编译原理,清华大学,第2版_第11章 代码优化
- 格式:ppt
- 大小:567.00 KB
- 文档页数:73
第三章N=>D=> {0,1,2,3,4,5,6,7,8,9}N=>ND=>NDDL={a |a(0|1|3..|9)n且 n>=1}(0|1|3..|9)n且 n>=1{ab,}a nb n n>=1第6题.(1) <表达式> => <项> => <因子> => i(2) <表达式> => <项> => <因子> => (<表达式>) => (<项>)=> (<因子>)=>(i)(3) <表达式> => <项> => <项>*<因子> => <因子>*<因子> =i*i(4) <表达式> => <表达式> + <项> => <项>+<项> => <项>*<因子>+<项>=> <因子>*<因子>+<项> => <因子>*<因子>+<因子> = i*i+i (5) <表达式> => <表达式>+<项>=><项>+<项> => <因子>+<项>=i+<项> => i+<因子> => i+(<表达式>) => i+(<表达式>+<项>)=> i+(<因子>+<因子>)=> i+(i+i)(6) <表达式> => <表达式>+<项> => <项>+<项> => <因子>+<项> => i+<项> => i+<项>*<因子> => i+<因子>*<因子> = i+i*i第7题第9题语法树ss s* s s+aa a推导: S=>SS*=>SS+S*=>aa+a*11. 推导:E=>E+T=>E+T*F语法树:E+T*T F短语: T*F E+T*F直接短语: T*F句柄: T*F12.<E><E> <T> <POP><T> <F> <MOP>短语:<T><F><MOP> <E><T><F><MOP><POP>直接短语:<T><F><MOP>句柄: <T><F><MOP>13.(1)最左推导:S => ABS => aBS =>aSBBS => aBBS=> abBS => abbS => abbAa => abbaa 最右推导:S => ABS => ABAa => ABaa => ASBBaa=> ASBbaa => ASbbaa => Abbaa => a1b1b2a2a3 (2) 文法:S → ABSS → AaS →εA → aB → b(3) 短语:a1 , b1 , b2, a2 , , bb , aa , abbaa,直接短语: a1 , b1 , b2, a2 , ,句柄:a114 (1)S → ABA → aAb | εB → aBb | ε(2)S → 1S0S → AA → 0A1 |ε第四章1. 1. 构造下列正规式相应的DFA(1)1(0|1)*101NFA(2) 1(1010*|1(010)*1)*0NFA(3)NFA(4)NFA2.解:构造DFA 矩阵表示a,bb其中0 表示初态,*表示终态用0,1,2,3,4,5分别代替{X} {Z} {X,Z} {Y} {X,Y} {X,Y,Z} 得DFA状态图为:3.解:构造DFA矩阵表示构造DFA的矩阵表示其中表示初态,*表示终态替换后的矩阵4.(1)解构造状态转换矩阵:{2,3} {0,1}{2,3}a={0,3}{2},{3},{0,1}{0,1}a={1,1} {0,1}b={2,2}(2)解:首先把M的状态分为两组:终态组{0},和非终态组{1,2,3,4,5} 此时G=( {0},{1,2,3,4,5} ) {1,2,3,4,5}a={1,3,0,5}{1,2,3,4,5}b={4,3,2,5}由于{4}a={0} {1,2,3,5}a={1,3,5}因此应将{1,2,3,4,5}划分为{4},{1,2,3,5}G=({0}{4}{1,2,3,5}){1,2,3,5}a={1,3,5}{1,2,3,5}b={4,3,2}因为{1,5}b={4} {23}b={2,3}所以应将{1,2,3,5}划分为{1,5}{2,3}G=({0}{1,5}{2,3}{4}){1,5}a={1,5} {1,5}b={4} 所以{1,5} 不用再划分{2,3}a={1,3} {2,3}b={3,2}因为 {2}a={1} {3}a={3} 所以{2,3}应划分为{2}{3}所以化简后为G=( {0},{2},{3},{4},{1,5})7.去除多余产生式后,构造NFA如下确定化,构造DFA 矩阵G={(0,1,3,4,6),(2,5)} {0,1,3,4,6}a={1,3}{0,1,3,4,6}b={2,3,4,5,6}所以将{0,1,3,4,6}划分为 {0,4,6}{1,3} G={(0,4,6),(1,3),(2,5)}{0,4,6}b={3,6,4} 所以 划分为{0},{4,6} G={(0),(4,6),(1,3),(2,5)}不能再划分,分别用 0,4,1,2代表各状态,构造DFA 状态转换图如下;b8.代入得S = 0(1S|1)| 1(0S|0) = 01(S|ε) | 10(S|ε) = (01|10)(S|ε)= (01|10)S | (01|10)= (01|10)*(01|10)构造NFA由NFA可得正规式为(01|10)*(01|10)=(01|10)+9.