第十二章 添加剂(二)--甜味剂及其测定综述
- 格式:ppt
- 大小:163.00 KB
- 文档页数:51
食品中甜味剂的分析与检测方法引言:现代社会,人们对于食品的需求逐渐朝着高质量、多元化的方向发展。
为了满足不同口味的需求,食品加工厂商纷纷使用各种甜味剂,以增加产品的甜味。
然而,食品中的甜味剂可能对人体健康造成潜在的患病风险。
因此,分析与检测食品中的甜味剂成为了保障食品安全的重要环节。
一、甜味剂的常见类型甜味剂主要分为天然甜味剂和人工合成甜味剂两大类。
天然甜味剂如果糖、蔗糖、麦芽糖等,是从植物中提取的;而人工合成甜味剂如阿斯巴甜、糖精、糖蜜素等则是由化学反应合成的。
二、甜味剂分析的目的甜味剂的分析主要目的有两个方面:一是验证食品中是否添加了甜味剂,以保证食品质量;二是控制甜味剂的用量,避免超量使用对人体健康造成危害。
三、物理检测方法物理检测方法是最基础的分析方法,通过对食品样品的可见性、流变性等特征进行观察和分析,以判断其中是否存在甜味剂。
例如,通过观察食品的颜色、气味和味道等外观特征,可以初步判断是否添加了甜味剂。
同时,通过检测食品的黏度和流变性等物性参数,可以进一步确认其中是否含有甜味剂。
四、化学分析方法化学分析方法是常用的甜味剂检测手段之一。
常见的化学分析方法包括高效液相色谱(HPLC)、气相色谱(GC)、质谱联用(GC-MS)等。
这些方法通过对食品样品进行萃取、分离和检测,可以准确地确定食品中的甜味剂种类和含量。
其中,HPLC是较为常用的方法,它可以将样品中的甜味剂分离并测定其浓度。
GC-MS则可以通过对甜味剂的质谱图谱进行分析,确认其种类和结构。
五、生物学检测方法生物学检测方法是利用生物学体系对食品样品中的甜味剂进行定性或定量分析。
这种方法主要包括生物感知器、生化传感器和生物传感器等。
其中,生物感知器主要利用细胞、组织或生物反应进行甜味剂的感知和检测;生化传感器则是通过酶、抗体等生物分子与甜味剂的特异性反应,来实现对甜味剂的检测和测定。
结语:食品中甜味剂的分析与检测方法多种多样,每一种方法都有其适用的范围和精确度。
实验二高效液相色谱法检测饮料中甜味剂一、实验目的学习高效液相色谱仪的基本操作,分析测定汽水、可乐型饮料、果汁、果茶等食品中乙酰磺胺酸钾、糖精钠的色谱条件选择。
二、实验原理试样中乙酰磺胺酸钾、糖精钠经高效液相反相C18柱分离后,根据保留时间定性,外标峰高或峰面积定量。
三、实验器材1、试剂1.1 甲醇:色谱纯。
1.2 乙腈:色谱纯。
1.3 0.02 mol/L硫酸铵溶液,称取硫酸铵2.642 g,加水溶解至1000mL。
1.4 10%硫酸溶液。
1.5 中性氧化铝层析用,100目~200目。
1.6 乙酰磺胺酸钾、糖精钠标准储备液:精密称取乙酰磺胺酸钾、糖精钠各0.1000g,用流动相溶解后移入100mL容量瓶中,并用流动相稀释至刻度,即含乙酰磺胺酸钾、糖精钠各1mg/mL的溶液。
3.7 乙酰磺胺酸钾、糖精钠标准使用溶液:吸取乙酰磺胺酸钾、糖精钠标准储备液2mL于50mL容量瓶,加流动相至刻度,然后分别吸取此液1mL、2mL、3mL、4mL、5mL于10mL容量瓶中,各加流动相至刻度,即得各含乙酰磺胺酸钾、糖精钠4μg/mL、8μg/mL、12μg/mL、16μg/mL、20μg/mL的混合标准液系列。
3.8 流动相:0.02mol/L硫酸铵(740~800)+甲醇(170~150)+乙腈(90~50)+10%硫酸(1mL)。
2、仪器高效液相色谱仪(配有紫外检测器);超声清洗仪(溶剂脱气用);离心机;抽滤瓶;G3耐酸漏斗;微孔滤膜0.45μm;层析柱,可用10ml注射器筒代替,内装3cm高的中性氧化铝。
