分式的加法和减法(2)通分
- 格式:ppt
- 大小:615.50 KB
- 文档页数:10
《分式的加减法》例题精讲与同步练习【基础知识精讲】1. 分式的通分(1) 把几个异分母的分式分别化为与原来分式相等的同分母的分式叫做通分.(2) 通分的依据是分式的基本性质, 通分的关键是确定最简公分母 . 最简公分母由下面的方法确定:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积; (3) 如果分母是多项式,则首先对多项式进行因式分解 .2. 分式的加减法 (1) 同分母的分式加减法同分母的分式相加减,分母不变,把分子相加减. 即:a b a bc cc(2) 异分母的分式加减法异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 即:acadbcadbcbdbdbdbd3. 分式的混合运算分式的加、减、乘、除、乘方混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号内的,若是同级混合运算按从左到右的顺序进行 .【重点难点解析】1.重点难点分析重点 :是掌握通分的方法和分式的加减运算;难点 :是异分母的分式的加减法运算和分式的四则混合运算2. 典型例题解析.例 1通分x 1 5 xx 7 2,x2,22x 3x3x 2x 6 x解∵x 2+3x+2=(x+1)(x+2)x 2-x-6=(x-3)(x+2) 2x -2x-3=(x-3)(x+1) ∴它们的最简公分母为 (x+1)(x+2)(x-3)∴x 1 ( x 1) ( x 3) 23x 2( x 1)( x 2) (x 3)x=x 2 4x3( x 1)( x 2)( x 3)5 x (5 x) ( x1)x 2 x 6( x 3)( x 2) ( x 1)=x 26x 5( x 1)( x2) ( x3)x 7(x7) (x2)x 2 2x 3 ( x 3)( x 1) ( x 2)=x 2 5x 14(x 1)( x 2)( x 3)例 2计算 3a 2 5a 2a 2 5a 1 2a 2 2a 2 1a 2 1 1 a 2解原式 3a 2 5a2a 2 5a1 2a 22=1a 2 1a 21a 2=(3a 25a)(2a 25a1) (2a 22)a21=3a 2 5a2a 2 5a 1 2a 22a21=3a 23=3a 2 1点评 在做减法时,分避免出错,最好添上一个括号,去括号时注意变号 .例 3计算x 2x2x 2x 25x6x解原式 =x 2x1)( x2) ( x 2)( x3)(x=(x2)( x 3) x( x1)( x1)( x 2)( x 3)=x 2 x 6 x 2 x(x1)( x 2)( x 3)=2x 6(x1)( x 2)( x 3)=-2x6( x1)( x 2)( x3)例 4计算1221x 2 x 1 x 1 x 2分析此 若将 4 个分式同 通分,分子将是很复 的, 算比 麻 . 分 察其特点,把一、四和二、三两个分式分 先相加,由于分子的一次 相加后和 零,使 算 .解原式 =(x2) (x 2) 2( x 1) 2( x 1)( x 2)(x2)(x 1)( x 1)=44(x 2)( x2) ( x 1)( x 1)=4( x 1)( x1) 4(x 2)( x2)( x 2)( x2)( x 1)( x 1)=12(x2)( x 1)( x1)( x 1)例 5算x1 3( x 1)2 .x 4 x 2分析 此 如果直接通分, 运算 必十分复 , 当各分子的次数大于或等于分母的次数,可利用多 式除法,将其分离 整式部分与分式部分的和再加减会使运算 便.解原式 =(x4) 3 3( x 2) 32x 4x 2 =1+x 3(3x 3 ) +24 2=3 3x 4x2=3( x 2) 3( x 4)( x 2)( x 4)=6(x 2)( x 4)【 巧解点 】例 6算1 21 +⋯⋯ +11 2 3n(n 1)分析若先通分,再相加,可以 无从下手,但若注意到1=11 ,先分后合,将使 算容易 行.解11+⋯⋯+n(n 1) nn 111 2 2 3n(n 1)1 1 1 1 1 1 )=( )+(2 )+ ⋯⋯ +(n12 3n1=1-1n 1n=1n【 本 解答】P87A 5(5) B 3(2)算 1.(x-y+4xy)(x+y- 4xy)xyx y2.xy 2x 4 yx 2x y x y x 4y 4x2y2(x y) 24xy ( x y) 2 4 xy解 1. 原式=[ x yx ][x yx ]y y=( x y) 2 (x y)222xy x=(x+y)(x-y)=x-yy2.