状态转换函数不是全函数,增加死状态8,G={(1,2,3,4,5,8),(6,7)}(1,2,3,4,5,8)a=(3,4,8) (3,4)应分出(1,2,3,4,5,8)b=(2,6,7,8)(1,2,3,4,5,8)c=(3,8)(1,2,3,4,5,8)d=(3,8)所以应将(1,2,3,4,5,8)分为(1,2,5,8), (3,4)G={(1,2,5,8),(3,4),(6,7)}(1,2,5,8)a=(3,4,8) 8应分出(1,2,5,8)b=(2,8)(1,2,5,8)c=(8)(1,2,5,8)d=(8)G={(1,2,5),(8),(3,4),(6,7)}(1,2,5)a=(3,4,8) 5应分出G={(1,2), (3,4),5, (6,7) ,(8) }去掉死状态8,最终结果为 (1,2) (3,4) 5,(6,7) 以1,3,5,6代替,最简DFA为b正规式:b*a(da|c)*bb*第五章1.S->a | ^ |( T )T -> T , S | S(a,(a,a))S => ( T ) => ( T , S ) => ( S , S ) => ( a , S) => ( a, ( T )) =>(a , ( T , S ) ) => (a , ( S , S )) => (a , ( a , a ) ) S=>(T) => (T,S) => (S,S) => ( ( T ) , S ) => ( ( T , S ) , S ) => ( ( T , S , S ) , S ) => ( ( S , S , S ) , S )=> ( ( ( T ) , S , S ) , S ) => ( ( ( T , S ) , S , S ) , S ) =>( ( ( S , S ) , S , S ) , S ) => ( ( ( a , S ) , S , S ) , S ) => ( ( ( a , a ) , S , S ) , S ) => ( ( ( a , a ) , ^ , S ) , S ) => ( ( ( a , a ) , ^ , ( T ) ) , S )=> ( ( ( a , a ) , ^ , ( S ) ) , S ) => ( ( ( a , a ) , ^ , ( a ) ) , S ) => ( ( ( a , a ) , ^ , ( a ) ) , a )S->a | ^ |( T )T -> T , ST -> S消除直接左递归:S->a | ^ |( T )T -> S T’T’ -> , S T’ | ξSELECT ( S->a) = {a}SELECT ( S->^) = {^}SELECT ( S->( T ) ) = { ( }SELECT ( T -> S T’) = { a , ^ , ( }SELECT ( T’ -> , S T’ ) = { , }SELECT ( T’ ->ξ) = FOLLOW ( T’ ) = FOLLOW ( T ) = { )}构造预测分析表分析符号串( a , a )#分析栈剩余输入串所用产生式#S ( a , a) # S -> ( T )# ) T ( ( a , a) # ( 匹配# ) T a , a ) # T -> S T’# ) T’ S a , a ) # S -> a# ) T’ a a , a ) # a 匹配# ) T’,a) # T’ -> , S T’# ) T’ S , , a ) # , 匹配# ) T’ S a ) # S->a# ) T’ a a ) # a匹配# ) T’) # T’ ->ξ# ) ) # )匹配# # 接受2.E->TE’E’->+E E’->ξT->FT’T’->T T’->ξF->PF’F’->*F’F’->ξP->(E) P->a P->b P->∧SELECT(E->TE’)=FIRST(TE’)=FIRST(T)= {(,a,b,^)SELECT(E’->+E)={+}SELECT(E’->ε)=FOLLOW(E’)= {#,)}SELECT(T->FT’)=FIRST(F)= {(,a,b,^}SELECT(T’ —>T)=FIRST(T)= {(,a,b,^)SELECT(T’->ε)=FOLLOW(T’)= {+,#,)}SELECT(F ->P F’)=FIRST(F)= {(,a,b,^}SELECT(F’->*F’)={*}SELECT(F’->ε)=FOLLOW(F’)= {(,a,b,^,+,#,)}3. S->MH S->a H->Lso H->ξK->dML K->ξL->eHf M->K M->bLM FIRST ( S ) =FIRST(MH)= FIRST ( M ) ∪FIRST ( H ) ∪{ξ} ∪{a}= {a, d , b , e ,ξ} FIRST( H ) = FIRST ( L ) ∪{ξ}= { e , ξ}FIRST( K ) = { d , ξ}FIRST( M ) = FIRST ( K ) ∪{ b } = { d , b ,ξ}FOLLOW ( S ) = { # , o }FOLLOW ( H ) = FOLLOW ( S ) ∪{ f } = { f , # , o }FOLLOW ( K ) = FOLLOW ( M ) = { e , # , o }FOLLOW ( L ) ={ FIRST ( S ) –{ξ} } ∪{o} ∪FOLLOW ( K )∪{ FIRST ( M ) –{ξ} } ∪FOLLOW ( M )= {a, d , b , e , # , o }FOLLOW ( M ) ={ FIRST ( H ) –{ξ} } ∪FOLLOW ( S )∪{ FIRST ( L ) –{ξ} } = { e , # , o }SELECT ( S-> M H) = ( FIRST ( M H) –{ξ} ) ∪FOLLOW ( S )= ( FIRST( M ) ∪FIRST ( H ) –{ξ} ) ∪FOLLOW ( S )= { d , b , e , # , o }SELECT ( S-> a ) = { a }SELECT ( H->L S o ) = FIRST(L S o) = { e }SELECT ( H ->ξ) = FOLLOW ( H ) = { f , # , o }SELECT ( K-> d M L ) = { d }SELECT ( K->ξ) = FOLLOW ( K ) = { e , # , o }SELECT ( L-> e H f ) = { e }SELECT ( M->K ) = ( FIRST( K ) –{ξ} ) ∪FOLLOW ( M ) = {d,e , # , o }SELECT ( M -> b L M )= { b }4 . 文法含有左公因式,变为S->C $ { b, a }C-> b A { b }C-> a B { a }A -> b A A { b }A-> a A’ { a }A’-> ξ{ $ , a, b }A’-> C { a , b }B->a B B { a }B -> b B’ { b }B’->ξ{ $ , a , b }B’-> C { a, b }5. <程序> --- S <语句表>――A <语句>――B <无条件语句>――C <条件语句>――D <如果语句>――E<如果子句> --FS->begin A end S->begin A end { begin }A-> B A-> B A’ { a , if }A-> A ; B A’-> ; B A’ { ; }A’->ξ{ end }B-> C B-> C { a } B-> D B-> D { if }C-> a C-> a { a }D-> E D-> E D’ { if }D-> E else B D’-> else B { else }D’->ξ{; , end } E-> FC E-> FC { if }F-> if b then F-> if b then { if }非终结符是否为空S-否A-否A’-是B-否C-否D-否D’-是E-否F-否FIRST(S) = { begin }FIRST(A) = FIRST(B) ∪FIRST(A’) ∪{ξ} = {a , if , ; , ξ} FIRST(A’) ={ ; , ξ}FIRST(B) = FIRST(C) ∪FIRST(D) ={ a , if }FIRST(C) = {a}FIRST(D) = FIRST(E)= { if }FIRSR(D’) = {else , ξ}FIRST(E) = FIRST(F) = { if }FIRST(F) = { if }FOLLOW(S) = {# }FOLLOW(A) = {end}FOLLOW(A’) = { end }FOLLOW(B) = {; , end }FOLLOW (C) = {; , end , else }FOLLOW(D) = {; , end }FOLLOW( D’ ) = { ; , end }FOLLOW(E) = { else , ; end }FOLLOW(F) = { a }S A A’ B C D D’ E F if then else begin end a b ;6. 1.(1) S -> A | B(2) A -> aA|a(3)B -> bB |b提取(2),(3)左公因子(1) S -> A | B(2) A -> aA’(3) A’-> A|ξ(4) B -> bB’(5) B’-> B |ξ2.(1) S->AB(2) A->Ba|ξ(3) B->Db|D(4) D-> d|ξ提取(3)左公因子(1) S->AB(2) A->Ba|ξ(3) B->DB’(4) B’->b|ξ(5) D-> d|ξ3.(1) S->aAaB | bAbB(2) A-> S| db(3) B->bB|a4(1)S->i|(E)(2)E->E+S|E-S|S提取(2)左公因子(1)S->i|(E)(2)E->SE’(3)E’->+SE’|-SE’ |ξ5(1)S->SaA | bB(2)A->aB|c(3)B->Bb|d消除(1)(3)直接左递归(1)S->bBS’(2)S’->aAS’|ξ(3)A->aB | c(4) B -> dB’(5)B’->bB’|ξ6.