压缩感知
- 格式:pptx
- 大小:99.04 KB
- 文档页数:26
2011.No31 03.2 熟悉结构施工图结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。
看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。
在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚:a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。
b 箍筋与纵向受力钢筋的位置关系。
c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。
d 熟悉各构件节点的钢筋的锚固长度。
e 熟悉各个构件钢筋的连接方式。
f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。
g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。
h 弯起钢筋的弯折角度以及离连接点的距离。
除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。
特别注意的是对于结施图的阅读应充分结合建施图进行。
4 结束语在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。
参考文献[1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年;摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。
本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。
关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法1 引言1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。
压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号[1]。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,[2]并被美国科技评论评为2007年度十大科技进展。
编辑本段基本知识现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。
但是Shannon 采样定理是一个信号重建的充分非必要条件。
在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。
压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。
[3]压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。
传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。
但是,现实生活中很多广受关注的信号本身具有一些结构特点。
相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。
换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。
所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。
稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。
理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。
这些波形要求是与信号所在的稀疏空间不相关的。
压缩感知方法抛弃了当前信号采样中的冗余信息。
它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。
这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
压缩感知数学模型
压缩感知数学模型主要由两个过程组成:稀疏变换和投影测量。
稀疏变换的主要目的是找到一个基或者过完备字典Ψ,使得信号X在Ψ域是稀疏的。
换句话说,就是要找到一种表示方法,使得信号的大部分系数为零或接近零,满足下面的公式:因为是规范正交基,所以实现变换系数也就是压缩信号的等价或逼近的稀疏表示。
投影测量则是观测矩阵对信号进行降维和压缩的过程,同时也是对在Ψ域上的稀疏投影Y进行投影测量。
观测矩阵也叫测量矩阵,感知矩阵,需要满足的性质是保证稀疏向量Y从N维降到K维时重要信息不被破坏。
当得到了已经压缩完的采样信号A后,还需要根据确定的固定性观测矩阵Φ和稀疏矩阵Ψ的先验信息进行恢复。
如果N=M,正定方程有唯一解;而M<<N,欠定方程一般可以抽象为如下求解任务:
以上就是压缩感知数学模型的基本内容,如需了解更多信息,建议查阅数学类书籍或文献。
压缩感知理论包括三个关键技术:信号的稀疏表示、测量矩阵的设计与重构算法的研究。
1 信号的稀疏表示将N 维信号x ∈R N×1在一组正交基{ψi }i=1N (其中ψi ∈RN×1)是进行展开,得到: x =∑θi ψi N i=1 (1-1)其中θi =<x,ψi >=ψi T x 。
写成矩阵的形式可以得到:x =ΨΘ (1-2)其中Ψ=[ψi ,ψ2,…,ψN ]∈R N×N 为正交基字典矩阵,Θ=[θi ,θ2,…,θN ]T信号x 被称为K 项稀疏,表示其等价表示,向量Θ中,只有K 项元素非零,其它元素全部为零。
在我们研究的压缩感知中,主要考虑K ≪N 这种情况。
这时,信号x 称为可压缩的。
通过采用测量矩阵ΦM×N (M 行N 列,且M <N )与式(1-2)中信号向量x 相乘,可以得到M 个测量结果,可写为:y =ΦΨΘ (1-3)式(1-3)中M ×1的列向量y 是信号x 的压缩线性测量结果(观测向量)。
令公式(1-3)中A =ΦΨ,得到无噪声情况下的压缩感知的模型为:y =AΘ (1-4)显然,式(1-4)中A 是M ×N 维观测矩阵。
而含有噪声的压缩感知模型为:y =AΘ+z (1-5)式(1-5)中z 为噪声项。
恢复出了Θ后,通过x =ΨΘ即可恢复出x 。
接下来我们要做的是找到一个合适的观测矩阵A ,使得降维后的观测向量y依然可以保存信号Θ中的信息。