四、实验步骤1、试样处理1.1 汽水:将试样温热,搅拌除去二氧化碳或超声脱气。
吸取试样2.5mL于25mL 容量瓶中。
加流动相至刻度,摇匀后,溶液通过微孔滤膜过滤,滤液作HPLC分析用。
1.2 可乐型饮料:将试样温热,搅拌除去二氧化碳或超声脱气,吸取已除去二氧化碳的试样2.5mL,通过中性氧化铝柱,待试样液流至柱表面时,用流动相洗脱,收集25mL洗脱液,摇匀后超声脱气,此液作HPLC分析用。
•食品添加剂甜味剂概述•食品添加剂甜味剂的种类和特性•食品添加剂甜味剂的安全性评价•食品添加剂甜味剂的使用和监管•食品添加剂甜味剂的研究进展和未来趋势目录甜味剂的定义和分类根据来源和化学结构,甜味剂可分为人工合成甜味剂和天然甜味剂两大类。
人工合成甜味剂包括糖精、安赛蜜、阿斯巴甜等;天然甜味剂则包括赤藓糖醇、木糖醇、甜菊糖等。
甜味剂是指赋予食品以甜味的食品添加剂,主要有糖醇类、非糖类甜味剂等。
甜味剂的用途和作用甜味剂在食品工业中广泛应用于饮料、糖果、糕点、蜜饯等各类食品的制造过程。
除了增加食品的甜度,提高食品的口感和品质外,甜味剂还具有一些特殊的作用,如改善食品的结构和质地,提高食品的营养价值等。
一些甜味剂如赤藓糖醇、木糖醇等还具有抗龋齿、抗氧化等保健功能。
随着消费者对健康饮食的关注度不断提高,无糖、低糖食品逐渐受到消费者的青睐,甜味剂市场也呈现出快速增长的趋势。
未来,随着技术的不断进步和消费者需求的不断变化,甜味剂市场将呈现出以下发展趋势1. 天然化和功能性:随着消费者对食品安全和健康的关注度不断提高,天然、低热量、抗龋齿等具有保健功能的甜味剂将更受欢迎。
2. 定制化:随着个性化消费的兴起,针对不同消费群体和消费需求的定制化甜味剂将成为未来的发展趋势。
3. 联合使用:为了提高食品的口感和品质,同时满足消费者的健康需求,多种甜味剂的联合使用将成为未来的发展趋势。
甜味剂的市场现状和发展趋势化学名甜度特点应用糖精阿斯巴甜化学名甜度天门冬酰苯丙氨酸甲酯(Aspartame)特点应用低热量、高甜度,无毒无害饮料、口香糖、糕点等食品加工安赛蜜化学名甜度特点应用纽甜化学名N-[N-(3,3-Dimethylbutyl)-L-α-aspartyl]-L-phenylalanine 1-methyl ester甜度约7000倍于蔗糖特点高甜度,低热量,无毒无害应用饮料、口香糖等食品加工安全性评价原则毒理学评价内容甜味剂的毒理学评价安全限量标准标准制定流程甜味剂的安全限量及标准制定风险评估对甜味剂的生产、使用、监管等环节进行风险评估,以发现可能出现的问题和隐患,及时采取措施加以解决。
食品中甜味剂的检测与分析方法研究在现代快节奏的生活中,甜食成为许多人的最爱。
然而,随着对健康的关注不断增加,对食品中添加剂的安全性也引起了广泛关注。
尤其是甜味剂这一群体,其作为食品添加剂更加受到重视。
因此,对食品中甜味剂的检测与分析方法进行研究具有重要的意义。
甜味剂是一类使食品具有甜味的食品添加剂,其使用广泛。
目前市场上常见的甜味剂主要包括蔗糖、低聚糖、糖精、阿斯巴甜等。
尽管它们在小剂量下使用相对安全,但如果未经适当的质量监控和适量使用,可能对人体健康带来不良影响。
为了确保食品中甜味剂的质量和安全,科学家们致力于研究快速、准确的检测与分析方法。
目前,液相色谱法、质谱法、气相色谱法及电化学法等被广泛运用于甜味剂的检测与分析。
液相色谱法是一种常用的分离和定量分析方法。
该方法通过样品和色谱柱中所填充的吸附剂相互作用以分离不同物质。
对于食品中甜味剂的检测,使用高效液相色谱-紫外检测器联用系统是常见的方法。
根据甜味剂的特点,通过优化色谱柱的填料和流动相条件,可以实现不同甜味剂的高效分离和定量。
质谱法是一种准确度高、灵敏度好的分析方法。
对于食品中甜味剂的检测,质谱法的应用日益增加。