(1) M->MaH | H(2) H->b(M) | (M) |b消除(1)直接左递归,提取(2)左公因子(1)M-> HM’(2)M’-> aHM’ |ξ(3)H->bH’ | ( M )(4)H’->(M) |ξ7. (1)1)A->baB2)A->ξ3)B->Abb4)B->a将1)、2)式代入3)式1)A->baB2)A->ξ3)B->baBbb4)B->bb5)B->a提取3)、4)式左公因子1)A->baB2)A->ξ3)B->bB’4)B’->aBbb | b5)B->a(3)1)S->Aa2)S->b3)A->SB4)B->ab将3)式代入1)式1)S->SBa2)S->b3)A->SB4)B->ab消除1)式直接左递归1)S->bS’2)S’->BaS’ |ξ3)S->b4)A->SB5)B->ab删除多余产生式4)1)S->bS’2)S’->BaS’ |ξ3)S->b4)B->ab(5)1)S->Ab2)S->Ba3)A->aA4)A->a提取3)4)左公因子1)S->Ab2)S->Ba3)A->aA’4)A’-> A |ξ5)B->a将3)代入1)5)代入21)S->aA’b2)S->aa3)A->aA’4)A’-> A |ξ5)B->a提取1)2)左公因子1)S-> aS’2)S’->A’b | a3)A->aA’4)A’-> A |ξ5)B->a删除多余产生式5)1)S-> aS’2)S’->A’b | a3)A->aA’4)A’-> A |ξA A’S’S将3)代入4)1)S-> aS’2)S’->A’b | a3)A->aA ’4)A’-> aA’ |ξ将4)代入2)1)S-> aS’2)S’->aA’b3)S’->a4)S’->b5)A->aA ’6)A’-> aA’ |ξ对2)3)提取左公因子1)S->aS’2)S’->aS’’3)S’’->A’b|ξ4)S’->b5)A->aA ’6)A’-> aA’ |ξ删除多余产生式5)1)S->aS’3)S’’->A’b|ξ4)S’->b5)A’-> aA’ |ξ第六章1S → a | ∧ | ( T )T → T , S | S解:(1) 增加辅助产生式 S’→#S#求 FIRSTVT集FIRSTVT(S’)= {#}FIRSTVT(S)= {a ∧ ( }= { a ∧ ( }FIRSTVT (T) = {,} ∪ FIRSTVT( S ) = { , a ∧ ( }求 LASTVT集LASTVT(S’)= { # }LASTVT(S)= { a ∧ )}LASTVT (T) = { , a ∧ )}(2)算符优先关系表因为任意两终结符之间至多只有一种优先关系成立,所以是算符优先文法(3)a ∧( ) , #F 1 1 1 1 1 1g 1 1 1 1 1 1f 2 2 1 3 2 1g 2 2 2 1 2 1f 3 3 1 3 3 1g 4 4 4 1 2 1f 3 3 1 3 3 1g 4 4 4 1 2 1(4)#<·( a,a)# 移进#( <· a ,a)# 移进# (a ·> , a)# 规约#(T <·, a)# 移进#(T,<· a )# 移进#(T,a ·> ) # 规约#(T,T ·> ) # 规约#(T =·) # 移进#(T) ·> #规约#T =·#接受4.扩展后的文法S’→#S# S→S;G S→G G→G(T) G→H H→a H→(S)T→T+S T→S(1)FIRSTVT(S)={;}∪FIRSTVT(G) = {; , a , ( }FIRSTVT(G)={ ( }∪FIRSTVT(H) = {a , ( }FIRSTCT(H)={a , ( }FIRSTVT(T) = {+} ∪FIRSTVT(S) = {+ , ; , a , ( }LASTVT(S) = {;} ∪LASTVT(G) = { ; , a , )}LASTVT(G) = { )} ∪LASTVT(H) = { a , )}LASTVT(H) = {a, )}LASTVT(T) = {+ } ∪LASTVT(S) = {+ , ; , a , ) }因为任意两终结符之间至多只有一种优先关系成立,所以是算符优先文法(2)句型a(T+S);H;(S)的短语有:a(T+S);H;(S) a(T+S);H a(T+S) a T+S (S) H直接短语有: a T+S H (S)句柄: a素短语:a T+S (S)最左素短语:a(3)分析a;(a+a)不能用最右推导推导出上面的两个句子。
编译原理复习例题(有些内容没有覆盖,比如优化、SLR(1)、LR(1)、LALR(1)等。
但要求至少要按照作业题的范围复习。
)一选择题1.编译的各阶段工作都涉及。
[A]词法分析[B]表格管理 [C]语法分析 [D]语义分析2.型文法也称为正规文法。
[A] 0 [B] 1 [C] 2 [D] 33.文法不是LL(1)的。
[A]递归 [B]右递归 [C]2型 [D]含有公共左因子的4.文法E→E+E|E*E|i的句子i*i+i*i有棵不同的语法树。
[A] 1 [B] 3 [C] 5 [D] 75.文法 S→aaS|abc 定义的语言是。
