最优化 5 灵敏度分析
- 格式:pdf
- 大小:875.49 KB
- 文档页数:40
图论与网络最优化算法答案【篇一:《运筹学》复习题】一、名词解释1松弛变量为将线性规划问题的数学模型化为标准型而加入的变量。
2可行域满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。
3人工变量亦称人造变量.求解线性规划问题时人为加入的变量。
用单纯形法求解线性规划问题,都是在具有初始可行基的条件下进行的,但约束方程组的系数矩阵a中所含的单位向量常常不足m个,此时可加入若干(至多m)个新变量,称这些新变量为人工变量。
4对偶理论每一个线性规划问题都存在一个与其对偶的问题,在求出一个问题解的同时,也给出了另一个问题的解。
研究线性规划中原始问题与对偶问题之间关系的理论5灵敏度分析研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。
在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。
通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。
6影子价格反映资源配置状况的价格。
影子价格是指在其他资源投入不变的情况下,每增加一单位的某种资源的投入所带来的追加收益。
即影子价格等于资源投入的边际收益。
只有在资源短缺的情况下,每增加一单位的投入才能带来收益的增加7产销平衡运输一种特殊的线性规划问题。
产品的销售过程中,产销平衡是指工厂产品的产量等于市场上的销售量。
8西北角法是运筹学中制定运输问题的初始调运方案(即初始基可行解)的基本方法之一。
也就是从运价表的西北角位置开始,依次安排m个产地和n个销地之间的运输业务,从而得到一个初始调运方案的方法。
9最优性检验检验当前调运方案是不是最优方案的过程。
10动态规划解决多阶段决策过程优化问题的方法:把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解11状态转移方程从阶段k到k+1的状态转移规律的表达式12逆序求解法在求解时,首先逆序求出各阶段的条件最优目标函数和条件最优决策,然后反向追踪,顺序地求出改多阶段决策问题的最优策略和最优路线。
Maxz=2x1+3X2+4x3x1+2X2+x i+x4=3S.t2x l-x2+3x3-x5=4x1,∙∙∙,x5≥0基变量xl=2,x2=3;非基变量x3=x4=x5=O;由约束条件得基变量用非基变量表示为p=⅛-5⅞-⅛^4÷y⅞[j⅛=f+∣Λ⅛-⅜X4-⅜X5目标函数中基变量用非基变量代入后Z=14-fx3-fx4-fx5o(1)当目标函数中系数Ci变化时(只要考虑最优性条件):设目标函数变为MaX z,=cx l+3X2+4x3目标函数中基变量用非基变量代入2=⅛c+f-(yC-^)x3-(y+fc)x4-(⅜-jc)%5所以如果“-等,∣+⅛C,∣-⅜C≥0,则符合最优解判别条件,所以目标函数最优性不变z=∙⅛c+/由“一等,f+⅛c,£一"之0解得最优性不变的C的范围。
否则,即如果超出该范围,则重新用单纯形法求解。
(2)当约束条件右边常数2变化时(先考虑可行性条件看最优基是否变化,再考虑):x1+2X2+x3+x4=b设约束条件变为2X1-X2+3X3-X5=4X I,∙∙∙,Λ5≥0先假设基没有变,所以令非基变量x3=x4=x5=0代入约束条件解得为4,JX2=2^-4根据可行性条件,必须和%≥o,解得匕的范围,即在此范围内最优基不变(最优解可能变化,要另外去求)。
否则,即如果超出该范围,则重新用单纯形法求解。
(3)当约束条件中价值系数传变化时(先看可行性条件看最优基是否变化,再考虑最优值):a ll x l+Ix1+x3+X4=3设约束条件变为,2X1-X2+3X3-X5=4x1,∙∙∙,x5≥0Ir=5先假设基没有变,所以令非基变量x3=x4=x5=0代入约束条件解得解得为{,^v_2q∣-36(x21Il根据可行性条件,必须%,马≥0,解得。
”的范围,即在此范围内最优基不变(最优解可能变化,要另外去求)。
否则,即如果超出该范围,则重新用单纯形法求解。