信号示波器使用模拟采集和数字采集应用
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
示波器的原理与应用摘要:示波器是现代电子技术中不可缺少的一种仪器设备,它能够将电信号转化为目测直观的波形图,为电路分析、调试、诊断等提供了方便、快捷的手段。
本文介绍了示波器的基本原理,包括信号输入、采样、放大、显示等方面,以及示波器的常见应用和注意事项,希望能为工程技术人员提供一些帮助和参考。
关键词:示波器、原理、应用、信号输入、采样、放大、显示正文:一、示波器的基本原理示波器是一种电子测量仪器,它的作用是将电信号转化为能够直观观察的波形图。
示波器可以用来观察不同频率、不同形状、不同幅度的电信号,并能够在波形图上显示出电信号的各种特征参数,如周期、频率、幅度、相位等。
示波器是电子技术领域中必备的仪器之一,它应用广泛,被广泛应用于电路设计、调试、维修、教育和科研等领域。
具体而言,示波器基于的是振荡器原理,通过调节电荷和电流来达到电信号可视化的目的。
信号的输入通过探头进行,示波器需要通过类比数字转换器(ADC)将信号转换成数字信号后存储在数字存储器中。
为了减少数字存储器过多的开销,示波器需要对信号进行采样,示波器内置高速模拟数字转换器(ADC)将信号进行采样后转换成数字信号,并存储在数字存储器中。
示波器还需要放大信号,使得信号能够在显示屏上显示出来。
示波器需要放大信号,通常使用线性放大器或者非线性放大器。
最后,示波器在显示器上将数字信号转换成模拟信号,进行屏幕显示。
二、示波器的应用透视到示波器的应用,可以看到示波器是广泛应用于电路设计、调试、维修、教育和科研等领域中的仪器设备。
比如,在电路设计和调试中,示波器可以用来分析电路中的各种问题,如电源噪声、串扰、幅度偏差等等。
在维修中,示波器可以用来检测电机的运行状态、检查电缆连接、检测电器设备输出波形等。
在教育中,示波器可以用来展示各种电子元器件和电路的工作原理。
在科研领域中,示波器可以用来测量和分析一些高速和复杂电信号,如微波电路、芯片和通用集成电路(IC)等。
模拟示波器好还是数字示波器好为什么模拟示波器没被数字示波器取代?为什么有的模拟示波器比数字示波器贵?模拟示波器和数字示波器哪个好?如何选购示波器?要解决这些问题,我们需要对模拟示波器和数字示波器的优缺点做个对比。
模拟示波器(ASO)的优点:模拟示波器可以看到的电子波形,在规定的带宽内可非常放心进行测试。
人类五官中眼睛视觉十分灵敏,屏幕波形瞬间微细变化都可感知。
1)模拟示波器最大的优点在于分辨率高,DSO的垂直分辨率一般只有8位,而ASO可以看成无穷大。
DSO的水平分辨率取决于采样速率,而模拟示波器也是无穷大。
因此模拟示波器在扫描周期内不会丢失带宽范围内的任何信号,而数字示波器可能会遗漏细节。
模拟示波器对信号的测量是连续进行的,屏幕上的显示是当时正在发生的情况,因此,模拟示波器比较适合测量调频、调幅、视频、噪声等信号,比较适合电子产品检测、调整和维修等应用,以及基础实验仪器教育使用。
2)相应速度快。
模拟示波器的显示可以说是实时的,而DSO需要经过采样处理,响应速度自然就慢了。
3) DSO有采样噪声,不但观察起来不爽,还会影响信号的波形。
ASO则没有这个问题。
4) 模拟示波器亮度高。
DSO一般用液晶显示器,亮度不高。
而ASO的CRT显示器亮度要高得多,不但能适应不同的光线环境,看起来也更舒服。
5)模拟示波器电路简单,维修方便。
特别是目前市场上的ASO一般都有原理图,更加有利于修理。
而DSO很少提供图纸。
66)模拟示波器有灰度等级特性,可以丰富观察内容,而DSO没有灰度等级特性。
模拟示波器(ASO)的缺点:1)测量低频(低于100Hz)时闪动厉害,低于30Hz时只能看到移动的光点,要根据光点移动的轨迹来推测信号的波形。