可以使用质谱联用技术,如气相色谱质谱联用(GC-MS)或液相色谱质谱联用(LC-MS),以实现对甜味剂的分离和定量。
这种方法可以通过质谱仪的高分辨率和选择性,准确地识别出食品样品中微量甜味剂的存在。
气相色谱法是一种常用于食品中残留分析的技术。
对于食品中甜味剂的检测,气相色谱法可以用于定性和定量分析。
该方法通过使用气相色谱仪分离并检测挥发性甜味剂,如糖精和阿斯巴甜。
通过优化色谱柱、流动相和温度程序,可以实现对不同甜味剂的高效分离。
电化学法是一种较为简单且迅速的检测方法。
对于甜味剂的检测,电化学法主要基于甜味剂与电极产生的电化学反应,通过检测这些反应的电流或电势变化实现甜味剂的定量分析。
此方法的特点是快速、灵敏且无需复杂的样品预处理,适合于大批量样品的分析。
《食品分析》教案(第21次课2学时)一、授课题目第十二章食品添加剂的测定第一节概述第二节几种甜味剂的检测第三节几种常用防腐剂的检测二、教学目的和要求学习本章内容,要求学生明确测定添加剂的重要性;了解各种甜味剂和防腐剂的测定方法。
三、教学重点和难点重点:甜味剂和防腐剂的测定方法难点:糖精钠、苯甲酸钠、山梨酸甲的测定方法四、主要参考资料1、大连轻工业出版社等合编.食品分析.中国轻工业出版社,1996年6月。
五、教学过程1、学时分配:2学时2、辅导手段:自习答疑3、教学办法:讲授4、板书设计: (见下页)5、教学内容第十二章食品添加剂的测定第一节概述一、食品添加剂的种类食品添加剂——是指为改善食品品质和色、香、味以及防腐和加工艺的需要而加入食品中的化学合成或者天然物质。
➢这些物质本身不作为食用目的,也不一定有营养价值。
但不包括污染物、残留农药。
➢食品添加剂的种类很多,按其来源分为:(1)天然食品添加剂利用动、植物组织或分泌物及以微生物的代谢产物为原料,经过提取、加工所得到的物质。
如:Vc、淀粉糖浆、植物色素等。
(2)化学合成添加剂通过一系列化学手段所得到的有机或无机物质。
➢目前我国允许使用,并制订了国家标准《食品添加剂使用卫生标准》,分类有:酸度调节剂、抗结剂、消泡剂、抗氧化剂、漂白剂、膨松剂、胶母糖基础剂、着色剂、护色剂、乳化剂、酶制剂、增味剂、面粉处理剂、被膜剂、水分保持剂、营养强化剂、防腐剂、稳定剂和凝固剂、甜味剂、增稠剂、食品香料、其它22类1500种(世界现在有4000多种)二、食品添加剂的安全使用和管理➢天然食品添加剂一般对人体无害,大多数合成添加剂对人体有毒性,致癌物。
要控制加入量。
➢关于人体每天允许食用量ADI值,可查书得到。
ADI——Acceptable Daily Intake For Man(由联合国粮农组织、世界卫生组织规定)名称 ADI(mg / kg体重)NaNO2 0——0.2苯甲酸 0—— 5山梨酸 0—— 25➢一些食品添加剂在不同的食品中添加的限量添加剂名称食品加入限量(mg /kg)NaNO2午餐肉 125NaNO3午餐肉< 500SO2白糖 20苯甲酸干酪制品 1000山梨酸果汁类 600EDTA 果汁类 250➢各种食品添加剂有自己的质量标准:(主要限制有害物质的含量)例:山梨酸 GB 1905 - 2000EDTA二钠 GB2760—96甜菊糖甙 GB 8270-1999《食品添加剂中铅的测定方法》GB/T5009.75—2003《食品添加剂中砷的测定》GB/T 5009.76--2003三、食品添加剂检验方法食品添加剂的检测也是先分离再测定。
T logy科技食品科技1 食品甜味剂的概述甜味剂是一种重要的食品添加剂,可以赋予食品以甜味。
根据来源不同分为天然甜味剂与人工合成甜味剂;根据化学结构及性质的不同可分为糖类与非糖类甜味剂;根据营养价值来分包括营养性甜味剂与非营养性甜味剂。
