第六章参数估计1
- 格式:ppt
- 大小:3.88 MB
- 文档页数:139
113第六章 参数估计一、 知识点1. 点估计的基本概念2. 点估计的常用方法(1) 矩估计法① 基本思想:以样本矩作为相应的总体矩的估计,以样本矩的函数作为相应的总体矩的同一函数的估计。
(2) 极大似然估计法设总体X 的分布形式已知,其中),,,(21k θθθθΛ=为未知参数,),,(21n X X X Λ为简单随机样本,相应的),,,(21n x x x Λ为它的一组观测值.极大似然估计法的步骤如下:① 按总体X 的分布律或概率密度写出似然函数∏==ni i n x p x x x L 121);();,,,(θθΛ (离散型)∏==ni i n x f x x x L 121);();,,,(θθΛ (连续型)若有),,,(ˆ21nx x x Λθ使得);,,,(max )ˆ;,,,(2121θθθn n x x x L x x x L ΛΛΘ∈=,则称这个θˆ为参数θ的极大似然估计值。
称统计量),,,(ˆ21nX X X Λθ为参数θ的极大似然估计量。
② 通常似然函数是l θ的可微函数,利用高等数学知识在k θθθ,,,21Λ可能的取值范围内求出参数的极大似然估计k l x x x nl l ,,2,1),,,,(ˆˆ21ΛΛ==θθ 将i x 换成i X 得到相应的极大似然估计量k l X X X nl l ,,2,1),,,,(ˆˆ21ΛΛ==θθ 注:当);,,,(21θn x x x L Λ不可微时,求似然函数的最大值要从定义出发。
3. 估计量的评选标准(1) 无偏性:设),,(ˆˆ21nX X X Λθθ=是参数θ的估计量,如果θθ=)ˆ(E ,则称θˆ为θ的无偏估计量。
(2) 有效性:设1ˆθ,2ˆθ是θ的两个无偏估计,如果)ˆ()ˆ(21θθD D ≤,则称1ˆθ较2ˆθ更有效。
4. 区间估计114 (1) 定义 设总体X 的分布函数族为{}Θ∈θθ),;(x F .对于给定值)10(<<αα,如果有两个统计量),,(ˆˆ111n X X Λθθ=和),,(ˆˆ122n X X Λθθ=,使得{}αθθθ-≥<<1ˆˆ21P 对一切Θ∈θ成立,则称随机区间)ˆ,ˆ(21θθ是θ的双侧α-1置信区间,称α-1为置信度;分别称1ˆθ和2ˆθ为双侧置信下限和双侧置信上限. (2) 单侧置信区间(3) 一个正态总体下未知参数的双侧置信区间(置信度为α-1)二、 习题 1. 选择题(1) 设n X X X ,,,21Λ是来自总体X 的一个样本,则以下统计量①)(211n X X + ②)2(14321n X X X X X n ++++-Λ ③)2332(101121n n X X X X +++-作为总体均值μ的估计量,其中是μ的无偏估计的个数是A.0B.1C.2D.3(2) 设321,,X X X 是来自正态总体)1,(μN 的样本,现有μ的三个无偏估计量321332123211216131ˆ;1254131ˆ;2110351ˆX X X X X X X X X ++=++=++=μμμ其中方差最小的估计量是A.1ˆμB.2ˆμC. 3ˆμD.以上都不是 (3) 设0,1,0,1,1为来自0-1分布总体B(1,p)的样本观察值,则p 的矩估计值为 。
第六章 参数值的估计 第一节 参数估计的一般问题一、估计量与估计值参数估计就是用样本统计量去估计总体参数,如用X 估计μ,用S2估计2σ,用p 估计π等。
总体参数可以笼统地用一个符号θ表示。
参数估计中,用来估计总体参数的统计量的名称,称为估计量,用θ表示,如样本均值、样本比例等就是估计量。
用来估计总体参数时计算出来的估计量的具体数值,叫做估计值。
二、点估计与区间估计——参数估计的两种方法 1、点估计用样本估计量θ的值直接作为总体参数θ的估计量值。
2、区间估计它是在点估计基础上,给出总体参数估计的一个区间,由此可以衡量点估计值可靠性的度量。
这个区间通常是由样本统计量加减抽样误差而得到。
以样本均值的区间估计来说明区间估计原理:根据样本均值的抽样分布可知,重复抽样或无限总体抽样情况下,样本均值,由此可知,样本均值落在总体均值两侧各为一个标准误差范围内的概率为0.6827,两个标准误差范围0.9545,三个标准误差范围0.9973,并可计算出样本均值落在μ的两侧任何一个标准误差范围内的概率(根据已知的μ,σ计算)。
但实际估计时,μ是未知的,因而不再是估计样本均值落在某一范围内的概率,而只能根据已设定的概率计算这个范围的大小。
例如:约有95%的样本均值会落在距μ的两个标准误差范围内,即约有95%的样本均值所构造的两个标准误差的区间会包括μ。
在区间估计中,由样本统计量所构造的总体参数的估计区间,称为置信区间,区间的最小值为置信下限,最大值为置信上限。
