北京大学量子力学教材 习题集
- 格式:pdf
- 大小:196.98 KB
- 文档页数:20
量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------yy y y y ye e e e e e∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππy e dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
3.4.续谱本征函数的归一化一、δ函数1. δ函数的定义和表示δ函数不是一般意义下的函数,而是一分布,因对一个处处为0,而仅一点不为零的函数其积分为0。
但习惯上将它看作一函数。
其重要性和意义在积分中体现出来,它可用一函数的极限来定义。
先看不定积分10()00xx x dx x δ-∞>⎧''=⎨<⎩⎰。
这是一阶梯函数,设10()00x U x x >⎧=⎨<⎩,则()()x U x δ'= ,即000()()()()()lim lim lim ()()()2aa a a U x a U x a U x a U x a x F x x a x a aδ+++→→→+--+--===+-- ,所以,当0a +→,()a F x →∞(x )a ,a (∈-)。
但总面积恒为1,即 ()1a F x dx +∞-∞=⎰ (对任意a ),可以证明1()2izxc e U x dz i z π=⎰,所以11()().22izxikx c x U x e dz e dk δππ'===⎰⎰作为函数参量极限δ还可表示为:222222011cos 11sin ()lim lim lim i x x L L Lx Lx x LxLx x x ασασααδππαπ+-→+∞→∞→→-======+ 2.性质:⎩⎨⎧-==∞≠=-⎰+∞∞-dx x x ik x x x x x x )](exp[210)(0000πδ;)'()'(x x x x -=-δδ为偶函数;⎰+∞∞-=-1)'(dx x x δ;⎰⎰+++∞∞-=-=-εεδδ00)()()()()(00x x x f dx xx x f dx xx x f ; )'()'(0)(x x x x x x --⇒==δδ;由傅立叶积分公式得, ⎰⎰+∞∞-+∞∞--=dk x x ik x f dx x f )](exp[)(21)(00π,)'(]/)'(exp[21)'(],/)(exp[21)(00p p p p ix dx p p x x ip dp x x -=-=--==-∴⎰⎰+∞∞-+∞∞-δπδπδ δ函数具有任何级的导数,可以证明()()00()()(1)()n n n x x f x dx f x δ+∞-∞-=-⎰ (注意:微商是对宗量进行的)。
第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。
解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。
(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。
1 量子力学测试题(6)(北师大2003)1、(20分)一维谐振子t=0时处于基态0ψ和第一激发态1ψ的叠加态))()((21)0,(10x x x ψψψ+=其中 222100)(x e N x αψ-= x e N x x αψα2)(222111-=(1)求t 时刻位置和动量的平均值t t p x ,;(2)证明:对于一维谐振子的任何态,t 时刻位置和动量的平均值有以下关系 t t p mx dt d1= (3)求t 时刻能量的平均值t H 。
2、(40分)t=0时氢原子的波函数为⎥⎦⎤⎢⎣⎡+=-+χϕθχϕθϕθψ),(32),(31)(),,(111021Y Y r R r其中±χ为自旋z S 的本征态。
(1)测量下列物理量的可能值及相应几率是什么?轨道角动量平方和z 分量z L L ˆ,ˆ2;自旋角动量平方2ˆS ;总角动量平方2ˆJ (S L J ˆˆˆ+=)。
(2)电子自旋向上,到坐标原点距离为r 的概率密度;(3)能量的平均值E ;(4)轨道角动量x 分量的平均值x L ;(5)0≠t 时问题(3)和(4)的结论会改变吗?3、(30分)自旋算符σσ ⋅=n n ,其中为方向单位矢)cos ,sin sin ,cos (sin θϕθϕθ=n(1)求n σ的本征态±χ;(2)证明n ±=±±χσχ||;(3)一个两电子体系处在自旋单态[])2()1()2()1(2100αββαχ-=,求第一个电子的自旋算符σσ ⋅=n n 1作用于00χ的结果?001=χσn4、(30分)外磁场中电子的哈密顿量()221ˆA q P H -=μ。
(1)求位置矢量r 和Hˆ的对易关系]ˆ,[H r;2 (2)证明连续性方程0),(),(),(*=⋅∇+∂∂t r J t r t r t ψψ中的几率流密度 ⎪⎭⎫ ⎝⎛-∇-∇-=2**22ψψψψψμA iq i J 5、(30分)在磁场0B e B z =中,把()00ˆ2ˆˆB S L H z z +='μ看成微扰。
量子力学习题(三年级用)北京大学物理学院二O O三年第一章 绪论1、计算下列情况的Broglie de -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子()克2410671-⋅=μ.n;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-⋅=μ.a;(3)飞行速度为100米/秒,质量为40克的子弹。