原式 = xy 2x 4 yx 2y 2x2y 2( x 2 y 2 )(x 2 y 2 ) x 2=xy 2x 2 y xy 2x 2 y xy( y x) x 2y2x2y2x2y2(x y)( xy)=- xyxy注: (1) 中将 x-y ,x+y 看作一个整体通分,比逐一通分 便,注意 一技巧, 算最后果不写成乘 式而是多 式(或 式)(2) 中注意运算 序(先乘除、后加减)最后 果能 分要 分,化 最 分式.【典型 点考 】例 7 算 1-(x-1 2x 2x 1 (武 中考 )x) ÷2x11 x 2解 原式 =1-(x 2x 1 ) 2· (x 1) 2x1x 2 x1=1-(x2-x+1)=-x 2+x例 8当 x=-11,求(1+25x 133 2 x 2 4x 5 2的( 天津中考 )) (1-) ÷ (x 2 3x2) x2解原式(x 1) 3 (x 5)2 (x 2)2 (x 1)2 =1)3 (x 2) 2( x 1)2 (x 5)2(x=x 1x16165当 x=-1 1时,原式 =556 1 6 55=111例 9 设 x+1=5,求 (x-1)2的值.(xx解∵x+ 1=51x11222∴ (x- x )=x +x2-2=(x+ x )-4=25-4=21例 10已知x=m (m ≠0), 求x 2xx x 22 1x 4解∵ x 2 x 11xm即 x+ 1 = 1-1= 1m从而得x mm21 1 m2m 2 2m 1x +x2=( m) -2=m 2∴x 2 = 1=14x 2 1122m 1 x x 2 1mx 2m 2=11 2m点评利用 x和 1互为倒数关系,总能建立起x求值问题简单化 .大连中考题 )的值 . ( 上海中考题 )11(x n+ 1 ) 和(x+ 1) 之间的联系,使某些x nx【同步达纲练习】一、填空题 (6 分× 7=42 分 )1. 化简 1+ 1 +1等于.x 2 x 3x2. 使代数式11 1等于 0 的 x 的值是.x21 x 1x 13. 计算 x28 2 x 7 x2x x 6的值为.x 33 x34.1x的最简公分母是.x 2 ,4 2x45.(x 2-1)(1 1 1 -1)= .x x 16.122 2 =.m 2 93 mm37. ab bc c a.ab bc ac二、计算题 (12 × 4=48 分)8. 计算bc a( a b)(b c) (b c)(c a) (c a)( ab)a ba 2b 29. 计算 1-2ba 2 4ab 4b 2 a10. 计算1 12 4 1 x1 x1 x21 x411. 已知 x=4,y=-3 ,求2xx y的值 .2y 2y 2x 2(x y)( x y)x【素质优化训练】12. 如果 abc=1 ,求证1 111(10 分)ab a 1bc b 1ac c 1【生活实际运用】某人在一环形公路上跑步,共跑两圈,第一圈的速率是 x 米 / 分钟,第二圈的速度是 y 米 / 分钟,(x > y ),则他平均一分钟跑的路程是多少?参考答案:【同步达纲练习】一、 1.112.-1 3.-3 4.2(x+2)(x-2) 5.3-x 26.07.06x2二、 8.09.-b 10.8 1a b11.71 x 8【素质优化训练】12. 左边 =11abc aabab a 1 =右边,即证。
分式运算定律分式是数学中的一种运算形式,它由分子和分母组成,表示为a/b的形式。
分式运算定律指的是在进行分式运算时所遵循的准则和规则。
本文将介绍分式运算的基本概念和相关定律。
一、分式的基本概念分式是用来表示除法的一种形式。
在分数中,分子表示被除数,分母表示除数。
例如,1/2表示整数1除以整数2。
二、分式的四则运算在分式的四则运算中,有加法、减法、乘法和除法。
下面分别介绍这四种运算对应的定律。
1. 加法定律对于两个分式a/b和c/d的加法运算,可以按照以下步骤进行:- 对分子进行通分,使得两个分式的分母相同。
- 将通分后的分子相加,分母保持不变。
- 如果分子可以约分,则进行约分操作。
- 最后得到的分式即为运算结果。
例如,计算1/2 + 2/3的结果:- 对分子进行通分,得到3/6和4/6。
- 将通分后的分子相加,得到7/6。
- 7/6不能约分,所以最后结果为7/6。
2. 减法定律对于两个分式a/b和c/d的减法运算,可以按照以下步骤进行:- 对分子进行通分,使得两个分式的分母相同。
- 将通分后的分子相减,分母保持不变。
- 如果分子可以约分,则进行约分操作。
- 最后得到的分式即为运算结果。
例如,计算2/3 - 1/4的结果:- 对分子进行通分,得到8/12和3/12。
- 将通分后的分子相减,得到5/12。
- 5/12不能约分,所以最后结果为5/12。
3. 乘法定律对于两个分式a/b和c/d的乘法运算,可以按照以下步骤进行:- 将两个分式的分子相乘,分母相乘。
- 如果分子和分母可以约分,则进行约分操作。
- 最后得到的分式即为运算结果。