例如,抽取了1000个样本,根据每个样本构造一个置信区间,其中有95%的区间包含了真实的总体参数,而5%的没有包括,则称95%为置信水平/置信系数。
构造置信区间时,可以用所希望的值作为置信水平,常用的置信水平是90%,95%,99%,见下表:α称为显著性水平,表示用置信区间估计的不可靠的概率,1-为置信水平。
如何解释置信区间:如用95%的置信水平得到某班学生考试成绩的置信区间为(60,80),即在多次抽样中有95%的样本得到的区间包含了总体真实平均成绩,(60,80)这个区间有95%的可能性属于这些包括真实平均成绩的区间内的一个。
第六章 参数估计一、点估计(一)点估计的定义 (二)良好估计量的标准 1.无偏性样本平均数的无偏估计。
是总体平均数(期望)μX 样本方差。
是总体方差的无偏估计21-n S 而样本方差。
是总体方差的有偏估计2n S 2.有效性当无偏估计不止一个时,无偏估计变异(方差)小者有效性高。
3.一致性当样本容量越来越大时,估计值应越来越接近它所估计的总体参数,估计会越来越精确。
4.充分性样本统计量是否充分反映了样本的充分信息。
二、区间估计(一)区间估计的定义 (二)置信区间与显著性水平显著性水平:估计总体参数落在某一区间时,可能犯错误的概率。
用α表示。
置信度:对总体参数估计正确的概率。
用1-α表示。
置信区间:在一定置信度的要求下,所估计的总体参数落入的区间。
(三)区间估计的原理样本分布是区间估计的理论根据。
根据样本统计量分布的形态和分布的标准误,和根据置信度查出的临界值,可以计算出置信区间。
三、总体平均数的区间估计(一)总体平均数区间估计的一般步骤(二)总体平均数估计1:总体正态分布,总体方差已知,不论样本容量n 大小,样本平均数的抽样分布为正态分布。
其平均数就等于总体平均数,即μ=)(X E为样本容量为总体标准差,准误,为样本平均数分布的标其中n nX X σσσ=σ {}{}9,.82.8.5,.61.6.---,,905520109099105011111022222222=σ⋅≤μ≤σ⋅-=α=σ⋅≤μ≤σ⋅-=αα-=⎭⎬⎫⎩⎨⎧σ⋅-≥μ≥σ⋅+α-=⎭⎬⎫⎩⎨⎧σ⋅-≤μ≤σ⋅-α-=⎭⎬⎫⎩⎨⎧σ⋅≤μ≤σ⋅α-=⎭⎬⎫⎩⎨⎧≤σμ≤σμααααααααX X X X X X X X X X X XX X P X X P Z X Z X P Z X Z X P Z X Z P Z X Z P N X +时,有当显著性水平+时,有当显著性水平+———从而)(~—因而..例:已知总体分布为正态,σ=7.07,从这个总体中随机抽取n 1=10和n 2=36的两个样本,分别计算出,,797821==X X 试求总体参数μ的0.95和0.99的置信区间。
第六章 抽样与参数估计学习目标知识目标:理解抽样与估计的基本原理;掌握抽样推断、抽样分布、统计量和参数估计的基本概念和计算方法。
能力目标:能够根据统计研究目的和统计对象的特点组织抽样调查,计算样本指标(样本均值和样本方差),并依据样本对总体的数量特征(总体均值和总体比例)作出估计。
参数估计是统计推断的一种重要形式之一,包括参数的点估计和区间估计两类。
在本章中我们介绍统计推断的基本原理,抽样和抽样分布的基本概念,参数的点估计与几种重要的区间估计方法,参数估计量的优良性标准也在本章作简要叙述。
第一节 抽样与抽样分布关键词:总体和样本;抽样及抽样推断;参数和统计量;抽样分布一、抽样推断的基本概念(一)总体和样本抽样推断是从统计总体中抽取部分单位组成样本进行调查的。
统计总体,简称为总体,它是指所要研究的客观现象的全体,组成总体的每一个元素称为个体。
例如我们要研究某市居民的家庭收入水平,那么该市所有居民的家庭收入便构成研究总体,而每一户居民的家庭收入就是个体。
一般来说,我们所研究的总体,即研究对象的某项数量指标X ,是一个随机变量,它的取值在客观上有一定的分布。
实际上,我们对总体的研究,就是对相应的随机变量X 的分布的研究。
因此,今后将不区分总体和相应的随机变量。
为了推断总体的某些数量特征,我们一般是从总体中抽取一部分个体进行观察,即随机抽样。
随机抽样就是按照机会均等的原则(即随机原则)从总体中抽取一部分个体的过程。
假如我们抽取了n 个个体,且这n 个个体的某一指标为),,,,(21n X X X 我们称这n 个个体的指标),,,(21n X X X 为一个子样或样本,并且一般称为简单随机样本(即子样的每个分量都机会均等的来自同一总体,各个分量之间是相互独立的),n 称作子样的容量。
在一次抽样之后,观察到子样),,,(21n X X X 的一组确定的值),,,(21n x x x ,称为容量为n 的子样的观察值(或数据)。