也不利于单次信号的测量,因为单次信号一闪而过,不能保持在屏幕上。
2)在释抑时段(逆程或者回扫时段)不能显示波形,如果是非周期性信号,这段时间内的信号将丢失,尽管有些示波器有延时线,可以显示触发前的信号,但是延时线的延时时间有限。
数字示波器实验原理
数字示波器是一种测量和显示电信号波形的仪器。
它通过将输入的模拟电信号转换为数字信号,并使用数码技术进行处理和显示。
数字示波器实验原理主要包括以下几个方面:
1. 信号采集:示波器使用探头将待测电信号接入到示波器的输入端口。
在输入端口,示波器通过电阻分压、差动放大等方式对信号进行预处理和保护。
2. 信号转换:示波器将输入的模拟电信号转换为数字信号。
这需要经过模数转换(A/D 转换),将输入的连续模拟信号转为离散的数字信号。
3. 信号处理:示波器通过对数字信号进行处理,如滤波、放大、补偿等,以改善信号质量和测量的准确性。
4. 波形显示:示波器会将处理后的数字信号转换为模拟信号,然后通过电子束在显示屏上扫描绘制出波形。
示波器的水平和垂直扫描功能能够控制波形的水平和垂直位置,从而实现波形的调整。
5. 触发功能:示波器通过设置触发条件,可以选择信号波形的起始点,也可以分析特定的波形细节。
数字示波器相对于模拟示波器具有更高的精度和稳定性,可提
供更多的测量和调整功能。
它具有高带宽、高分辨率、多通道、存储和回放等特点,广泛应用于电子工程、通信、医疗、科研等领域。
示波器使用原理示波器是一种广泛应用于电子领域的仪器,主要用于显示电信号的波形。
通过观察波形,可以分析电路的性能、故障和信号特性。
示波器的使用原理基于两个重要的概念:模拟信号和数字信号。
我们来理解模拟信号。
在电子电路中,信号可以是模拟信号或数字信号。
模拟信号是连续的信号,可以在任意时间内取任意值。
比如,声音、图像等都是模拟信号。
示波器可以捕获并显示模拟信号的波形,帮助工程师分析和调试电路。
数字信号是离散的信号,只能取有限的数值。
数字信号主要用于数字电子设备中,如计算机、数字电视等。
示波器可以将模拟信号转换为数字信号,然后显示在屏幕上。
这种转换过程称为模数转换,是示波器实现数字显示的基础。
示波器的工作原理可以简单描述为以下几个步骤:1. 输入信号:首先,示波器通过探头连接到待测信号源,接收输入信号。
2. 垂直放大:示波器对输入信号进行垂直放大,调整电压范围,使波形在屏幕上显示合适的幅度。
3. 水平放大:示波器对时间轴进行水平放大,调整时间基准,使波形在屏幕上显示适当的时间跨度。
4. 触发:示波器设置触发条件,即在何种条件下开始采集波形数据。
触发可以是信号的上升沿、下降沿、脉冲宽度等。
5. 采样:示波器对输入信号进行采样,将连续的模拟信号转换为离散的数字信号。
采样率越高,示波器显示的波形越准确。
6. 显示:最后,示波器将采集到的波形数据显示在屏幕上,工程师可以通过观察波形来分析电路性能和故障。
总的来说,示波器通过垂直放大、水平放大、触发、采样和显示等步骤,实现对输入信号的捕获、处理和显示。
工程师可以利用示波器来观察波形,分析信号特性,解决电路故障,提高电路设计的准确性和可靠性。
示波器是电子工程师的重要工具,对于电子领域的研究和开发具有重要意义。
数字示波器的使用方法示波器使用教程示波器使用说明数字示波器的使用方法数字示波器是一种高精度、高效率的电子测试仪器。
它可以用来测量电流、电压和频率等电性量,并将结果在荧光屏上显示出来,使用户通过视觉直观地了解电路中的信号波形,方便电路的维护和调试。
那么,如何正确地使用数字示波器呢?本文将从示波器的基本原理、使用方法、测量技巧等方面为您进行详细讲解。