例如,计算2/3 * 3/4的结果:- 分子相乘得到6,分母相乘得到12。
- 6/12可以约分为1/2,所以最后结果为1/2。
4. 除法定律对于两个分式a/b和c/d的除法运算,可以按照以下步骤进行:- 将第一个分式的分子乘以第二个分式的倒数,即a/b * d/c。
- 进行分子和分母的乘法运算。
分式的加法和减法运算分式是数学中常见的表示形式,它由两个数的比值构成,其中一个数称为分子,另一个数称为分母。
在分式的运算中,我们需要掌握分式的加法和减法运算规则。
下面将详细介绍分式的加法和减法运算。
一、分式加法运算两个分式的加法运算规则如下:1. 分母相同的情况下,直接将分子相加,分母保持不变。
例如,计算1/3 + 2/3 = 3/3,即分子相加得到3,分母保持不变。
2. 分母不同的情况下,需要进行通分操作,即找到它们的最小公倍数作为新的分母,然后将分子按照对应关系乘上对应的倍数,最后将新的分子相加得到结果。
例如,计算1/4 + 2/3,首先找到4和3的最小公倍数为12,然后将1/4乘以3/3得到3/12,将2/3乘以4/4得到8/12,最后3/12 + 8/12 = 11/12。
在分式加法运算中,需要注意分子相加,而分母保持不变或找到最小公倍数进行通分操作。
二、分式减法运算两个分式的减法运算规则如下:1. 分母相同的情况下,直接将分子相减,分母保持不变。
例如,计算5/6 - 2/6 = 3/6,即分子相减得到3,分母保持不变。
2. 分母不同的情况下,需要进行通分操作,即找到它们的最小公倍数作为新的分母,然后将分子按照对应关系乘上对应的倍数,最后将新的分子相减得到结果。
例如,计算3/5 - 1/3,首先找到5和3的最小公倍数为15,然后将3/5乘以3/3得到9/15,将1/3乘以5/5得到5/15,最后9/15 - 5/15 =4/15。
在分式减法运算中,需要注意分子相减,而分母保持不变或找到最小公倍数进行通分操作。
综上所述,分式的加法和减法运算需要根据分母是否相同来进行不同的处理。
如果分母相同,直接将分子相加或相减;如果分母不同,需要进行通分操作,然后将分子相加或相减。
掌握了分式的加法和减法运算规则,我们就可以灵活运用分式进行数学计算,解决实际问题。
通过以上对分式的加法和减法运算规则的解释,相信您已经掌握了相关知识,并能够熟练进行分式的加减运算。
分式的加减法分式是数学中常见的一种表达形式,它由分子和分母组成,用于表示两个数的比值或者部分与整体的关系。
分式的加减法就是对两个或多个分式进行相加或相减的运算。
本文将介绍分式的加减法的基本原理和具体操作方法。
一、分式的加法分式的加法就是将两个分式相加,要求它们的分母相同。
具体的操作步骤如下:1. 找出需要进行加法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相加,保持分母不变,得到加法结果;4. 对加法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加法的答案。
例如,计算1/3 + 1/4的结果。
首先,分母不同,需要进行通分,得到4/12 + 3/12 = 7/12。
最后,7/12为所求的答案。
二、分式的减法分式的减法与加法类似,也需要求出相同的分母。
具体的操作步骤如下:1. 找出需要进行减法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相减,保持分母不变,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为减法的答案。
例如,计算3/4 - 1/3的结果。
分母不同,需要进行通分,得到9/12 - 4/12 = 5/12。
最后,5/12为所求的答案。
三、分式的加减混合运算对于分式的加减混合运算,按照运算顺序逐步进行。
先进行加法,再进行减法。
具体操作如下:1. 找出需要进行加减混合运算的分式,保持分子和分母的不变;2. 对这些分式进行加法运算,得到加法结果;3. 再对加法结果进行减法运算,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加减混合运算的答案。
例如,计算2/3 + 1/4 - 5/6的结果。
首先,需要进行通分,得到8/12 + 3/12 - 10/12 = 1/12。
