高等数学基础作业1(改)
- 格式:doc
- 大小:329.22 KB
- 文档页数:4
高等数学基础第一次作业点评1第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等.A 、 2)()(x x f =,x x g =)( B 、 2)(x x f =,x x g =)(C 、 3ln )(x x f =,x x g ln 3)(= D 、 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称.A 、 坐标原点B 、 x 轴C 、 y 轴D 、 x y = ⒊下列函数中为奇函数就是( B ).A 、 )1ln(2x y += B 、 x x y cos =C 、 2xx a a y -+= D 、 )1ln(x y +=⒋下列函数中为基本初等函数就是( C ).A 、 1+=x yB 、 x y -=C 、 2xy = D 、 ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的就是( D ).A 、 12lim 22=+∞→x x x B 、 0)1ln(lim 0=+→x x C 、 0sin lim =∞→x x x D 、 01sin lim =∞→x x x⒍当0→x 时,变量( C )就是无穷小量.A 、 x x sinB 、 x 1C 、 xx 1sin D 、 2)ln(+x点评:无穷小量乘以有界变量为无穷小量⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A 、 )()(lim 00x f x f x x =→ B 、 )(x f 在点0x 的某个邻域内有定义C 、 )()(lim 00x f x f x x =+→ D 、 )(lim )(lim 0x f x f x x x x -+→→=二、填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域就是 .}33{>-≤x x x 或 ⒉已知函数x x x f +=+2)1(,则=)(x f .x x -2⒊=+∞→xx x)211(lim .21e⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k .e⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点就是 .0=x⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 .无穷小量三计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:2)2(-=-f0)0(=f e e f ==1)1(点评:求分段函数的函数值主要就是要判断那一点就是在哪一段上。
高等数学基础第一次作业点评1第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中.(C )中的两个函数相等.A. 2)()(x x f =.x x g =)( B. 2)(x x f =.x x g =)(C. 3ln )(x x f =.x x g ln 3)(= D. 1)(+=x x f .11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞.则函数)()(x f x f -+的图形关于( C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是( C ).A. 1+=x yB. x y -=C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时.变量( C )是无穷小量.A. xxsin B. x 1C. xx 1sin D. 2)ln(+x点评:无穷小量乘以有界变量为无穷小量⒎若函数)(x f 在点0x 满足( A ).则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=二、填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 .}33{>-≤x x x 或 ⒉已知函数x x x f +=+2)1(.则=)(x f .x x -2⒊=+∞→xx x)211(lim .21e⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x .在0=x 处连续.则=k .e⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 .0=x⒍若A x f x x =→)(lim 0.则当0x x →时.A x f -)(称为 .无穷小量三计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:2)2(-=-f0)0(=f e e f ==1)1(点评:求分段函数的函数值主要是要判断那一点是在哪一段上。
⾼等数学基础形成性作业及答案1-4⾼等数学基础形考作业1:第1章函数第2章极限与连续(⼀)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D.x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.,1x x y ⒌下列极限存计算不正确的是(D ). A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是⽆穷⼩量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满⾜(A ),则)(x f 在点0x 连续。
A.)()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(⼆)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数?≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的⽆穷⼩量0x x →。
