹1C 的方程;(Ⅱ) 过点(1,2)P 分别作斜率为12,k k 的两条直线12,l l ,交1C 于,A B 两点(点,A B 异于点P ),若120k k +=,且直线AB 与圆2:C 221(2)2x y -+=相切,求△PAB 的面积.21.(本题满分12分)已知实数a 为常数,函数2ln )(ax x x x f +=.(Ⅰ)若曲线)(x f y =在1=x 处的切线过点A)2,0(-,求实数a 值; (Ⅱ)若函数)(x f y =有两个极值点1212,()x x x x <.①求证:021<<-a ;②求证: 1()0f x <,21)(2->x f . 请从下面所给的22 , 23 , 24三题中任选一题做答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。
2019年东北三省三校高三第一次联合模拟考试文科数学答案一. 选择题1-6 DBCCBA 7-12 BBCADD二.填空题13. 3 14. 乙 15. 30 16. 4π三.解答题17.解:(Ⅰ)1()2cos 21sin(2)1226π=++=++f x x x x …………………2分 ∵[0,]2x π∈,∴72666πππ≤+≤x , …………………4分 ∴1sin(2)1226π≤++≤x ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦; …………………6分(Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A ∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A…………………8分 由余弦定理,2222cos =+-a b c bc A ,∴2642=+-c c ,即2220--=c c又0>c ,∴1=c …………………10分∴1sin 2∆==ABC S bc A …………………12分18. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件M设每周累计户外暴露时间不少于28小时的4为学生分别为A,B,C,D ,其中A 表示近视的学生, 随机抽取2名,所有的可能有AB,AC,AD,BC,BD,CD 共6种情况, 其中事件M 共有3种情况, 即AB,AC,AD, 所以()3162==P M故随机抽取2名,其中恰有一名学生不近视的概率为12. …………………4分(Ⅱ)根据以上数据得到列联表:KMFGDCBA P近视 …………………8分所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 所以能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.…………………12分19. 解:(Ⅰ)(方法一):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = …………………2分 ∵PG ⊥平面ABCD ,BG ⊂平面ABCD ,∴PG BG ⊥ ∴1124422PBG S BG PG ∆=⋅=⨯⨯= ∵13AG GD =∴3332442BDG BCG S S ∆∆=⋅=⨯= …………………4分设点D 到平面PBG 的距离为h , ∵D PBG P BDG V V --= 1133PBG BDG S h S PG ∆∆∴⋅⋅=⋅⋅, 11344332h ∴⋅⋅=⋅⋅32h ∴= …………………6分 (方法二):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = ………………2分 ∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD ∵平面PBG平面=A B CD B G在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K , 则DK ⊥平面PBG∴DK 的长就是点D 到平面PBG 的距离 …………………4分223434322===∴=BC AD GD BC 在∆DKG 中,DK =DG sin 45︒=23∴点D 到平面PBG 的距离为23…………………6分 (Ⅱ)在平面ABCD 内,过D 作DM ⊥GC 于M ,连结FM ,又因为DF ⊥GC ,DM DF D = ∴GC ⊥平面F M D ,⊂FM 平面F M D ∴GC ⊥FMPG ⊥平面ABCD ,⊂GC 平面ABCD ∴PG ⊥GC∴FM ∥PG由GM ⊥MD 得:3cos452GM GD ︒==…………………10分 32312PF GM FC MC ∴=== …………………12分20. 解:(Ⅰ)24y x =焦点为(1,0)F ,则1(1,0)F -,2(1,0).F122a PF PF =+=解得1,1a c b ===,所以椭圆E 的标准方程为22 1.2x y += …………............4分 (Ⅱ)由已知,可设直线l 方程为1x ty =+,1122(,),(,).A x y B x y联立2213x ty x y =+⎧⎨+=⎩ 得22(1)220,t y ty ++-= 易知0.∆>则1221222,12.1t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩.........6分 ()()111212121211(2)(2)F A F B x x y y ty ty y y ⋅=+++=+++=221212222(1)2()41t t y y t y y t -++++=+.