[A]{a2k bc|k>0} [B]{a k bc|k>0}[C]{a2k-1bc|k>0} [D]{a k a k bc|k>0}6.若B为非终结符,则 A→α.Bβ为。
[A]移进项目 [B]归约项目 [C]接受项目 [D]待约项目7.同心集合并可能会产生新的冲突。
[A]二义 [B]移进/移进 [C]移进/归约 [D]归约/归约8.代码优化时所依据的是。
[A]语法规则 [B]词法规则[C]等价变换规则 [D]语义规则9.表达式a-(-b)*c的逆波兰表示(@为单目减)为。
[A]a-b@c* [B]ab@c*- [C]ab@- [D]ab@c-*10.过程的DISPLAY表是用于存取过程的。
[A]非局部变量[B]嵌套层次 [C]返回地址 [D]入口地址二填空题1.词法分析阶段的任务式从左到右扫描字符流,从而逐个识别一个个的单词。
2.对于文法G[E]:E→T|E+T T→F|T*F F→P^F|P P→(E)|i,句型T+T*F+i的句柄是。
3.最右推导的逆过程称为规范归约,也称为最左归约。
4.符号表的每一项是由名字栏和两个栏目组成。
在目标代码生成阶段,符号表是的依据。
三判断题(认为正确的填“T”,错的填“F”)【】1.同心集的合并有可能产生“归约/归约”冲突。
编译原理(清华⼤学-第2版)课后习题答案第三章N=>D=> {0,1,2,3,4,5,6,7,8,9}N=>ND=>NDDL={a |a(0|1|3..|9)n且 n>=1}(0|1|3..|9)n且 n>=1{ab,}a nb n n>=1第6题.(1) <表达式> => <项> => <因⼦> => i(2) <表达式> => <项> => <因⼦> => (<表达式>) => (<项>)=> (<因⼦>)=>(i)(3) <表达式> => <项> => <项>*<因⼦> => <因⼦>*<因⼦> =i*i(4) <表达式> => <表达式> + <项> => <项>+<项> => <项>*<因⼦>+<项>=> <因⼦>*<因⼦>+<项> => <因⼦>*<因⼦>+<因⼦> = i*i+i (5) <表达式> => <表达式>+<项>=><项>+<项> => <因⼦>+<项>=i+<项> => i+<因⼦> => i+(<表达式>) => i+(<表达式>+<项>)=> i+(<因⼦>+<因⼦>)=> i+(i+i)(6) <表达式> => <表达式>+<项> => <项>+<项> => <因⼦>+<项> => i+<项> => i+<项>*<因⼦> => i+<因⼦>*<因⼦> = i+i*i第7题第9题语法树ss s* s s+aa a推导: S=>SS*=>SS+S*=>aa+a*11. 推导:E=>E+T=>E+T*F语法树:E+T*短语: T*F E+T*F直接短语: T*F句柄: T*F12.短语:直接短语:句柄:13.(1)最左推导:S => ABS => aBS =>aSBBS => aBBS=> abBS => abbS => abbAa => abbaa 最右推导:S => ABS => ABAa => ABaa => ASBBaa => ASBbaa => ASbbaa => Abbaa => a1b1b2a2a3 (2) ⽂法:S → ABSS → AaS →εA → aB → b(3) 短语:a1 , b1 , b2, a2 , , bb , aa , abbaa,直接短语: a1 , b1 , b2, a2 , ,句柄:a114 (1)S → ABA → aAb | εB → aBb | ε(2)S → 1S0S → AA → 0A1 |ε第四章1. 1. 构造下列正规式相应的DFA (1)1(0|1)*101NFA(2) 1(1010*|1(010)*1)*0NFA(3)NFA(4)NFA2.解:构造DFA 矩阵表⽰b其中0 表⽰初态,*表⽰终态⽤0,1,2,3,4,5分别代替{X} {Z} {X,Z} {Y} {X,Y} {X,Y,Z} 得DFA状态图为:3.解:构造DFA矩阵表⽰构造DFA的矩阵表⽰其中表⽰初态,*表⽰终态替换后的矩阵4.(1)解构造状态转换矩阵:{2,3} {0,1}{2,3}a={0,3}{2},{3},{0,1}{0,1}a={1,1} {0,1}b={2,2}(2)解:⾸先把M的状态分为两组:终态组{0},和⾮终态组{1,2,3,4,5} 此时G=( {0},{1,2,3,4,5} ) {1,2,3,4,5}a={1,3,0,5} {1,2,3,4,5}b={4,3,2,5}由于{4}a={0} {1,2,3,5}a={1,3,5}因此应将{1,2,3,4,5}划分为{4},{1,2,3,5}G=({0}{4}{1,2,3,5}){1,2,3,5}a={1,3,5}{1,2,3,5}b={4,3,2}因为{1,5}b={4} {23}b={2,3}所以应将{1,2,3,5}划分为{1,5}{2,3}G=({0}{1,5}{2,3}{4}){1,5}a={1,5} {1,5}b={4} 所以{1,5} 不⽤再划分{2,3}a={1,3} {2,3}b={3,2}因为 {2}a={1} {3}a={3} 所以{2,3}应划分为{2}{3}所以化简后为G=( {0},{2},{3},{4},{1,5})7.