一、数字示波器的基本原理数字示波器(Digital Storage Oscilloscope,DSO)是一种能够将模拟信号进行数字化采样并储存的电子仪器。
当模拟信号进入示波器时,它首先会被采样芯片进行采样,并将采集到的模拟信号转换成数字信号,再通过数字电路进行处理,最后在荧光屏上显示出波形图形。
数字示波器的特点是采样率高、带宽宽、噪声小,并且可以通过内置计算机实现多种复杂的测量和分析功能。
因此,数字示波器已成为电子检测和测试领域中不可或缺的工具之一。
二、数字示波器的使用方法1、准备工作在使用数字示波器之前,我们需要准备好测量物、信号源、电缆和示波器。
其中,信号源可以是任何产生模拟信号的电子元件,如信号发生器、函数发生器或示波器本身。
在将信号源与示波器连接时,需要根据连接方式选择合适的接口和电缆类型,例如BNC接口和同轴电缆可以支持50欧姆和75欧姆的传输线,而探头则可以用于连接带有夹子的对接器以测量电源或电路板上的元件。
2、设置示波器使用数字示波器时,我们需要根据测量要求来设置示波器的参数,如垂直和水平缩放、扫描速度、触发方式等。
其中,垂直缩放主要是设置放大倍数和输入阻抗,以确保输入信号在示波器的垂直方向上显示清晰。
水平缩放则需要根据测量信号的周期和带宽来调节。
在示波器的触发方面,根据信号的周期和频率,可以选择自由运行模式、边沿触发模式、视频触发模式等不同的触发方式,以满足不同测量要求。
3、测量信号当示波器设置完成后,我们就可以测量信号波形了。
此时,我们可以通过示波器荧光屏上的波形图形来观察信号的幅度、周期、频率以及相位等电性参数。
电子示波器的原理及应用注意事项1. 电子示波器的原理电子示波器是一种用于检测和观察电信号波形的仪器。
它利用电子技术来实现信号的采样、处理和显示。
电子示波器的原理主要包括以下几个方面:1.1 采样电子示波器通过采用高速模拟-数字转换器(ADC)来对电信号进行采样。
采样是指将连续时间域的信号转换为离散时间域的信号。
采样频率越高,示波器显示的波形越接近原始信号。
1.2 存储采样后的信号需要存储在示波器的存储器中。
存储器的容量决定了示波器可以存储的波形长度。
较高容量的存储器可以更好地显示长时间的波形,而较低容量的存储器则适合显示短时间内的快速变化的波形。
1.3 处理示波器会对采样信号进行数字信号处理,包括放大、滤波、数值计算等操作。
这些处理可以帮助用户观察和分析波形。
1.4 显示经过处理的信号会传输到示波器的显示器上进行显示。
示波器的显示器通常为液晶显示器或者CRT显示器。
用户可以通过调整示波器的设置来选择不同的显示模式,如时间域显示、频谱显示等。
2. 电子示波器的应用注意事项使用电子示波器时,需要注意以下几个方面:2.1 带宽示波器的带宽决定了它能够处理的信号频率范围。
当需要观察高频信号时,需要选择具备较高带宽的示波器。
一般来说,示波器的带宽应为被测信号频率的2-3倍。
2.2 采样率示波器的采样率决定了它能够准确还原原始信号的能力。
采样率应该根据被测信号的最高频率进行选择,一般来说,采样率应为被测信号频率的5-10倍。
2.3 触发功能示波器的触发功能可以帮助用户在复杂的信号中准确地捕捉特定的波形。
触发功能包括边沿触发、脉冲触发、视频触发等。
正确设置触发条件可以有效地避免信号的混叠和失真。
2.4 输入阻抗示波器的输入阻抗决定了它对被测电路的影响程度。
一般来说,输入阻抗应该远大于被测电路的输出阻抗,以避免对被测电路产生影响。
常见的输入阻抗值有1MΩ和50Ω两种选择。
2.5 地线连接在连接示波器的地线时,需要注意避免产生地环路,以减少干扰信号。
数字示波器的原理与应用一、简介数字示波器(Digital Oscilloscope)是一种基于数字信号处理技术的电子测量仪器,广泛应用于电子、通信、医疗等领域。