因为111F A F B ⋅=,所以22221t t -=+1,解得213t =. ……..................8分 联立22112x ty x y =+⎧⎪⎨+=⎪⎩,得22(2)210t y ty ++-=,()2810t ∆=+>设3344(,),(,)C x y B x y ,则3423422,21.2t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩….....…….........10分112341273F CDS F F y y∆=⋅-===….....…….........12分21. 解:(Ⅰ)当ea=时,()e ext x x=-,'()e ext x=-, .....….................1分令'()0=t x则1=x列表如下:所以()(1)e e0极小值==-=t x t. ......….......…....5分(Ⅱ)设()()()ln e e ln exF x f x g x x a ax x a=-+-+=-+-+,(1)≥x1'()e xF x ax=-+,(1)≥x设1()e xh x ax=-+,2221e1()exxxh xx x⋅-'=-=, ...........…........7分由1x≥得,21,x≥2e10->xx,'()0>h x,()h x在(1,)+∞单调递增,即()F x'在(1,)+∞单调递增,(1)1F e a'=+-,①当10e a+-≥,即1a e≤+时,(1,)x∈+∞时,()0F x'>,()F x在(1,)+∞单调递增,又(1)0F=,故当1x≥时,关于x的方程()ln e=()f x xg x a+--有且只有一个实数解. ..........9分②当10e a+-<,即1a e>+时,由(Ⅰ)可知e x ex≥,所以11'()e,'()0xa a e eF x a ex a F e ax x e e a a=+-≥+-≥⋅+-=>,又11ae e>+故00(1,),()0ax F xe'∃∈=,当(1,)x x∈时,()0F x'<,()F x单调递减,又(1)0F=,故当(]01,x x∈时,()0F x<,在[)01,x内,关于x的方程()ln e=()f x xg x a+--有一个实数解1.又(,)x x∈+∞时,()0F x'>,()F x单调递增,且22()ln1a aF a e a a a e e a=+-+->-+,令2()1(1)xk x e x x=-+≥,'()()2x s x k x e x ==-,()220'=-≥->x s x e e ,故'()k x 在()1,+∞单调递增,又'(1)0k >1当时,∴>x'()0,>k x ()∴k x 在()1,+∞单调递增,故()(1)0>>k a k ,故()0F a >,又0aa x e>>,由零点存在定理可知,101(,),()0x x a F x ∃∈=, 故在()0,x a 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1x . 又在[)01,x 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1.综上,1a e ≤+. ........................12分22.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩ ……..................2分所以曲线C 的极坐标方程为24cos 10ρρθ-+=. …….................4分 (Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角,代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ.21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ…….................7分1212OA OB +=+=+=ρρρρ…….................8分1cos 2θ∴=±满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 则1tan 3k θ==或3-. …….................10分 23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a .故实数a 的取值范围为]4,4[-. .…….................4分 (Ⅱ)由(Ⅰ)知,4=m ,即424x y z ++=. 根据柯西不等式222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x []21164()22121x y y z ≥+-+= …….................8分 等号在z y y x =-=+24即884,,72121x y z ==-=时取得。