去除多余产⽣式后,构造NFA如下G={(0,1,3,4,6),(2,5)} {0,1,3,4,6}a={1,3}{0,1,3,4,6}b={2,3,4,5,6}所以将{0,1,3,4,6}划分为 {0,4,6}{1,3} G={(0,4,6),(1,3),(2,5)}{0,4,6}b={3,6,4} 所以划分为{0},{4,6} G={(0),(4,6),(1,3),(2,5)}不能再划分,分别⽤ 0,4,1,2代表各状态,构造DFA 状态转换图如下;b8.代⼊得S = 0(1S|1)| 1(0S|0) = 01(S|ε) | 10(S|ε) = (01|10)(S|ε)= (01|10)S | (01|10)= (01|10)*(01|10)构造NFA由NFA可得正规式为(01|10)*(01|10)=(01|10)+9.状态转换函数不是全函数,增加死状态8,G={(1,2,3,4,5,8),(6,7)}(1,2,3,4,5,8)a=(3,4,8) (3,4)应分出(1,2,3,4,5,8)b=(2,6,7,8)(1,2,3,4,5,8)c=(3,8)(1,2,3,4,5,8)d=(3,8)所以应将(1,2,3,4,5,8)分为(1,2,5,8), (3,4)G={(1,2,5,8),(3,4),(6,7)}(1,2,5,8)a=(3,4,8) 8应分出(1,2,5,8)b=(2,8)(1,2,5,8)c=(8)(1,2,5,8)d=(8)G={(1,2,5),(8),(3,4),(6,7)}(1,2,5)a=(3,4,8) 5应分出G={(1,2), (3,4),5, (6,7) ,(8) }去掉死状态8,最终结果为 (1,2) (3,4) 5,(6,7) 以1,3,5,6代替,最简DFA为b正规式:b*a(da|c)*bb*第五章1.S->a | ^ |( T )(a,(a,a))S => ( T ) => ( T , S ) => ( S , S ) => ( a , S) => ( a, ( T )) =>(a , ( T , S ) ) => (a , ( S , S )) => (a , ( a , a ) ) S=>(T) => (T,S) => (S,S) => ( ( T ) , S ) => ( ( T , S ) , S ) => ( ( T , S , S ) , S ) => ( ( S , S , S ) , S )=> ( ( ( T ) , S , S ) , S ) => ( ( ( T , S ) , S , S ) , S ) =>( ( ( S , S ) , S , S ) , S ) => ( ( ( a , S ) , S , S ) , S ) => ( ( ( a , a ) , S , S ) , S ) => ( ( ( a , a ) , ^ , S ) , S ) => ( ( ( a , a ) , ^ , ( T ) ) , S )=> ( ( ( a , a ) , ^ , ( S ) ) , S ) => ( ( ( a , a ) , ^ , ( a ) ) , S ) => ( ( ( a , a ) , ^ , ( a ) ) , a )S->a | ^ |( T )T -> T , ST -> S消除直接左递归:S->a | ^ |( T )T -> S T’T’ -> , S T’ | ξSELECT ( S->a) = {a}SELECT ( S->^) = {^}SELECT ( S->( T ) ) = { ( }SELECT ( T -> S T’) = { a , ^ , ( }SELECT ( T’ -> , S T’ ) = { , }SELECT ( T’ ->ξ) = FOLLOW ( T’ ) = FOLLOW ( T ) = { )}构造预测分析表分析符号串( a , a )#分析栈剩余输⼊串所⽤产⽣式#S ( a , a) # S -> ( T )# ) T ( ( a , a) # ( 匹配# ) T a , a ) # T -> S T’# ) T’ S a , a ) # S -> a# ) T’ a a , a ) # a 匹配# ) T’,a) # T’ -> , S T’# ) T’ S , , a ) # , 匹配# ) T’ S a ) # S->a# ) T’ a a ) # a匹配# ) T’) # T’ ->ξ# ) ) # )匹配# # 接受2.E->TE’E’->+E E’->ξT->FT’T’->T T’->ξF->PF’F’->*F’F’->ξP->(E) P->a P->b P->∧SELECT(E->TE’)=FIRST(TE’)=FIRST(T)= {(,a,b,^)SELECT(E’->+E)={+}SELECT(E’->ε)=FOLLOW(E’)= {#,)}SELECT(T->FT’)=FIRST(F)= {(,a,b,^}SELECT(T’ —>T)=FIRST(T)= {(,a,b,^)SELECT(T’->ε)=FOLLOW(T’)= {+,#,)}SELECT(F ->P F’)=FIRST(F)= {(,a,b,^}SELECT(F’->*F’)={*}SELECT(F’->ε)=FOLLOW(F’)= {(,a,b,^,+,#,)}3. S->MH S->a H->Lso H->ξK->dML K->ξL->eHf M->K M->bLM FIRST ( S ) =FIRST(MH)= FIRST ( M ) ∪FIRST ( H ) ∪{ξ}∪{a}= {a, d , b , e ,ξ} FIRST( H ) = FIRST ( L ) ∪{ξ}= { e , ξ}FIRST( K ) = { d , ξ}FIRST( M ) = FIRST ( K ) ∪{ b } = { d , b ,ξ}FOLLOW ( S ) = { # , o }FOLLOW ( H ) = FOLLOW ( S ) ∪{ f } = { f , # , o }FOLLOW ( K ) = FOLLOW ( M ) = { e , # , o }FOLLOW ( L ) ={ FIRST ( S ) –{ξ} } ∪{o} ∪FOLLOW ( K )∪{ FIRST ( M ) –{ξ} } ∪FOLLOW ( M )= {a, d , b , e , # , o }FOLLOW ( M ) ={ FIRST ( H ) –{ξ} } ∪FOLLOW ( S )∪{ FIRST ( L ) –{ξ} } = { e , # , o }SELECT ( S-> M H) = ( FIRST ( M H) –{ξ} ) ∪FOLLOW ( S )= ( FIRST( M ) ∪FIRST ( H ) –{ξ} ) ∪FOLLOW ( S )= { d , b , e , # , o }SELECT ( S-> a ) = { a }SELECT ( H->L S o ) = FIRST(L S o) = { e }SELECT ( H ->ξ) = FOLLOW ( H ) = { f , # , o }SELECT ( K->ξ) = FOLLOW ( K ) = { e , # , o }SELECT ( L-> e H f ) = { e }SELECT ( M->K ) = ( FIRST( K ) –{ξ} ) ∪FOLLOW ( M ) = {d,e , # , o }SELECT ( M -> b L M )= { b }4 . ⽂法含有左公因式,变为S->C $ { b, a }C-> b A { b }C-> a B { a }A -> b A A { b }A-> a A’ { a }A’-> ξ{ $ , a, b }A’-> C { a , b }B->a B B { a }B -> b B’ { b }B’->ξ{ $ , a , b }B’-> C { a, b }5. <程序> --- S <语句表>――A <语句>――B <⽆条件语句>――C <条件语句>――D <如果语句>――E <如果⼦句> --FS->begin A end S->begin A end { begin }A-> B A-> B A’ { a , if }A-> A ; B A’-> ; B A’ { ; }A’->ξ{ end }B-> C B-> C { a } B-> D B-> D { if }C-> a C-> a { a }D-> E D-> E D’ { if }D-> E else B D’-> else B { else }D’->ξ{; , end } E-> FC E-> FC { if }F-> if b then F-> if b then { if }⾮终结符是否为空S-否A-否A’-是B-否C-否D-否D’-是E-否F-否FIRST(S) = { begin }FIRST(A) = FIRST(B) ∪FIRST(A’) ∪{ξ} = {a , if , ; , ξ} FIRST(A’) ={ ; , ξ}FIRST(B) = FIRST(C) ∪FIRST(D) ={ a , if }FIRST(C) = {a}FIRST(D) = FIRST(E)= { if }FIRSR(D’) = {else , ξ}FIRST(E) = FIRST(F) = { if }FIRST(F) = { if }FOLLOW(S) = {# }FOLLOW(A) = {end}FOLLOW(A’) = { end }FOLLOW(B) = {; , end }FOLLOW (C) = {; , end , else }FOLLOW(D) = {; , end }FOLLOW( D’ ) = { ; , end }FOLLOW(E) = { else , ; end }FOLLOW(F) = { a }S A A’ B C D D’ E F if then else begin end a b ;6. 1.(1) S -> A | B(2) A -> aA|a(3)B -> bB |b提取(2),(3)左公因⼦(1) S -> A | B(2) A -> aA’(3) A’-> A|ξ(4) B -> bB’(5) B’-> B |ξ2.