它能够对电信号进行精确的采样和测量,并以波形图的形式展示出来。
数字示波器不仅能够替代传统的模拟示波器,还具有更高的测量精度、更多的功能选项和更方便的数据处理能力。
二、数字示波器的原理数字示波器原理主要涉及到以下几个方面:1. 信号采样数字示波器通过模拟信号的采样来获取信号波形数据。
它使用一个或多个模拟到数字转换器(Analog-to-Digital Converter,ADC)将连续的模拟信号转换为离散的数字信号。
这些数字信号可以被数字处理器进一步处理和显示。
2. 存储与处理数字示波器将采样得到的波形数据存储在内部的存储器中,并对这些数据进行进一步的处理。
它可以对信号进行多种算法的处理,如FFT变换、滤波、数学运算等,以满足不同应用场景的需求。
3. 显示与操作数字示波器将处理后的波形数据以图像的形式展示出来,供用户进行观察和分析。
用户可以通过操作示波器上的按钮、旋钮或者通过计算机远程控制来选择不同的测量参数,调整显示范围和触发条件等。
三、数字示波器的应用数字示波器广泛应用于各个领域,以下列举其中几个典型的应用场景:1. 电子设备测试数字示波器可以用于对电子设备进行各种测试和分析。
例如,可以用它来测量电路的频率、幅值、相位、变化率等参数。
它还可以用于故障诊断,帮助工程师找出电路中的问题,并进行修复。
数字示波器具有较高的测量精度和刷新率,能够对信号进行细致的观察和分析。
2. 通信系统调试数字示波器在通信系统的调试中起着重要的作用。
它可以用于观察和分析各种信号的波形,如音频信号、视频信号、射频信号等。
通过对信号的观察和分析,可以找出系统中存在的问题,并进行优化和调整。
数字示波器可以方便地对不同通信信号进行采集和显示,提高了调试的效率。
3. 医学诊断数字示波器在医学诊断中也有广泛的应用。
示波器的分类示波器是如何工作的示波器大致可分为模拟、数字和组合三类。
模拟示波器接受的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。
屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。
数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。
数字示波器一般支持多级菜单,能供应应用户多种选择,多种分析功能。
还有一些示波器可以供应存储,实现对波形的保存和处理。
混合信号示波器则是把数字示波器对信号细节的分析本领和逻辑分析仪多通道定时测量本领组合在一起的仪器。
示波器工作原理是:利用显示在示波器上的波形幅度的相对大小来反映加在示波器Y偏转极板上的电压最大值的相对大小,从而反映出电磁感应中所产生的交变电动势的最大值的大小。
因此借助示波器可以讨论感应电动势与其产生条件的关系。
示波器是一种用途特别广泛的电子测量仪器。
它能把肉眼看不到的电信号变换成看得见的图像,便于人们讨论各种电现象的变化过程。
示波器利用狭窄的,由高速电子构成的电子束,打在涂有荧光物质的屏面上,就可以产生细小的光点。
在被测信号的作用下,电子束就相像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。
利用示波器能察看各种不同电信号幅度随时间变化的波形曲线,还可以用它测试各种不同信号的电量,如电压、电流、频率、相位差、调幅度等等。
双踪示波器是由两个通道的y轴前置放大电路、门控电路、电子开关、混合电路、延迟电路、y轴后置放大电路、触发电路、扫描电路、x轴放大电路、z轴放大电路、校准信号电路、示波管和高处与低处压电源供应电路等构成。
察看信号波形时,被测信号UA、UB,通过CHA、CHB两个输入端输入示波器,先分别送到y轴前置放大电路yA和yB进行放大。