2014年哈师大附中第一次高考模拟考试文 科 数 学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2{|20}A x x x =-≤,{|40}B x x =-≤≤,则R A C B =I A .RB .{|0}x R x ∈≠C .{|02}x x <≤D .∅ 2.若复数z 满足iz = 2 + 4i ,则复数z =A .2 + 4iB .2 - 4iC .4 - 2iD .4 + 2i3.命题“2,320x R x x ∀∈-+≥”的否定是A .2,320x R x x ∃∈-+<B .2,320x R x x ∃∈-+>C .2,320x R x x ∃∈-+≤D .2,320x R x x ∃∈-+≥ 4.等差数列{}n a 的前n 项和为S n ,若a 2 + a 4 + a 6 = 12,则S 7的值是 A .21 B .24 C .28 D .75.执行如图所示的程序框图,若输入如下四个函数:①()sin f x x =,②()cos f x x =,③1()f x x=,④2()f x x =, 则输出的函数是 A .()sin f x x = B .()cos f x x = C .1()f x x=D .2()f x x =6.变量x ,y 满足约束条件1,2,0,y x x y ≤⎧⎪≤⎨⎪-≥⎩则x + 3y 最大值是A .2B .3C .4D .5 7.直线m ,n 均不在平面α,β内,给出下列命题:① 若m ∥n ,n ∥α,则m ∥α; ② 若m ∥β,α∥β,则m ∥α; ③ 若m ⊥n ,n ⊥α,则m ∥α; ④ 若m ⊥β,α⊥β,则m ∥α。
哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212N x x =∈−≤R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。
毫T 呈哈尔滨师大附中2022年高三第一次联合模拟考试科理东北师大附中辽宁省实验巾学注意事项:1.答卷前,二号哇务必将向己的姓名、谁写证号填写在答题卡上.数应丘�2.回答选择题时,选山每小题答案后,用铅笔把答题卡1-.5{才应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上元效.3.二号-试结束后,将本民卷和答题卡-·J i'-交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.I.复数z满足(I + i) 2 z = 2 -4i,则复数z=A.-2 + iB.-2 -iC.I -2i o.2 + i2.已知集合M=jyly=2’,x> I I ,N = !x I y =/h亏了i川IJ MU N等于人② B. J 21 C. [ I , + oo)3.下面是某城市某日在不同观测点对细颗粒物(P M2.s)的xlJl测值:396 275 268 225 168 166 176 173 188 168D.[O,+oo)141 157若在此组数据中增加一个比现有的最大值大25的数据,下列数字特征没有改变的是A.极差8.中位数C众数。
平均数4.设m,n是两条不同的直线,α,。
,γ是芝个不同的平面,下列四个命题中正确的是A.若m IIα,nllα,则l m II nB.若αiγ,βiγ,贝I J a IIβC.若α矿β,,n cα,凡矿β,则m矿,t0.若αj{3,βIIγ,m土α,则rn土γ5.等差数列iα,,i的前几J'.J i i和为乱,已知何=10,乌=44,则Ss=D II·2s.f C.5A.36.直线l:x+y+m=O与困C:(x+l)2+(y-1)2=4交子A,B两点,若IABI=2,则m的值为A.±ffB.±2 c.±./67.已知α,bεR,则““b笋。
2024届东北三省三校第一次联考数学试题
+答案
2024年2月东北三省三校高三一模数学试题
2024年2月东北三省三校高三一模数学试题及参考答案
东北三省三校联考的意义
东北地区最具影响力的高考联合模拟考试,一个是三省四市联合模拟考试,另一个是三省三校联合模拟考试,三省四市模考由东北F4市教研院组织,参加学校基本为四市市重点高中。
三省三校联考由东北排名第一的高中东北师大附中,哈尔滨市排名第二的高中哈师大附中以及辽宁省实验中学联合举办,参加学校多为省重点高中,两类考试在东北享有很高的声誉,为莘莘学子备考提供重要参考!
高三模拟考试和高考哪个更难
这个回答没有绝对的答案,因为每年的模拟卷内容不通、高考的考卷难度也不同。
而且因为考生的成绩不同,对于考卷的难易程度判断也不同。
所以这个问题没有确切的答案。
如果按照总体的水平来评估,高考试卷的难度不会高于模拟卷,高考中基础部分和中级难度的题目占比在80%左右,只有20%是拔高题。
所以如果基础知识打的好,那么对于考生来说,高考题目不难。
高考的题目的难度是在问法、提问方式上,而并不是运用了超纲的知识点,与大家传统意义上的难度不通。
相比高考的难度,模拟考要更难一点。
因为模拟考的目的是希望通过考试来判断学生对知识点的掌握情况,如果过于简单就起不到探底的目的。
2021年高三数学上学期第一次五校联考试题文(含解析)新人教A版本试卷共4页,21小题,满分150分.考试用时120分钟【试卷综析】试题比较平稳,基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,考查的知识涉及到函数、三角函数、数列、导数等几章知识,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移。
试卷的整体水准应该说可以看出编写者花费了一定的心血。
但是综合知识、创新题目的题考的有点少,试题以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能。