(1) S->AB(2) A->Ba|ξ(3) B->Db|D(4) D-> d|ξ提取(3)左公因⼦(1) S->AB(2) A->Ba|ξ(3) B->DB’(4) B’->b|ξ(5) D-> d|ξ3.(1) S->aAaB | bAbB(2) A-> S| db(3) B->bB|a4(1)S->i|(E)(2)E->E+S|E-S|S提取(2)左公因⼦(1)S->i|(E)(2)E->SE’(3)E’->+SE’|-SE’ |ξ5(1)S->SaA | bB(2)A->aB|c(3)B->Bb|d消除(1)(3)直接左递归(1)S->bBS’(2)S’->aAS’|ξ(3)A->aB | c(4) B -> dB’(5)B’->bB’|ξ6.(1) M->MaH | H(2) H->b(M) | (M) |b消除(1)直接左递归,提取(2)左公因⼦(1)M-> HM’(2)M’-> aHM’ |ξ(3)H->bH’ | ( M )(4)H’->(M) |ξ7. (1)1)A->baB4)B->a将1)、2)式代⼊3)式1)A->baB2)A->ξ3)B->baBbb4)B->bb5)B->a提取3)、4)式左公因⼦1)A->baB2)A->ξ3)B->bB’4)B’->aBbb | b5)B->a(3)1)S->Aa2)S->b3)A->SB4)B->ab将3)式代⼊1)式1)S->SBa2)S->b3)A->SB4)B->ab消除1)式直接左递归1)S->bS’2)S’->BaS’ |ξ3)S->b4)A->SB5)B->ab删除多余产⽣式4)1)S->bS’(5)1)S->Ab2)S->Ba3)A->aA4)A->a5)B->a提取3)4)左公因⼦1)S->Ab4)A’-> A |ξ5)B->a将3)代⼊1)5)代⼊21)S->aA’b2)S->aa3)A->aA’4)A’-> A |ξ5)B->a提取1)2)左公因⼦1)S-> aS’2)S’->A’b | a3)A->aA’4)A’-> A |ξ5)B->a删除多余产⽣式5)1)S-> aS’2)S’->A’b | a3)A->aA’4)A’-> A |ξA A’S’S将3)代⼊4)1)S-> aS’2)S’->A’b | a3)A->aA ’4)A’-> aA’ |ξ3)S’->a4)S’->b5)A->aA ’6)A’-> aA’ |ξ对2)3)提取左公因⼦1)S->aS’2)S’->aS’’3)S’’->A’b|ξ4)S’->b5)A->aA ’6)A’-> aA’ |ξ删除多余产⽣式5)1)S->aS’2)S’->aS’’3)S’’->A’b|ξ4)S’->b第六章1S → a | ∧ | ( T )T → T , S | S解:(1) 增加辅助产⽣式 S’→#S#求 FIRSTVT集FIRSTVT(S’)= {#}FIRSTVT(S)= {a ∧ ( }= { a ∧ ( } FIRSTVT (T) = {,} ∪ FIRSTVT( S ) = { , a ∧ ( }求 LASTVT集LASTVT(S’)= { # }LASTVT(S)= { a ∧ )}LASTVT (T) = { , a ∧ )}(2)因为任意两终结符之间⾄多只有⼀种优先关系成⽴,所以是算符优先⽂法(3)a ∧( ) , #F 1 1 1 1 1 1g 1 1 1 1 1 1f 2 2 1 3 2 1g 2 2 2 1 2 1f 3 3 1 3 3 1g 4 4 4 1 2 1f 3 3 1 3 3 1g 4 4 4 1 2 1(4)栈优先关系当前符号剩余输⼊串移进或规约#<·( a,a)# 移进#( <· a ,a)# 移进#(T <·, a)# 移进#(T,<· a )# 移进#(T,a ·> ) # 规约#(T,T ·> ) # 规约#(T =·) # 移进#(T) ·> #规约#T =·#接受4.扩展后的⽂法S’→#S# S→S;G S→G G→G(T) G→H H→a H→(S)T→T+S T→S(1)FIRSTVT(S)={;}∪FIRSTVT(G) = {; , a , ( }FIRSTVT(G)={ ( }∪FIRSTVT(H) = {a , ( }FIRSTCT(H)={a , ( }FIRSTVT(T) = {+} ∪FIRSTVT(S) = {+ , ; , a , ( }LASTVT(S) = {;} ∪LASTVT(G) = { ; , a , )}LASTVT(G) = { )} ∪LASTVT(H) = { a , )}LASTVT(H) = {a, )}LASTVT(T) = {+ } ∪LASTVT(S) = {+ , ; , a , ) }构造算符优先关系表因为任意两终结符之间⾄多只有⼀种优先关系成⽴,所以是算符优先⽂法(2)句型a(T+S);H;(S)的短语有:a(T+S);H;(S) a(T+S);H a(T+S) a T+S (S) H直接短语有: a T+S H (S)句柄: a素短语:a T+S (S)最左素短语:a(3)(4)不能⽤最右推导推导出上⾯的两个句⼦。