因通道yA和通道yB都受电子开关的掌控,所以UA,UB两信号轮换着输送到后面的混合电路,延迟电路,y轴后置放大电路,加到示波管的垂直偏转板上。
模拟与数字示波器时间因数检定方法的差异与结果分析作者:黄劲来源:《商品与质量·消费视点》2013年第11期摘要:示波器按照其工作原理的不同包括数字示波器与模拟示波器两种,就目前来看,影响模拟示波器准确性的因素包括示波器输出信号、测量人员分辨力、电平不准确、测量重复性等因素,在这几项因素之中,电平不准确对于测量的影响很小,可以忽略不计;而影响数字示波器测量结果的因素则主要为示波器本身的因素,两者的误差约为10000倍,考虑到数字示波器自身延迟时间会对不确定度产生较大的影响,因此,在检定模拟示波器与数字示波器时需要使用不同的测量方式,分析不准确度的影响,从而达到最精确的数值。
本文主要分析模拟与数字示波器时间因数检定方法的差异与结果。
关键词:模拟示波器;数字示波器;时间因数检定方法;差异;结果一、引言示波器是一种应用范围十分广泛的测量仪器,按照其工作原理的不同包括数字示波器与模拟示波器两种,在示波器的工作过程中,会受到时间因素的影响,模拟示波器其水平扫描参数是依照模拟示波器检定程序而制定,但是,若数字示波器也根据以上的方式进行检定,那么就难以得到最准确的结果,考虑到这一因素,数字示波器不适宜按照以上的方式来检定。
二、模拟与数字示波器时基电路原理分析对于示波器来说,时间因素与示波器时基电路性能有着密切的关系,而模拟示波器时基电路包括扫描电压发生器、扫描门、释抑电路与电压比较器几个部分组成,能够在模拟示波器屏幕之中产生驱动扫描电压,在偏转系数的变化之下,时基电路也会发生周期性的变化,会增加斜坡,继而实现对电压的扫描,随着斜坡电压的上升,斜坡扫描电压的最大值以及最小值就会出现在屏幕上。
其中,相应的水平时间因数与扫描上升的时间相对应,而扫描上升时间的变化由扫描过程中各个档位不同阻容值来决定,从这一层面而言,在扫描过程中产生的误差也会不尽相同,在对其进行检定时必须要分析到每个档位的扫描时间因数。
数字示波器一般使用数字采集原理对信号波形进行采集,数字示波器内部时基信号主要由晶体振荡器产生,经过处理的信号经过相应的处理之后就会通过分频组合得出不同的扫描时间以及采样率,此时,数字示波器就能够根据相关的扫描显示时间与采样率对信号进行相应的量化与编码,再使用二进制的形式将处理后的数据储存与储存器之中,此外,再经过触发功能电路进行判定与触发,再通过模拟的形式显示出来,将波形展示出来。
使用示波器进行信号测量的技巧和注意事项信号测量在电子领域中扮演着非常重要的角色,而示波器则是信号测量中不可或缺的工具。
它可以将电信号转化为可视化的波形,帮助工程师们分析和判断信号的特性。
然而,在使用示波器进行信号测量时,仍然有一些技巧和注意事项需要我们牢记。
首先,在使用示波器进行信号测量之前,我们需要了解一些基本概念。
示波器主要有两种类型:模拟示波器和数字示波器。
模拟示波器是早期使用的一种示波器,它能够测量连续时间的信号。
而数字示波器则通过模数转换将连续时间的信号转化为离散时间的信号,然后通过数字处理进行测量和分析。
在实际应用中,数字示波器的使用更加广泛,因为它具有更高的测量精度和更多的功能。
在进行信号测量时,我们需要注意一些技巧。
首先是选择适当的示波器探头。
探头是示波器连接到被测信号源的接口,它能够准确地采集信号,但也会对信号造成一定的影响。
对于高频信号的测量,我们应该选择带宽较宽的高频探头,以确保测量结果的准确性。
而对于低频信号的测量,则可以选择带宽较窄的低频探头。
其次是选择合适的触发模式。
触发模式是示波器在采集信号时的触发条件。
合适的触发模式可以帮助我们捕捉到特定的信号特征。
常见的触发模式有边沿触发、脉宽触发等。