试题起到了引导高中数学向全面培养学生数学素质的方向发展的作用.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.已知集合,集合,则A. B. C. D.【知识点】集合运算. A1【答案解析】B 解析:集合B用列举法表示为:,所以故选B.【思路点拨】先把集合B用列举法表示,再根据交集定义求.【题文】2.设复数,,若,则A. B. C. D.【知识点】复数运算. L4【答案解析】A 解析:因为,所以,所以x=-2,故选A.【思路点拨】利用复数乘法求得,由复数是实数则复数的虚部为0得结论. 【题文】3.已知是两条不同直线,是三个不同平面,下列命题中正确的是 A . B . C . D .【知识点】空间中线面平行、垂直的判定与性质. G4 G5【答案解析】D 解析:对于选项A: m,n 平行、相交、异面都有可能;对于选项B: 可能平行、可能相交;对于选项C :可能平行、可能相交;所以选项A 、B 、C 都不正确,故选D. 【思路点拨】依次分析各选项得选项A 、B 、C 都不正确,故选D. 【题文】4.已知向量,且,则的值为 A . B . C .5 D .13【知识点】向量共线的意义;向量模的计算. F1 F2 【答案解析】B 解析:由,且得12=-3x ,即x=-4,所以()()()2,34,62,3p q +=-+-=-= B.【思路点拨】由向量共线得x=-4,从而得()()()2,34,62,3p q +=-+-=-=【题文】5.等差数列的前项和为,已知,则 A . B . C . D . 【知识点】等差数列. D2【答案解析】C 解析:由得,所以,又 所以,从而d=2,所以,故选C.【思路点拨】根据等差数列的前n 项和公式,求得,再由求得d=2, 所以.【题文】6.执行如右图所示的程序框图,则输出的= A . B . C . D . 【知识点】算法与程序框图. L1【答案解析】D 解析:由程序框图得循环过程中y 的取值依次是这是一个以3为周期的周期数列,而xx 除以3余1,所以输出的y 值是此数列的第一个数2,故选D.【思路点拨】由程序框图得y 取值规律: 以3为周期的周期数列,由此得输出的y 值.【题文】7.将函数的图像向右平移个单位后所得的图像的一个对称轴是 A . B . C . D . 【知识点】函数的图像与性质. C4 【答案解析】A 解析:将函数的图像向右平移个单位后所得: cos 2cos 2cos 261233y x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,而对称轴是使函数取得最值的x 值,经检验成立,故选A.【思路点拨】函数的图像向右平移个单位后为,再根据对称轴是使函数取得最值的x值得结论.【题文】8.函数在区间[0,4]上的零点个数是A.4 B.5 C.6 D. 7【知识点】函数的零点. B9【答案解析】C 解析:由得x-1=0或,又所以,所以x=1或,所以函数在区间[0,4]上的零点个数是6,故选C.【思路点拨】根据函数零点的意义:函数的零点就是函数值为0的方程的根,因此只需求方程解的个数即可.【题文】9.已知直线,若曲线上存在两点P、Q关于直线对称,则的值为A. B.C. D.【知识点】直线与圆的位置关系. H4【答案解析】D 解析:因为曲线是圆,若圆上存在两点P、Q关于直线对称,则直线,过圆心(-1,3),所以,解得,故选D.【思路点拨】将已知曲线方程配方得其为圆,若圆上存在两点P、Q关于直线对称,则直线过圆心,由此得关于m的方程,从而求得m值.【题文】10.已知函数是定义在R上的奇函数,,当时,有成立,则不等式的解集是A. B. C. D.【知识点】函数的奇偶性;导数的应用. B4 B12【答案解析】A 解析:构造函数,则,所以是上过点(1,0)的增函数.所以当时,从而得;当时,从而得.由于函数是定义在R上的奇函数,所以不等式的解集,故选A.【思路点拨】构造函数,确定函数是上过点(1,0)的增函数,由此得在(0,1)上,在上,由函数是定义在R上的奇函数,得不等式的解集.二、填空题:本大题共5题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)【题文】11. 函数的定义域为.【知识点】函数的定义域. B1【答案解析】解析:自变量x满足的条件为所以函数的定义域为.【思路点拨】根据函数有意义的条件列出关于x的不等式组求解.【题文】12.一个几何体的三视图如图,则该几何体的体积为 .【知识点】几何体的三视图. G2【答案解析】解析:由三视图可知此几何体是底面半径为2,高为3的半圆柱,所以其体积为.【思路点拨】由几何体的三视图得该几何体的形状,从而求该几何体的体积.【题文】13.设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程为____.【知识点】双曲线与抛物线的几何性质. H6 H7【答案解析】解析:根据题意知:双曲线的离心率,一焦点,所以,从而,又焦点在y 轴上,所以,此双曲线的方程为.【思路点拨】先根据已知条件求得双曲线的字母参数a,b,c 的值,再由焦点位置求得双曲线方程.(二)选做题(14、15题,考生只能从中选做一题)【题文】14. (几何证明选讲选做题)如图,是圆的切线,切点为,点在圆上, ,,则圆的面积为________.【知识点】几何证明. N1【答案解析】 解析:连接OC ,因为CD 是圆O 的切线, C 为切点,所以,因为, 所以,作于H ,则H 为BC 中点,因为BC=,所以所以半径OC=,所以圆的面积为.【思路点拨】利用圆的切线的性质及垂径定理,求得圆的半径,从而求出圆面积.【题文】15. (正四棱锥与球体积选做题)棱长为1的正方体的外接球的体积为________. 【知识点】多面体与球. G8【答案解析】 解析:因为正方体外接球的直径是正方体的对角线,而正方体的棱长为1,所以球的直径,棱长为1的正方体的外接球的体积为: .【思路点拨】由正方体外接球的直径等于正方体的对角线,求得正方体的外接球的直径,进而求得球的体积.三、解答题:本大题共6小题,满分80分。
