统计学第六章 参数估计
- 格式:ppt
- 大小:479.50 KB
- 文档页数:39
统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。
通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。
本文将介绍几种常用的参数估计方法及其应用。
一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。
它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。
最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。
2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。
矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。
二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。
置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。
2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。
预测区间估计在预测和判断未来观测值时具有重要的应用价值。
三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。
贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。
贝叶斯估计方法的关键是设定先验分布和寻找后验分布。
统计学参数估计教案统计学参数估计教案一、教学目的1. 了解参数估计在统计学中的基本概念和作用;2. 学会使用点估计和区间估计进行参数估计;3. 掌握常见的参数估计方法。
二、教学内容1. 参数估计的基本概念和作用;2. 点估计和区间估计;3. 偏差和方差;4. 常见的参数估计方法:最大似然估计、最小二乘估计、贝叶斯估计。
三、教学方法1. 讲述、演示和示范;2. 互动交流;3. 课程设计。
四、具体教学流程1. 参数估计的基本概念和作用(30min)参数估计是指利用样本数据来估计总体参数的方法。
总体参数是指总体的某种特征,如总体均值、总体方差等。
参数估计的常见目的是为了推断总体的特征和进行预测。
参数估计的基本概念:点估计和区间估计。
点估计是指用样本统计量来估计总体参数,如样本均值、样本方差等。
区间估计是指以样本统计量为中心,以一定概率包含总体参数的估计区间。
2. 点估计和区间估计(30min)点估计分为无偏估计和有偏估计。
无偏估计是指样本统计量的期望等于总体参数,即样本均值和总体均值相等。
有偏估计是指样本统计量的期望不等于总体参数。
无偏估计通常比有偏估计更准确,但有时有偏估计可以更好地适应某些特殊情况。
区间估计的概念:置信度和置信区间。
置信度是指在给定的置信水平下,总体参数被包含在区间估计内的概率。
置信区间是指在给定的置信水平下,总体参数的估计区间。
3. 偏差和方差(30min)偏差是指在大量重复实验中,样本估计值的平均值与总体参数的差异程度。
如样本均值与总体均值之间的差异就是偏差。
方差是指在大量重复实验中,样本估计值与其期望之间的差异。
偏差和方差是估计量的两个基本属性。
偏差小、方差小的估计量是优良的估计量。
4. 常见的参数估计方法(60min)最大似然估计是指选择一个参数值,使得样本观测结果发生的概率最大化。
最小二乘估计是指选择一个参数值,使得样本观测结果与拟合值之间的平方误差最小化。
贝叶斯估计是指利用贝叶斯定理,根据先验分布和样本信息,推导出后验分布,从而得到总体参数的估计量。
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。
4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。
统计学中的参数估计和置信区间统计学是研究数据收集、分析、解释和推断的科学领域。
参数估计和置信区间是统计学中重要的概念和方法,用于推断总体特征并给出一定程度上的确定性度量。
本文将介绍参数估计和置信区间的基本概念、计算方法以及在实际应用中的意义。
一、参数估计参数估计是利用样本数据推断总体参数的数值或范围。
总体参数是指代表总体特征和分布的未知数值,如总体均值、总体比例等。
通过对样本数据进行分析,可以估计总体参数的取值。
在参数估计中,最常用的是点估计和区间估计。
点估计是根据样本数据估计总体参数的一个具体值。
常见的点估计方法有最大似然估计法和矩估计法。
例如,在估计总体均值时,最大似然估计法会选择使得样本观测的概率最大化的均值作为估计值。
区间估计是对总体参数的估计给出一个范围,称为置信区间。
置信区间表示估计值落在某一区间中的概率。
一般使用置信度(confidence level)来表示区间估计的确定程度,常见的置信度有90%、95%和99%等。
二、置信区间置信区间是参数估计中常用的一种方法,用于给出总体参数估计的一个范围。
置信区间通常以(下界,上界)的形式表示,包含了真实参数值的概率。
置信区间的计算方法基于抽样分布的性质,并依赖于样本量和置信度。
置信区间的计算可以通过两种方法:基于正态分布和基于t分布。
当样本量较大时(一般大于30),可以使用基于正态分布的方法。
当样本量较小时,则需要使用基于t分布的方法。
以估计总体均值为例,给定样本数据和置信度,可以计算出样本均值、标准差以及临界值。
然后根据临界值和标准差计算置信区间。
例如,假设样本均值为X,标准差为S,置信度为95%,那么置信区间可以表示为(X-S*t, X+S*t),其中t是自由度为n-1的t分布的临界值。
三、参数估计与置信区间的应用参数估计和置信区间在实际应用中具有广泛的应用。
它们能够帮助研究人员对总体特征进行推断,并给出一定程度上的确定性度量。
在医学研究中,可以利用参数估计和置信区间来估计某种药物的疗效。
统计学中的参数估计与置信区间统计学是关于收集、分析和解释数据的学科,其中包括了参数估计和置信区间的概念。
参数估计用于通过从样本中进行推断来估计总体参数的值,而置信区间则是对这个估计结果进行测量误差范围的一种方法。
一、参数估计参数估计是统计学中重要的概念,其目的是通过样本数据来估计总体参数的值。
总体参数是指总体分布的特征,例如均值、方差、比例等。
在实际研究中,很难直接获得总体数据,因此我们通常采用抽样方法,从总体中选取样本进行分析。
参数估计有两种方法:点估计和区间估计。
点估计是通过样本数据计算出一个单独的数值来估计总体参数的值,例如计算样本均值作为总体均值的估计值。