在选择触发模式时,我们需要根据被测信号的特征来确定合适的触发条件,并进行相应的设置。
此外,在进行信号测量时,还需要关注示波器的校准。
示波器的校准是确保测量结果准确性的重要步骤。
我们可以通过连接已知的标准信号源来校准示波器,以确保它能够准确地测量信号。
另外,还需要定期对示波器进行校准,以确保其长期的测量准确性。
在实际的信号测量中,我们还需要注意一些细节。
首先是地线的连接。
示波器的地线是将示波器和被测点之间的地势进行连接的重要部分。
在连接地线时,我们需要注意保持地线的短小和低阻抗,以减小干扰对信号测量的影响。
另外,我们还需要关注信号的耦合方式。
示波器的耦合方式有直流耦合和交流耦合两种。
信号示波器使用模拟采集和数字采集应用在本例中,我们检验两个低压正发射器耦合逻辑(LVPECL)信号。
3.3 V LVPECL逻辑值高约为2.4 V,逻辑值低约为1.6 V,因此我们把MSO数字通道门限设置为2.0 V。
信号0是一个周期约为50 ns的方波,信号1是周期约为90 ns的方波,如图12所示,两个信号之间没有时间关系。
我们使用上一个TTL突发实例中使用的检验技术,检验这些LVPECL信号。
为检查不合格信号,我们把MSO配置成触发<22.4 ns的脉宽。
在图13中,MSO触发底部信号上的727.3 ps 毛刺。
捕获这个毛刺要求MSO的定时分辨率好于727.3 ps。
MSO的一个重要的采集指标是捕获数字信号使用的定时分辨率。
以更好的定时分辨率采集信号可以更准确地测量信号变化的时间。
例如,500 MS/s采集速率的定时分辨率为2 ns,采集的信号边沿不确定性是2 ns。
更低的定时分辨率60.6 ps (16.5 GS/s)会把信号边沿不确定性降低到60.6 ps,可以捕获变化更快的信号。
泰克MSO4000系列同时使用两种采集在内部采集数字信号。
第一种采集是对高达10 M的记录长度,定时分辨率最低为2 ns,第二种采集称为MagniVu?高速采集。
MagniVu在以采集点为中心的10,000点记录长度采集中的定时分辨率最低为60.6 ps。
MSO3000系列提供了高达121.2 ps的MagniVu定时分辨率。
MagniVu采集显示信号跳变细节,如定时分辨率较低的其它仪器看不到的毛刺。
在图13中,在顶部信号上升沿发生时,发生了底部信号毛刺。
这可能是一个串扰问题,但在进行这种诊断之前还需要更多的信息。
图14. 导致毛刺的两个LVPECL信号之间的上升沿串扰。
图15. 74F74 D触发装置。
[图示内容:]D Input:D输入Q Output:Q输出Clock: 时钟图16. 根据一次采集数据,D触发装置看上去运行正常。
MSO模拟通道连接到两个LVPECL信号上,再次启动MSO,查找小的不合格脉冲。
这次,MSO 触发采集一个1.091 ns毛刺,MSO可以从模拟角度了解两个LVPECL信号,如图14所示。
在另一个信号上发生上升沿时,发生了模拟毛刺。
大多数模拟毛刺低于LVPECL逻辑门限,但有些毛刺越过了逻辑门限,被视为逻辑错误,如显示画面左边顶部波形上的毛刺。
MSO提供了明显的优势,可以同时捕获信号的数字特点和模拟特点,以时间相关的方式显示这些特点,了解数字信号的信号完整性。
这些毛刺的根本原因在于两个LVPECL信号之间的上升沿串扰。
LVPECL上升沿跳变驱动起来比下降沿更难、更快。
结果,上升沿会比下降沿产生明显多得多的串扰。
这个采集中没有下降沿串扰迹象。
非单调边沿和建立时间/保持时间违规在本例中,我们检验TTL 74F74 D触发装置操作。
D触发装置时钟上升沿把D输入加载到Q 输出上,如图15所示。
例如,如果D输入在时钟上升沿上为高,那么Q输出为高。
图16显示MSO触发时钟上升沿,这是底部波形。