东北三省三校2019年高三第一次联合模拟考试文科数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A. 4B. -4C. 2D. -2【答案】D【解析】【分析】先将复数进行化简得,得出答案.【详解】复数=所以虚部为-2故选D【点睛】本题主要考查了复数的化简,属于基础题.2.集合,,则()A. B. C. D.【答案】B【解析】【分析】先求出集合,再利用交集的定义得出答案.【详解】因为可得,集合,所以故选B【点睛】本题主要考查了交集的定义,属于基础题.3.已知向量的夹角为,,,则()A. B. C. D.【答案】C【解析】【分析】由题,先求出,可得结果.【详解】所以故选C【点睛】本题主要考查了数列的运算,属于基础题.4.设直线与圆相交于两点,且,则圆的面积为()A. B. C. D.【答案】C【解析】【分析】圆的圆心坐标为,半径为,利用圆的弦长公式,求出值,进而求出圆半径,可得圆的面积.【详解】圆的圆心坐标为,半径为,,直线与圆相交于两点,且,圆心到直线的距离,所以,解得,圆的半径,所以圆的面积,故选C.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,属于中档题. 求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.5.等差数列的前项和为,且,,则()A. 30B. 35C. 42D. 56【答案】B【解析】【分析】先根据题目已知利用公式求出公差,,再利用求和公式得出结果.【详解】因为是等差数列,所以,所以公差,根据求和公式故选B【点睛】本题主要考查了数列的求和以及性质,对于等差数列的公式的熟练运用是解题的关键,属于基础题.6.已知,,则()A. B. C. D.【答案】A【解析】【分析】由,利用两角和的正切公式求得,再根据同角三角函数的关系求解即可.【详解】因为,所以,所以,且解得,故选A.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.7.执行两次下图所示的程序框图,若第一次输入的的值为4,第二次输入的的值为5,记第一次输出的的值为,第二次输出的的值为,则()A. 2B. 1C. 0D. -1【答案】D【分析】根据已知的程序框图,模拟程序的执行过程,可的结果.【详解】当输入x的值为4时,第一次不满足,但是满足x能被b整除,输出;当输入x的值为5时,第一次不满足,也不满足x能被b整除,故b=3第二次满足,故输出则-1故选D【点睛】本题主要考查了程序框图,属于较为基础题.8.设,,,则的大小关系为()A. B. C. D.【答案】B【解析】【分析】利用指数函数的单调性可得,根据幂函数的单调性可得,从而可得结果.【详解】因为指数函数是减函数,,所以<,即;因为幂函数是增函数,,所以>,即,所以,故选B.【点睛】本题主要考查幂函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.9.已知是不重合的平面,是不重合的直线,则的一个充分条件是()A. ,B. ,C. ,,D. ,,【答案】C【分析】由题意,分别分析每个答案,容易得出当,,得出,再得出,得出答案.【详解】对于答案A:,,得出与是相交的或是垂直的,故A错;答案B:,,得出与是相交的、平行的都可以,故B错;答案C:,,得出,再得出,故C正确;答案D:,,,得出与是相交的或是垂直的,故D错故选C【点睛】本题主要考查了线面位置关系的知识点,熟悉平行以及垂直的判定定理和性质定理是我们解题的关键所在,属于较为基础题.10.圆周率是圆的周长与直径的比值,一般用希腊字母表示,早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年,在生活中,我们也可以通过设计下面的实验来估计的值;从区间内随机抽取200个数,构成100个数对,其中满足不等式的数对共有11个,则用随机模拟的方法得到的的近似值为()A. B. C. D.【答案】A【解析】【分析】根据满足不等式的数对表示的点在轴上方、正方形内且在圆外,得出数对所在的平面区域,利用几何概型概率公式列方程可得出的值.【详解】在平面坐标系中作出边长为1的正方形和单位圆,则符合条件的数对表示的点在轴上方、正方形内且在圆外的区域,区域面积为,由几何概型概率公式可得解得,故选A.【点睛】本题主要考查随机模拟实验以及“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积.11.双曲线的左焦点为,点的坐标为,点为双曲线右支上的动点,且周长的最小值为8,则双曲线的离心率为()A. B. C. 2 D.【答案】D【解析】【分析】先根据双曲线的定义求出,然后据题意周长的最小值是当三点共线,求出a的值,再求出离心率即可.【详解】由题易知双曲线的右焦点,即,点P为双曲线右支上的动点,根据双曲线的定义可知所以周长为:当点共线是,周长最小即解得故离心率故选D【点睛】本题主要考查了双曲线的定义和性质,熟悉性质和图像是解题的关键,属于基础题.12.