2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?3、利用Broglie de -关系,及园形轨道为各波长的整数倍,给出氢原子能量可能值。
第二章 波函数与波动力学1、设()()为常数a Ae x x a 2221-=ϕ(1)求归一化常数 (2).?p ?,x x ==2、求ikr ikr e re r -=ϕ=ϕ1121和的几率流密度。
3、若(),Be e A kx kx -+=ϕ求其几率流密度,你从结果中能得到什么样的结论?(其中k 为实数)4、一维运动的粒子处于()⎩⎨⎧<>=ϕλ-000x x Axe x x的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。
5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证0=υ⨯∇其中ρ=υ/j6、一维自由运动粒子,在0=t时,波函数为()()x ,x δ=ϕ0求:?)t ,x (=ϕ2第三章 一维定态问题1、粒子处于位场()000000〉⎩⎨⎧≥〈=V x V x V中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动)2、一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=0000x a x x V )x ( 中运动。
(1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ϕ态,证明:,/a x2=().n a x x ⎪⎭⎫ ⎝⎛π-=-222261123、若在x 轴的有限区域,有一位势,在区域外的波函数为如DS A S B D S A S C 22211211+=+=这即“出射”波和“入射”波之间的关系,证明:01122211211222221212211=+=+=+**S S S S S S S S这表明S 是么正矩阵4、试求在半壁无限高位垒中粒子的束缚态能级和波函数()⎪⎩⎪⎨⎧>≤≤<∞=ax V a x x V X 0000 5、求粒子在下列位场中运动的能级()⎪⎩⎪⎨⎧>μω≤∞=021022x x x V X6、粒子以动能E 入射,受到双δ势垒作用()[])a x ()x (V V x -δ+δ=0求反射几率和透射几率,以及发生完全透射的条件。
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。
量子力学习题集及答案09光信息量子力研究题集一、填空题1.__________2.设电子能量为4电子伏,其德布罗意波长为6.125A。
XXX的量子化条件为∫pdq=nh,应用这量子化条件求得一维谐振子的能级En=(nωℏ)。
3.XXX假说的正确性,在1927年为XXX和革末所做的电子衍射实验所证实,德布罗意关系为E=ωℏ和p=ℏk。
4.ψ(r)=(三维空间自由粒子的归一化波函数为e^(ip·r/ℏ)),其中p为动量算符的归一化本征态。
5.∫ψ*(r)ψ(r)dτ=(δ(p'-p)),其中δ为狄拉克函数。
6.t=0时体系的状态为ψ(x,0)=ψ_n(x)+2ψ_2(x),其中ψ_n(x)为一维线性谐振子的定态波函数,则ψ(x,t)=(ψ(x)e^(-iωt/2)+2ψ_2(x)e^(-5iωt/2))。
7.按照量子力学理论,微观粒子的几率密度w=(|Ψ|^2),几率流密度j=(iℏ/2μ)(Ψ*∇Ψ-Ψ∇Ψ*)。
其中Ψ(r)描写粒子的状态,Ψ(r)是粒子的几率密度,在Ψ(r)中F(x)的平均值为F=(∫Ψ*F(x)Ψdx)/(∫Ψ*Ψdx)。
8.波函数Ψ和cΨ是描写同一状态,Ψe^(iδ)中的e^(iδ)称为相因子,e^(iδ)不影响波函数Ψ的归一化,因为e^(iδ)=1.9.定态是指能量具有确定值的状态,束缚态是指无穷远处波函数为零的状态。
10.E1=E2时,Ψ(x,t)=Ψ_1(x)exp(-iE1t)+Ψ_2(x)exp(-iE2t)是定态的条件。
11.这时几率密度和几率流密度都与时间无关。
12.粒子在能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应。
13.无穷远处波函数为零的状态称为束缚态,其能量一般为分立谱。
14.ψ(x,t)=(ψ(x)e^(-iωt/2)+ψ_3(x)e^(-7iωt/2))。
2.15.在一维无限深势阱中,粒子处于位置区间x a,第一激发态的能量为1/13(22222/2ma2),第一激发态的波函数为sin(n x/a)(n=2)/a。
2010年北大量子力学真题
2009年北大量子力学真题
量子力学。
共六题,全是大题。
1.两个非全同粒子在一维谐振子势中的波函数、能级。
知道t=0时的初态,求t 时刻处于能量为**的概率。
(**表示记不清楚)
2.一维方势阱,0<x<a处V(x)=V0,其余地方V(x)=0.一粒子从x>a区域向左射去,求透射的概率。
(我是分E<V0和E>V0两种情况算的)
3.①在Lz表象中求Lx(L=1)的本征值、本征态。
②在Lz=1的态下求Lx=0或1的概率。
4.①某势阱,求基态的波函数和能量。
②开始处于E=(1/2)hω,求在H'作用下,仍处于E=(5/2)hω的概率。
(简并微扰论)
5.一个立方体形状的势场。
6.氢原子在微扰作用H'=e·z·delta(t)作用下跃迁到各激发态的概率之和。
(我用了公式sigma/k><k/=1)。
自己收藏的希望能够给大家带来帮助 第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1)其中a 由下式决定:221()2x a E V x m a ω===。