D触发装置数据输入是中间波形,Q输出是顶部波形。
数字通道标上OUT、DATA和CLK,可以轻松地识别每个波形。
图17. MSO捕获727.3 ps的时钟毛刺。
图18. 非单调时钟上升沿导致的时钟毛刺。
乍一看,一切正常,输入数据在时钟上升沿之后出现在输出上。
通过MSO4000系列60.6 ps 的高分辨率MagniVu定时采集技术,可以明显看到D触发装置的传播延迟。
时钟的正脉宽是7.455 ns,MSO触发功能配置成查找<6.40 ns的不合格的时钟脉冲。
图17显示MSO触发正常时钟脉冲前时钟信号上的727.3 ps毛刺。
模拟通道连接到时钟信号上,进一步了解这个毛刺,再次启动MSO。
图18显示MSO触发时钟毛刺,MSO可以查看导致毛刺的事件的模拟特点。
时钟上升沿是不单调的。
使用MSO光标,确定毛刺中间的时钟电压是2 V,把光标向右移大约500 ps,时钟电压下降到1.76 V。
这个电压下跌导致逻辑状态有很短的一段时间从逻辑值高变成逻辑值低,然后时钟信号的电压持续提高。
74F74规范的最大低电平输入电压是0.8 VIL,最小高电平输入电压是2 VIH。
上升时间慢的时钟信号或VIL和VIH之间的非单调操作会导致不确定的D触发装置行为。
根据这一采集,非单调时钟边沿似乎没有导致任何问题。
检验报告中指明了非单调时钟边沿,下一步是检验Q输出操作。
Q输出只应在输入变化时才变化,变化只应发生在上升沿+D触发装置传播延迟处。
时钟的固定周期为20 ns。
因此,Q输出的任何脉冲宽度不应<20 ns,因为Q输出只应在相距20 ns 的时钟上升沿上变化。
MSO配置成触发<19.2 ns的Q输出脉宽。
图19. D触发装置Q输出错误。
图20. D触发装置Q输出错误,包括模拟特点。
图21. D触发装置Q输出在时钟上升沿前4.488 ns建立时间处正确运行。
图19显示MSO捕获了一个<19.2 ns的Q输出脉宽。
注意,这个Q输出小于时钟周期。
波形分析结果显示,在发生时钟上升沿时,D输入为高。
Q输出从低到高跳变是正确的,但在D 触发器操作中,后面的从高到低跳变发生错误,因为跳变与时钟上升沿无关。
模拟通道连接到Q输出上,可以进一步了解问题,如图20所示。
Q输出模拟信号开始提高,但之后不久下降。
注意Q输出模拟信号没有达到正常模拟逻辑值高就回降了。
根据过去的调试经验,这可能是D输入相对于时钟边沿的建立时间/保持时间违规导致的亚稳定毛刺。
在图20中,使用光标测得的D输入的建立时间是4.188 ns。
这个建立时间是74F74的2 ns 最小建立时间指标的两倍。
但是,74F74没有正常运行,因为D输入在时钟边沿前4.188 ns 变化。
把MSO触发变成捕获建立时间/保持时间违规,以确定这个74F74正确运行需要多少建立时间。
图21显示上升的D输入与时钟上升沿之间的建立时间为4.488 ns时,Q输出正常运行。
其它采集表明,在建立时间小于等于4.188 ns时,Q输出偶尔会有毛刺。
图22. MSO触发采集光标’a’和’b’之间建立时间/保持时间窗口中的D触发装置数据变化。
然后,我们检查D输入,确定建立时间/保持时间违规。
MSO建立时间/保持时间触发配置成建立时间2 ns、保持时间1 ns,以在时钟上升沿周围的数据有效窗口中检查D输入变化。
图22显示了一个严重的D输入建立时间/保持时间违规。
光标‘a’位于时钟上升沿前最小2 ns的建立时间处,光标‘b’位于时钟上升沿后最小1 ns的保持时间处。
在时钟上升沿周围这3 ns的数据有效窗口中,D输入必须稳定。
规范没有规定D输入在数据有效窗口中变化时,D触发装置正确工作。
在检验过程的这个点上,D触发装置操作及其信号有三个问题。
第一个问题是时钟上升沿不单调。