若函数在区间上有两个极值点,则实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】求出,要使恰有2个正极值点,则方程有2个不相等的正实数根,即有两个不同的正根,的图象在轴右边有两个不同的交点,利用导数研究函数的单调性,由数形结合可得结果.【详解】,可得,要使恰有2个正极值点,则方程有2个不相等的正实数根,即有两个不同的正根,的图象在轴右边有两个不同的交点,求得,由可得在上递减,由可得在上递增,,当时,;当时,所以,当,即时,的图象在轴右边有两个不同的交点,所以使函数在区间上有两个极值点,实数的取值范围是,故选D.【点睛】本题主要考查利用导数研究函数的极值、单调性与最值,考查了转化思想与数形结合思想的应用,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将极值问题转化为方程问题,再转化为函数图象交点问题是解题的关键.二、填空题(将答案填在答题纸上)13.已知满足约束条件:,则的最大值是______.【答案】3【解析】【分析】根据约束条件,画出可行域,再求出与的交点,带入求出答案.【详解】满足约束条件:,可行域如图:解得由题,当目标函数过点A时取最大值,即故答案为3【点睛】本题主要考查了简单的线性规划,画出可行域是解题的关键,属于基础题.14.甲、乙、丙三人中,只有一个会弹钢琴,甲说:“我会”,乙说:“我不会”,丙说:“甲不会”,如果这三句话,只有一句是真的,那么会弹钢琴的是_____.【答案】乙【解析】【分析】根据题意,假设结论,根据他们所说的话推出与题意矛盾的即为错误结论,从而得出答案.【详解】假设甲会,那么甲、乙说的都是真话,与题意矛盾,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的是真话,符合题意,假设丙会,那么乙、丙说的都是真话,与题意矛盾;故答案是乙【点睛】本题主要考查了推理证明,属于基础题.15.四面体中,底面,,,则四面体的外接球的表面积为____.【答案】【解析】【分析】根据题意,证明出CD平面ABC,从而证明出CD AC,然后取AD的中点O,可得OC=OA=OB=OD,求出O为外接球的球心,然后求得表面积即可.【详解】由题意,可得BC CD,又因为底面,所以AB CD,即CD平面ABC,所以CD AC取AD的中点O,则OC=OA=OB=OD故点O为四面体外接球的球心,因为所以球半径故外接球的表面积故答案为【点睛】本题主要考查了三棱锥的外接球知识,找出球心的位置是解题的关键,属于中档题.三、解答题(解答应写出文字说明、证明过程或演算步骤.)16.设函数.(1)当时,求函数的值域;(2)中,角的对边分别为,若,且,求的面积.【答案】(1)(2)【解析】【分析】(1) 利用二倍角的余弦公式以及两角和的正弦公式将函数化为,求得,结合正弦函数的单调性即可求函数的值域;(2)由得,可求出的值,利用余弦定理求出的值,再由三角形的面积公式可得结果.【详解】(1)∵,∴,∴∴函数的值域为;(2)∵,∴,∵,∴,∴,即由余弦定理,,∴,即又,∴∴.【点睛】本题主要考查二倍角的余弦公式以及两角和的正弦公式,考查余弦定理与三角形面积公式的应用,属于中档题.对余弦定理要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.17.世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率; (2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?附:【答案】(1) (2)见解析【解析】【分析】(1)根据题意,时间不少于28小时的4名学生中,近视1名,不近视3名,所以恰好一名近视:,4名学生抽2名共有:,然后求得其概率.(2)先根据表格得出在户外的时间与近视的人数分别是多少,完成联表,然后根据公式求得的观测值,得出结果.【详解】(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件,则故随机抽取2名,中恰有一名学生不近视的概率为.(Ⅱ)根据以上数据得到列联表:所以的观测值,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.【点睛】本题主要考查了概率和统计案例综合,属于基础题.18.如图,四棱锥中,底面是平行四边形,平面,垂足为,在上,且,,,四面体的体积为.(1)求点到平面的距离;(2)若点是棱上一点,且,求的值.【答案】(1)(2)3【解析】【分析】(1)求出与,设点到平面的距离为,利用求解即可;(2)在平面内,过作垂直于,连结,先证明垂直,垂直,可得,再利用求解即可.【详解】(1)(方法一):由已知∴∵⊥平面,平面,∴∴∵∴设点到平面的距离为,∵,法二:由已知∴∵⊥平面,平面∴平面⊥平面∵平面平面在平面ABCD内,过作⊥,交延长线于,则⊥平面∴的长就是点到平面的距离在中,==∴点到平面的距离为(2)在平面内,过作⊥于,连结,又因为⊥,∴⊥平面,平面∴⊥⊥平面,平面∴⊥∴∥由⊥得:【点睛】本题主要考查点面距离的求解、“等积变换”的应用以及线面垂直的判断与性质,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.19.已知分别是椭圆:的左右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求椭圆的标准方程;(2)过点作不与轴重合的直线,设与圆相交于两点,且与椭圆相交于两点,当时,求的面积.