点估计简单直观,但无法确定其准确性。
因此,统计学家提出了置信区间的概念。
二、置信区间置信区间是一种用于衡量参数估计的不确定性的方法。
它提供了一个范围,其中包含了对总体参数值的估计。
置信区间由一个下限和一个上限组成,表示参数估计的可信程度。
通常,置信区间的置信水平设定为95%或90%。
置信区间的计算通常基于样本数据的分布特性和统计推断方法。
对于大样本,根据中心极限定理,可以使用正态分布来计算置信区间;对于小样本,根据t分布进行计算。
三、计算步骤下面以计算样本均值的置信区间为例来介绍计算步骤。
1. 收集样本数据,并计算样本均值。
2. 确定置信水平,例如95%。
3. 根据样本数据的特点,选择相应的分布进行计算。
若样本数据服从正态分布,可以使用正态分布进行计算;若样本数据不服从正态分布,可以使用t分布进行计算。
4. 根据所选分布的特点和样本大小,计算置信区间的下限和上限。
5. 解释置信区间的含义,例如可以说“置信区间为(下限,上限)表示我们有95%的信心相信总体均值在这个范围内”。
四、置信区间的应用置信区间的应用非常广泛,对于研究者和决策者来说都非常重要。
首先,置信区间可以用于总体参数估计。
通过置信区间,我们可以得到一个关于总体参数值的范围,而不只是一个点估计。
统计学中的参数估计与假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。
参数估计和假设检验是统计学中两个重要的概念和方法,用于推断总体参数和判断假设是否成立。
本文将详细介绍参数估计与假设检验的基本原理和应用。
一、参数估计参数估计是通过样本数据推断总体的未知参数。
在统计学中,总体是指研究对象的全体,而样本是从总体中抽取的一部分。
参数是总体的特征指标,例如均值、方差、比例等。
参数估计旨在通过样本数据对总体参数进行估计,并给出估计的精度。
参数估计分为点估计和区间估计两种方法。
点估计是通过样本数据计算得到的单个数字,用来估计总体参数的具体数值。
常见的点估计方法有最大似然估计、矩估计和贝叶斯估计等。
区间估计是通过样本数据计算得到的一个范围,该范围包含总体参数真值的概率较高。
置信区间是区间估计的一种形式,它可以用来描述估计值的不确定性。
二、假设检验假设检验是用于检验研究问题的特定假设是否成立的一种统计推断方法。
在假设检验中,我们提出一个原假设和一个备择假设,并根据样本数据对两个假设进行比较,进而判断原假设是否应该被拒绝。
原假设通常表示一种无关,即不发生预期效应或差异。
备择假设则表示研究者所期望的效应或差异。
在进行假设检验时,我们首先选择一个适当的统计检验方法,例如t检验、F检验或卡方检验等。
然后,计算出样本数据的检验统计量,并根据相关的分布理论和显著性水平进行推论。
最后,比较检验统计量与临界值,以决定是否拒绝原假设。
三、参数估计与假设检验的应用参数估计和假设检验在实际问题中有广泛的应用。
以医学研究为例,研究人员可能希望通过抽样来估计某种药物的有效剂量,并对药效进行假设检验。
在市场调研中,我们可以使用参数估计和假设检验来推断总体的需求曲线和做出市场预测。
在质量控制中,我们可以利用参数估计和假设检验来判断产品是否符合标准。
四、总结参数估计和假设检验是统计学中重要的方法,可以通过样本数据来推断总体参数和判断假设是否成立。
统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。
参数是描述总体特征的数值,例如总体均值、总体比例等。
参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。
参数估计的过程通常分为点估计和区间估计两种方法。
点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。
点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。
区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。
区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。
置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。
点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。
最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。
最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。
矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。
矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。
参数估计在实际应用中具有广泛的应用价值。
例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。
在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。
在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。
然而,参数估计也存在一些局限性。
首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。
其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。
另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。
2009-2010学年第二学期山东财政学院教案
课程名称__ __ 统计学
课程编号____ _授课对象 08级政行___ 任课教师_________ 刘建冰
职称_______ __ 副教授_________ 统计与数理学院统计学教研室
山东财政学院教案
填表说明:
1.任课教师可以参考提供样式将本课程的一些共同信息放在封面。
2.建议按每次课(两学时)来编写教案,有的专业如外语等可以适当灵活。
3.教案的编写应适当体现出个性化设计,不要因参考样式而固化、僵化。
4.课程类型:在“通识必修课、通识选修课、学科共同基础课,专业必修课,专业选修课”中选择。
5.授课方式:在“理论讲授;讨论;实验;练习;模拟;参观;双语”中选择。
6.教研室主任和分管教学院长应该在期中和期末,通过对照教学大纲对教师编写的教案进行检查,了解教师的课前备课、授课内容、授课进度,并签署意见。