然后由于式(1-5)是个欠定方程组,我们要寻找合适的重构算法来恢复Θ。
2 观测矩阵的设计2.1 受限等距性质信号能够重构的必要条件是测量矩阵A 满足受限等距性质RIP (Restrictedisometry property )。
为了更好的描述看受限等跟性质的定义。
定义2.1受限等距性质(RestrictedIsometry Property,RIP)[7]:令观测矩阵A的列范数归一化,稀疏度K为自然数;任意向量v,它最多只有K项的非零元素,对于常数δK∈(0,1),满足下式:(1−δK)‖v‖22≤‖Av‖22≤(1+δK)‖v‖22(2-1)那么,我们称A∈RIP(K,δK),即称A服从参数为δK的K项稀疏,矩阵A保存了K项稀疏信号的信息。
压缩感知稀疏贝叶斯算法
压缩感知是一种信号处理方式,其基本思想是通过采集少量的信号样本,然后通过某种算法重构出原始信号。
稀疏贝叶斯算法是压缩感知中的一种重要方法,它利用贝叶斯估计理论来恢复稀疏信号。
压缩感知的基本模型可描述为:y = Ax + v,其中y为观测到的信号,A为M×N的感知矩阵,x为N×1维的待求信号,v为M×1维的噪声向量。
稀疏贝叶斯学习则是在压缩感知的基础上引入了贝叶斯估计理论,用于恢复稀疏信号。
具体来说,稀疏贝叶斯学习将信号建模为一个稀疏的概率图模型,然后通过贝叶斯公式来求解最优的信号值。
然而,传统的稀疏贝叶斯算法在存在噪声的情况下,其恢复效果可能不佳。
为了解决这个问题,研究者们提出了结合自适应稀疏表示和稀疏贝叶斯学习的压缩感知图像重建方法。
此外,还有研究者提出基于块稀疏贝叶斯学习的多任务压缩感知重构算法,该算法利用块稀疏的单测量矢量模型求解多任务重构问题。
这些改进的方法都在一定程度上提高了压缩感知的性能。
通感算一体化,压缩感知压缩感知是一种通感算一体化的技术,它可以将大量的数据进行压缩处理,以便更高效地传输和存储。
这项技术的应用十分广泛,涉及到图像、视频、音频等各个领域。
在这篇文章中,我将以人类的视角来探讨压缩感知的相关内容。
我们来了解一下压缩感知的原理。
压缩感知通过对信号进行采样,然后将采样结果与信号进行匹配,从而找到信号中的稀疏表示。
这样就可以通过较少的采样量来恢复出原始信号,实现数据的压缩。
这种方式可以大大减少传输和存储所需的资源,提高系统的效率。
在图像领域,压缩感知技术可以将图像进行有效的压缩,减小图像文件的大小,同时保持图像的质量。
通过对图像进行采样和稀疏表示,可以减少传输和存储所需的带宽和空间。
这对于网络传输和存储空间有限的场景非常有用。
在视频领域,压缩感知技术同样发挥着重要的作用。
视频数据通常非常庞大,传输和存储成本很高。
通过采用压缩感知技术,可以将视频进行压缩,减小文件大小,提高传输和存储效率。
这对于视频监控、视频会议等应用非常重要。
在音频领域,压缩感知技术可以将音频信号进行压缩,减小文件大小,提高传输和存储效率。
这对于音频流媒体、语音通信等应用非常有益。
除了图像、视频和音频领域,压缩感知技术还可以应用于其他领域,如雷达成像、医学图像处理等。
通过压缩感知技术,可以在保持数据质量的前提下,减小数据量,提高系统的效率。
压缩感知是一种重要的通感算一体化技术,可以在不损失数据质量的前提下,减小数据量,提高系统的效率。
它在图像、视频、音频等各个领域都有广泛的应用。
通过采样和稀疏表示的方式,压缩感知可以实现数据的高效传输和存储。
这项技术的发展将为各个领域带来更多的便利和效益。
希望通过对压缩感知的探讨,能够增加大家对这一技术的了解,推动其在实际应用中的发展和应用。
压缩感知方程定位
压缩感知(Compressed Sensing, CS)是一种新兴的信号处理
理论,它可以在采样率远低于传统理论所要求的情况下,实现对信
号的准确重构。
压缩感知方程定位是指利用压缩感知技术来实现对
目标位置的准确定位。
这种方法可以在较短的时间内,使用远远低
于传统方法所需的采样率,实现对目标位置的高精度定位。
压缩感知方程定位的关键在于如何设计合适的测量矩阵和重构
算法。
测量矩阵是指在采样过程中对目标位置进行测量的矩阵,而
重构算法则是指如何从这些测量数据中准确地重构出目标位置信息。
通过合理设计测量矩阵和高效的重构算法,压缩感知方程定位可以
实现对目标位置的高精度定位,并且具有较强的抗干扰能力。
压缩感知方程定位在无线通信、雷达、定位导航等领域具有广
泛的应用前景。
相比传统的定位方法,压缩感知方程定位可以大大
减少采样数据的传输和处理量,从而降低了系统的能耗和成本,并
且能够在复杂的环境下实现更加可靠的定位效果。
随着压缩感知理论的不断深入和发展,压缩感知方程定位技术
将会在未来的定位领域发挥越来越重要的作用,为我们的生活和工作带来更多便利和效益。
压缩感知求解欠定方程摘要:一、压缩感知技术简介二、欠定方程问题三、压缩感知求解欠定方程方法四、算法应用与性能分析五、结论与展望正文:压缩感知(Compressed Sensing,CS)技术是一种近年来快速发展的新型信号处理方法,它突破了传统的奈奎斯特采样定理限制,实现对稀疏信号的高效采集与重建。
在许多实际应用中,信号往往是欠定(underdetermined)的,即已知观测数据无法唯一确定原始信号。
本文将探讨如何利用压缩感知技术求解这类欠定方程问题。
一、压缩感知技术简介压缩感知是一种基于信号稀疏特性的采样与重建方法。
其基本思想是:首先将原始信号通过一个合适的变换矩阵,得到变换域中的系数;然后根据一定的准则,对这些系数进行压缩采样;最后利用重建算法从压缩采样数据中恢复出原始信号。
二、欠定方程问题欠定方程问题是指已知方程组中未知数的个数大于方程数的线性方程组问题。
在实际应用中,这类问题常见于图像、音频、视频等领域。
由于方程组欠定,直接求解往往面临病态问题,导致解的不稳定性。
三、压缩感知求解欠定方程方法针对欠定方程问题,压缩感知提供了一种新的求解思路。
在压缩感知框架下,将欠定方程问题转化为一个优化问题。
具体来说,假设原始信号为x,观测到的信号为y,变换矩阵为A,则求解过程可以表示为以下最小化问题:min_x ||y - Ax||_2^2其中,||·||_2表示L2范数。
通过求解该优化问题,可以得到原始信号的估计。
四、算法应用与性能分析压缩感知求解欠定方程方法在许多领域都有广泛应用,如图像重建、音频信号处理等。
与传统方法相比,压缩感知技术具有以下优势:1.采样率提高:压缩感知技术可以实现远低于奈奎斯特采样率的信号重建,有利于降低数据量。
2.抗噪声性能强:压缩感知方法在一定程度上了提高了信号的抗噪声能力。
3.高精度重建:通过优化算法,可以实现对原始信号的高精度重建。
五、结论与展望压缩感知技术在求解欠定方程问题方面具有显著优势,已成功应用于众多领域。