研究显示,糖尿病、肥胖症、龋齿等疾病的一大诱因就是不良饮食习惯与不合理的膳食结构,特别是与蔗糖摄入过多有很大的关联[1]。
因此,天然非营养型甜味剂受到了广泛的关注,是今后甜味剂的重要发展方向。
2 食品甜味剂的常见检测技术目前,甜味剂种类较多,常见的有安赛蜜、甜蜜素、糖精钠与阿斯巴甜等,检测技术也有很多,主要有电化学法、光谱法、色谱法质谱联用法等。
2.1 气相色谱法该检测技术是食品甜味剂检测中的重要技术手段,优势在于灵敏度高、分离能力强。
对前处理的要求比较严格,程序较为繁琐。
国内对食品中甜蜜素的检测主要运用的就是此技术。
目前,气相色谱柱也有所改进,毛细管柱正逐渐代替了传统的填充柱,应用范围更广。
刘先华在检测糕点中甜蜜素的含量时,对气相色谱法作了相应的改进,在测定样品中甜蜜素时提前将糕点中的水分与脂肪去除,或直接采用脂肪检测后的糕点作为样品。
这有效解决了脂肪与脂溶性物质在正己烷溶剂中不易清除的难题。
针对检出限低问题,实验中选用大口径毛细管柱程序升温办法,检测效果显著[1]。
2.2 液相色谱法此法前处理简单,应用范围更广,适合检测部分大分子甜味剂,包括纽甜、阿斯巴甜等。
蒋定国等利用高效液相色谱法对固体饮料、乳饮料、浓缩果汁中的阿斯巴甜进行测定,针对不同类型的食品使用了不同的前处理办法。
分离条件为C18柱与甲醇/水流动相,并在208 nm波长下进行检测。
结果显示,2 mg/kg为此法的最低检出限,可用于各种成分复杂的食品的定性定量分析[2]。
2.3 离子色谱法该检测技术是通过电导检测器完成对阴离子、阳离子混合物的常量与痕量分析。
由于此法问世时间较短,未来在洗脱液,高灵敏度检测器、低交换容量离子交换树脂等方面有很大的改进空间。
甜味是五种基本味觉之一,在日常的膳食消费也占有很大的比重,但由于食糖热量大、后味发酸,可致龋齿、肥胖、血糖高、少儿近视,因而食糖摄入量过多被当代人认为是一个重要的不健康因子。
无论发达国家还是发展中国家,在其提出的“国民健康指南”中,无一例外地劝告国民限制对蔗糖的摄人。
1996年世界爱牙日的主题被定为“少食含糖的食品,有益健康”。
而那些对食品中食糖含量甚为敏感但又向往甜味刺激的人们,不约而同地把目光投向了低能量、抗龋齿、适用范围广的甜味剂。
甜味剂是—类本身具有甜味,只需少量即可赋予食品甜味,但几乎不产生热能并且营养价值又很低的一类物质。
甜类剂按其性质与特点可分为功能性甜味剂、人工合成高甜度甜味剂与天然甜味剂。
目前,全世界食品添加剂年贸易额约200亿美元,其中甜味剂占15亿美元,甜味剂工业已成为食品添加剂工业中产量比重最大的工业根据性质甜味剂可分为三类:第一类为化学合成甜味剂,顾名思义该类甜味剂完全由化学方法合成。
糖精是最早使用的化学合成甜味剂。
第二类为天然甜味剂,如甜菊糖、甘草、罗汉果甜甙等。
第三类为功能性甜味剂,如木糖醇。
本文就几种重要的甜味剂的历史背景、性质、合成工艺、应用及发展趋势作一综述,以期指导甜味剂的研发生产,使之有更广阔的利用天地。
1.化学合成甜味剂1.1 糖精Saccharin糖精于1878年由美国人C.Fahlberg和I.Remsen发明并申请美国发明专利USP319082,它的化学名为邻磺酰苯甲酰亚胺,分子式C7H5O3NS,熔程228~230℃,呈无色结晶或白色粉末,其甜度为蔗糖的500倍,又称不溶性糖精或糖精酸。
通常人们普遍称谓的糖精实际上是糖精钠,它是糖精的钠盐。
其工业合成方法主要有两种,一种是邻二苯甲酸法,邻苯二甲酸酐为起始原料,经酰氨化、酯PC、重氮、置换、氨化、酸析、中和等工序,最后在水溶液中结晶而成。
另一种是甲本法( 1) 氯磺化反应( 2) 氨化反应( 3) 氧化, 酸化反应目前甲苯法应用最为广泛。