【答案】(1)(2)【解析】【分析】(1)由焦点为,求得,,解得,从而可得结果;(2)设直线方程为,联立,由,结合韦达定理求得,再联立,由,利用韦达定理可得结果.【详解】(1)焦点为,则,解得,所以椭圆的标准方程为(2)由已知,可设直线方程为,联立得易知则=.因为,所以,解得.联立,得,设,则【点睛】本题主要考查椭圆的方程以及直线与椭圆的位置关系,属于难题. 求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.20.已知函数(为自然对数的底数),.(1)当时,求函数的极小值;(2)若当时,关于的方程有且只有一个实数解,求的取值范围.【答案】(1)0(2)【解析】【分析】(1)当时,,,令,可得,列表判断两边的符号,根据极值的定义可得结果;(2)化简,求得,,设,可得,讨论的取值范围,根据函数的单调性,结合零点存在定理即可筛选出符合题意的的取值范围.【详解】(1)当时,,,令则列表如下:所以.(2)设,,设,,由得,,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增,又,故当时,关于的方程有且只有一个实数解,符合题意.②当,即时,由(1)可知,所以,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解1.又时,,单调递增,且,令,,,故在单调递增,又在单调递增,故,故,又,由零点存在定理可知,,故在内,关于的方程有一个实数解.又在内,关于的方程有一个实数解1,不合题意.综上,.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.21.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),直线的方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)曲线与直线交于两点,若,求的值.【答案】(1);(2)【解析】【分析】(1)先将曲线的参数方程化为普通方程,然后再化为极坐标方程;(2)由题意,写出直线的参数方程,然后带入曲线的普通方程,利用韦达定理表示出求得结果即可.【详解】(1)由题,曲线的参数方程为(为参数),化为普通方程为:所以曲线C的极坐标方程:(2)直线的方程为,的参数方程为为参数),然后将直线得参数方程带入曲线C的普通方程,化简可得:,所以故解得【点睛】本题主要考查了极坐标和参数方程的综合,极坐标方程,普通方程,参数方程的互化为解题的关键,属于基础题.22.选修4-5:不等式选讲已知函数.(1)若不等式对恒成立,求实数的取值范围;(2)设实数为(1)中的最大值,若实数满足,求的最小值.【答案】(1);(2)【解析】【分析】(1)由不等式性质,解出a的值即可;(2)先求得m的值,然后对原式配形,可得再利用柯西不等式,得出结果.【详解】(1)因为函数恒成立,解得;(2)由第一问可知,即由柯西不等式可得:化简:即当且紧当:时取等号,故最小值为【点睛】本题主要考查了不等式选讲,不等式的性质以及柯西不等式,熟悉柯西不等式是解题的关键,属于中档题.。
黑龙江省齐齐哈尔市多校2025届高三第一次联考(月考)数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={−4,−3,−2,0,2,3,4},B={x|2x2−9≤0},则集合A∩B的真子集的个数为( )A. 7B. 8C. 31D. 322.已知x>0,y>0,则“x≥4,y≥6”是“xy≥24”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量N(mg/L)与时间t(小时)的关系为N=N0e−kt (N0为最初污染物数量,且N0>0).如果前4个小时消除了20%的污染物,那么污染物消除至最初的64%还需要( )A. 3.8小时B. 4小时C. 4.4小时D. 5小时4.若函数f(x)=ln(x2−2mx+m+2)的值域为R,则m的取值范围是( )A. (−1,2)B. [−1,2]C. (−∞,−1)∪(2,+∞)D. (−∞,−1]∪[2,+∞)5.已知点(m,27)在幂函数f(x)=(m−2)x n的图象上,设a=f(log43),b=f(ln3),c=f(3−12),则a,b,c的大小关系为( )A. c<a<bB. b<a<cC. a<c<bD. a<b<c6.已知函数f(x)={e x−ax,x>0−x2+(a−4)x+4a,x≤0,若关于x的不等式f(x)≥0的解集为[−4,+∞),则a的取值范围为( )A. (−∞,e2]B. (−∞,e]C. [0,e2]D. [0,e]7.设函数f(x)=log4x−(14)x,g(x)=log14x−(14)x的零点分别为x1、x2,则A. x1x2=1B. 0<x1x2<1C. 1<x1x2<2D. x1x2≥28.已知a>0,b>0,c>0,且a+3b−c≥0,则ba +a6b+c的最小值为( )A. 29B. 49C. 59D. 89二、多选题:本题共3小题,共18分。
东北三省
2013届高三第一次大联考
数学(文)试题
考生注意:
1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
2.请将各题答案填在试卷后面的答题卷上。
3.本试卷主要考试内容:集合、函数(导数)、三角、向量、数列、解三角形。
第I 卷