专题5.3 分式的加减法运算(知识解读)【学习目标】1. 类比分数的加减法运算法则,探究分式的加减法运算法则.2. 能进行简单的分式加、减运算.3. 掌握分式的加、减、乘、除混合运算.4. 掌握分式的化简求值.【知识点梳理】考点1:同分母分式的加减同分母分式相加减,分母不变,把分子相加减; 上述法则可用式子表为:. 注意:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.考点2:异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减. 上述法则可用式子表为:. 注意:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.a b a b c c c ±±=a c ad bc ad bc b d bd bd bd ±±=±=【典例分析】【考点1 同分母分式的加减】【典例1】(2017•湖北)化简:﹣.【解答】解:﹣===【变式11】(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.【答案】A【解答】解:原式=﹣===x+1.故选:A.【变式12】(2020•淄博)化简+的结果是()A.a+b B.a﹣b C.D.【答案】B【解答】解:原式====a﹣b.故选:B.【变式13】(攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n 【答案】A【解答】解:+=﹣==m+n.故选:A.【考点2 异分母分式的加减】【典例2】(2016•南京)计算﹣.【解答】解:﹣=﹣==.【变式21】(2015•百色)化简﹣的结果为()A.B.C.D.【答案】C【解答】解:原式=﹣====.故选:C.【变式22】(2019•济南)化简+的结果是()A.x﹣2B.C.D.【答案】B【解答】解:原式=+==,故选:B.【变式23】(2016•甘孜州)化简:+.【解答】解法一:+=+==.解法二:+=+=+=.【典例3】(2015春•扬州校级月考)计算(1)﹣(2)﹣(3)﹣x﹣1.【解答】解:(1)﹣===﹣;(2)﹣=﹣===;(3)﹣x﹣1=﹣==.【变式31】(2019秋•石景山区期末)计算:﹣.【解答】解:原式=+==【变式32】(秋•南充期末)计算:﹣.【解答】解:原式=﹣,=,=,=,=.【变式33】(2020•鼓楼区一模)计算.【解答】解:原式====【考点分式化简】【典例4】(2016•聊城)计算:(﹣).【解答】解:原式=•=•=﹣.【变式41】(2021•碑林区校级一模)化简:(﹣)÷.【解答】解:原式=[﹣]÷=÷=•=.【变式42】(2020秋•潍城区期中)计算:(1);(2);(3).【解答】解:(1)原式=•==;(2)原式=﹣==;(3)原式=•+=+==.【变式43】(2021•金州区校级模拟)计算:÷﹣1.【解答】解:原式=•﹣1=﹣=.【变式44】(2020秋•华龙区校级期中)计算(1);你(2).【解答】解:(1)原式=﹣•=﹣==;(2)原式=÷=•=.【典例5】(2021秋•北碚区校级期中)先化简再求值:÷(x﹣1+),其中x=2.【解答】解:原式=÷=÷=•=,当x=2时,原式=1【变式5】(2021秋•雨花区校级月考)先化简,再求值:,其中a=2022.【答案】﹣.【解答】解:原式=()÷=()×==﹣.当a=2022时,原式=﹣=﹣.【典例6】(2021•射阳县二模)先化简,再求值:()÷,其中x从1,2,3中取一个你认为合适的数代入求值.【答案】1【解答】解:原式=[]===,∵x(x+1)(x﹣1)≠0,∴x≠0且x≠±1,∴x可以取2或3,当x=2时,原式=,当x=3时,原式==1.【变式6】(2022•牟平区校级开学)化简求值:,再从﹣1≤x <2中选一个整数值,对式子进行代入求值.【解答】解:原式=÷=•=﹣,∵﹣1≤x<2且x为整数,∴x=﹣1,0,1,2,当x=1时,原式没有意义,舍去;当x=﹣1时,原式=;当x=0时,原式=1;当x=2时,原式=﹣.【典例7】(2021•潍城区二模)先化简,再求值:(﹣)÷(x+2﹣),其中x是不等式组的整数解.【解答】解:原式=[+]÷[﹣]=(+)÷(﹣)=÷=•=,由,解得:﹣1<x≤2,∵x是整数,∴x=0,1,2,由分式有意义的条件可知:x不能取0,1,故x=2,∴原式==2.【变式7】(2021•苍溪县模拟)先化简:,再从不等式组的解集中取一个合适的整数值代入求值.【解答】解:原式===2(x+1)﹣(x﹣1)=2x+2﹣x+1=x+3.解不等式组,得﹣3<x≤1.由分式有意义的条件可知:x不能取﹣1,0,1,且x是整数,∴x=﹣2.当x=﹣2时,原式=1.【典例8】(2021秋•兴宁区校级月考)先化简,再求值:,其中a满足a2+2a﹣3=0.【解答】解:原式=•=•=•=2a(a+2)=2(a2+2a),∵a满足a2+2a﹣3=0,∴a2+2a=3,当a2+2a=3时,原式=2×3=6.【变式8】(2021秋•沭阳县校级月考)先化简,再求值:(﹣)÷,其中x2﹣x﹣6=0.【解答】解:原式=[﹣]÷=•=•=•=,∵x2﹣x﹣6=0,∴x=3或x=﹣2,由分式有意义的条件可知:x不能取﹣2,故x=3,∴原式==﹣.。