必需重新设计时钟电路,以获得更好的上升沿。
第二个问题是74F74在D输入建立时间为2 ns – 4.188 ns时不能正确运行,这可能与时钟上升沿差或74F74不满足规范有关。
第三个问题是D输入建立时间/保持时间违规。
必需重新设计D输入电路,以便其在时钟边沿建立时间/保持时间窗口中不会变化。
图23. 检验传感器数据采集系统输出范围。
[图示内容:]Test Signal: 测试信号Acquisition System: 采集系统3F hex: 十六进制值3FSignal Conditioning: 信号调节00 hex: 十六进制值00ADC Input: ADC输入Digital Bus: 数字总线Bus Clock: 总线时钟使用Wave Inspector?迅速检验ADC输出在本例中,我们使用固定的测试斜波信号检验传感器数据采集系统的输出范围。
传感器数据采集系统是一条模拟信号调节电路,它把信号输送到一条20 MS/s、6位模拟到数字转换器(ADC)中。
ADC 6位数据总线在ADC时钟下降沿处有效。
采集系统输入上的测试斜波信号应生成一个十六进制为00 – 3F的ADC取值范围。
MSO模拟通道连接到信号调节输出上,信号调节输出也是ADC输入,这可以迅速检查信号调节输出和ADC输入信号。
MSO数字通道0连接到ADC时钟输出上,数字通道1-6连接到ADC 6位数据总线上,如图23所示。
MSO设置成触发ADC输入信号的上升沿。
图24. MSO触发到ADC输入的上升沿,Wave Inspector放大信号,以便可以轻松看到并行总线解码十六进制。
测试斜波信号位于通道1上。
显示画面底部是数字通道0上的ADC时钟。
ADC数字输出总线信号1-6位于时钟波形上方。
ADC数字信号划分到显示画面中心的时钟输入并行总线内。
图25. Wave Inspector搜索功能在测试信号波谷中没有找到任何十六进制00。
图24显示MSO在到ADC输入的上升沿处触发。
泰克MSO系列独有的功能Wave Inspector?用来在触发点周围放大20倍,可以轻松看到并行总线解码值。
ADC数据在时钟下降沿处稳定,MSO解码时钟下降沿处的总线值。
因此,在ADC数据稳定时,并行总线在时钟下降沿处更新。
MSO强大的触发功能可以找到信号问题,触发并行或串行总线内容,把采集重点放在问题区域上。
但是,在采集数据后,将不再应用采集。
手动搜索长记录长度可能会非常耗时,而且很麻烦。
10 M点的波形记录相当于9,700多屏全部分辨率数据。
如果速度是每秒滚动一个全部分辨率屏幕,那么这需要超过2小时40分钟才能滚动完10 M点的波形。
而使用Wave Inspector搜索及标记10 M点记录的6位数据总线采集,只需要大约30秒的时间。
一旦找到和标出数据,那么只需按前面板上的Previous和Next箭头键,就可以在发生的事件之间转换。
另外还可以搜索触发类型,如边沿、脉宽、欠幅脉冲、建立时间/保持时间、逻辑、上升时间/下降时间和总线数据值。
图25显示Wave Inspector搜索ADC并行总线中的十六进制值00,其应该位于每个测试斜波信号的波谷。
但显示画面顶部没有白三角形标记,画面底部的搜索事件读数显示为零,这些都表明没有找到十六进制值00。
没有十六进制值00意味着ADC没有看到与十六进制00对应的模拟输入电压。
采集系统模拟信号调节电路没有正确处理测试斜波信号的最小波峰,与ADC最小输入电压相匹配,以便ADC生成十六进制值输出00。
图26. Wave Inspector总线搜索功能在测试信号波峰找到太多的十六进制值3F。
图27. Wave Inspector导航功能跳到测试信号波峰标记的十六进制3F上。
图26显示Wave Inspector搜索ADC最大输出十六进值3F。