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1
.已知全集,{|{|02},()
U U R A x y B x x C A B ====<<集合集合则等于 A .[1,)+∞ B .(1,)+∞ C .[0,)+∞ D .(0,)+∞
2.已知等差数列428{},2,3,n a d a a a ==+中公差则等于
A .7
B .9
C .12
D .10
3.已知向量(1,0),(0,1),2i j i j ==+则与垂直的向量是
A .2i j -
B .2i j -
C .2i j +
D .2i j +
4.设0.50.4
33434(),(),log (log 4)43a b c ===,则
A .c b a <<
B .a b c <<
C .c a b <<
D .a c b <<
5.已知3(
,),sin ,tan()254ππαπαα∈=+则 A .17 B .7 C .—17 D .—7
6.设非零向量a 、b 、c 满足||||||,,cos(,)a b c a b c a b +=+=则等于
A .1
B .12- C
.2 D
.2
7.把函数sin()6y x π=+图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再将图象向右平移
3π个单位,那么所得图象的一条对称轴方程为 A .4x π= B .4x π=- C .8x π= D .2x π
=-
8.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°c =
则
A .a b >
B .a b <
C .a b =
D .a b 与的大小关系不能确定
9.函数2ln 2(0),()21(0),
x x x x f x x x ⎧-+>=⎨+≤⎩的零点个数为
A .0
B .1
C .2
D .3
10.已知函数()f x 的定义域为R ,且满足:()f x 是偶函数,(1)f x -是奇函数,若
(0.5)3f =,则(2012)(2014)( 2.5)f f f ++-等于
A .—9
B .9
C .—3
D .3 11.设等比数列
*1121{}(),20,128,n n m m m m a n T n N a a a T m -+-∈-==的前项积为已知且则等于
A .3
B .4
C .5
D .6
12.已知函数()|sin |(0)f x x y kx k ==>的图象与直线有且仅有三个公共点,这三个公
共点横坐标的最大值为α,则α等于
A .cos α-
B .—sin α
C .—tan α
D .tan α
第II 卷
二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷中的横线上)
13.已知角α的终边经过点3(,6),tan 5P x α-=-
且,则x 的值为 。
14.已知数列7113{}5,2,n n n n a a a a a a +===满足则 。
15.已知向量22(2cos ,sin ),(2sin ,cos )(),()||||,()
a x x
b x x x R f x a b f x ==∈=-且则的最大值 。
16.对于给定的函数()22x x
f x -=-,有下列四个结论:
①()f x 的图象关于原点对称; ②()f x 在R 上不是增函数; ③(||)f x 的图象关于y 轴对称; ④(||)f x 的最小值为0。
其中正确的结论是 (填写正确结论的序号)
三、解答题(本大题共6小题,共70分。
解答应写出必要的文字说明、证明过程及演算步
骤)
17.(本小题满分10分)
已知5sin(
)2sin tan().5cos()2a πααππα+=++-求
18.(本小题满分12分)
已知数列{}n a 是一个等差数列,且251, 5.a a ==-
(1)求{}n n n a a n S 的通项和前项和;
(2)设5,2,{}2
c n n n n a c b b -==证明数列是等比数列。
19.(本小题满分12分)
已知函数73()sin()cos(),.44
f x x x x R ππ=++-∈ (1)求()f x 的最小正周期和最小值;
(2)已知44cos(),cos(),0,()552
f πβαβααββ-=+=-<<≤求的值。
20.(本小题满分12分)
已知锐角△ABC 中的三个内角分别为A ,B ,C 。
(1)设BC CA CA AB ⋅=⋅,求证:△ABC 是等腰三角形;
(2)设向
量21(2sin ,(cos 2,2cos 1),//,sin ,23
C s C t C s t A ==-=且若求
sin()3B π
- 的值。
21.(本小题满分12分)
某工厂有214名工人,现要生产1500件产品,每件产品由3个A 型零件与1个B
型零件配套组成,每个工人加工5个A 型零件与3个B 型零件所需时间相同,现将全部工人分为两组,分别加工一种零件,同时开始加工,设加工A 型零件的工人有x 人,在单位时间内每人加工A 型零件5*()k k N ∈个,加工完A 型零件所需时间为()g x ,加工完B 型零件所需时间为().h x
(1)试比较()()g x h x 与大小,并写出完成总任务的时间()f x 的表达式;
(2)怎样分组才能使完成任务所需时间最少?
22.(本小题满分12分)
已知函数1().x ax f x e
-= (1)当1,()a f x =时求的单调区间;
(2)若对任意1[,2],()2
t f t t ∈>恒成立,求实数a 的取值范围。