高等数学基础(1)综合练习参考答案一.选择题1.B2.B3.D4.B5.C6.B7.D8.D9.C 10.C 11.C 12D 13B 14A 15D 16B 17D 18B 19A 20B 21C 22B 23A 24A二.填空题1. x <-1≤4 2. x x x f 2)(2+= 3.奇函数 原点 4. )(0x f 5.可去或第一类 6.0=x 7.1 8.ek 21=9.010.12742-x11.)0,(-∞∈x 12.x =-113.(1,2) 14. a 为实数 b =615.k =116.3,1-==b a 17. (1) c x +cos (2) x sin (3)c x F +-)32(2118. 1 19.1三.计算题 1.求极限 解:(1)原式=22521152lim221=+-=+++-→x x x x(2)原式=)11)(2()11)(11(lim22221++--+++--+-→x x x x x x x x x61)11)(1)(2()1(lim21=++--+-=→x x x x x x x(3)eee x x x x xxx xx ==⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛++∞→∞→2322332131lim2131lim(4)原式=1)11ln(lim 1lnlim =+=++∞→∞→xx x xxx x(5)原式=])11)(11()11(2sin )31[(lim 1++-++++-→x x x x x x x=4])11(2sin )31[(lim 3)3(31+=+++----→exx x x xx(6)原式=278)3(22325-=-(7)原式=2211211lim 21...41211lim 1=--=⎪⎭⎫ ⎝⎛+++++∞→∞→n n n n(8)原式=11lim 111lim 1arctan 2lim2222=+=-+-=-+∞→∞→+∞→x x xx x x x x x π(9)原式=1ln 21lim1ln 121limln )1(ln lim21121-++-=-++-=-+-→→→x x x x x xx x x xx x x x x x x x2311ln 14lim1-=+++-=→x x x(10)原式=2)2(lim223=→xx x x (无穷小量替换)2.解:1)1)(()1(lim)(11lim22+++-+=+-++∞→∞→x x b ax x b ax x x x x011)()1(lim2=+-++--=∞→x bx b a x a x由条件知,必有⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a 3.解:9lim 11lim lim 2===⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+-∞→∞→∞→aaax x xx xx e e e x a x a a x a x ,所以3ln =a .4.解:当y 在0=x 处连续知:)0()(lim 0f x f x =→k xx x x =⋅-⇒→s i n c o s 1limk x x xx =⇒→s i n .2lim221=⇒k5.解:(1)由于-→0l i m x 1)0(=f ,+→0limx b f =)0(又)(lim 0x f x →存在等价于-→0lim x =)0(f +→0lim x )0(f ,所以,1=b ,a 可为任意实数;(2))(x f 在0=x 处连续等价于-→0limx =)0(f +→0lim x )0(f )0(f =,又a f =)0( 所以1==b a .6.证明:设12)(-=xx x f ,因 1)0(-=f ,1)1(=f由零点存在定理知,存在)1,0(∈ξ,使得0)(=ξf , 即有10<<ξ,使12=ξξ.7.解:切点为)1,12(-π,则斜率为1cos 1sin 22=-====ππt t tt dxdy k⇒切线方程为)12(11+-⋅=-πx y 即22+-=πx y8.求下列函数的导数或微分(1) 解:2312621)2ln(xx xex ey xx+++++-='--⇒ dxxx xex edy xx]3132)2ln([2+++++-=--(2) 解:两边对x 求导y y y y x '+='⋅+⋅+1)21()cos(2⇒1)cos(2)cos(122-++-='=y x y y x y dxdy(3)解:xx y sin cos =' ⇒ x xx xx y 22222cscsin1sin cossin-=-=--=''(4)解:22ln 1ln 11ln arcsin 2xx x xx x x x y -⋅⋅⎪⎭⎫⎝⎛-⋅⎪⎭⎫⎝⎛='xx xx x x ln arcsinln )ln 1(22⋅-⋅-=(5)解:两边取对数得:x x y sin ln ln = 两边对x 求导:x xx x y ycos sin 1sin ln 1⋅⋅+=')cot sin (ln x x x y dxdy y +=='dx x x x x dy x)cot sin (ln )(sin +=(6)解:两边对x 求导02)1(2='⋅--'+⋅+y xy y y e yx ⇒yx yx exy yey ++--='22把0=x 代入原方程得:0=y把0=y 代入上述方程得:1)0(-='y(7)解:221arctan2221)1(112ln 2)1(21xxx x x x y x-⋅+⋅++⋅-+='⇒dxxx xdy x]212ln )1(1[1arctan2222⋅+-+-=(8) 解:)1(31)3ln(ln )1(--+-⋅-⋅='--xax a a y xx⇒dx xax a ady xx]3)3ln(ln [-+-⋅⋅-=--(9)解:021)(='⋅-+'+y y y x y e xy⇒xyxy xey yedxdy -+=219.解:设矩形与椭圆在第一象限的交点为),(y x ,则矩形面积为:xy S 4=又因为y x ,满足16422=+yx⇒ )61(442yy S -=⇒)61(426244)61(4422yy yyS -⋅-+-='令0='S ⇒⎩⎨⎧==23x y ⇒矩形边长为32,2210.. )1)(3(39632+-=--='x x x x y)1(6-=x y ),(y x 则所求面积为: xy S 2=又因为y x ,满足21x y -= )1(22x x S -=⇒⇒ )2(2)1(22x x x S -⋅+-='令0='S ⇒ ⎪⎪⎩⎪⎪⎨⎧==3233y x⇒ 最大矩形面积为9342==xy S12. 解:设圆柱形容器底半径为r,则由题意高为brVr a r C ⋅⋅⋅⋅+⋅=222πππ则总造价为3223,0b Va h aVbr C ⋅=⋅=⇒='ππ令.,3223时总造价最小高为因此当底半径bVa h aVbr ⋅=⋅=ππ13.证明:对任意的x 有)0(01111222≠>+=+-='x xxx y所以函数x x y arctan -=单调增加,证毕14.法一:设)1ln()(x x x f +-=,则在],0[x 上满足拉格朗日中值定理条件,存在一点x <<ξξ0,,使)(0)0()(/ξf x f x f =--即,1111)1ln(ξξξ+=+-=+-xx x )0(x <<ξ由0>x ,01>+ξξ,即,0)1ln(>+-xx x )1ln(x x +>⇒法二:,01111)(>+=+-='xxx x f 当),0(+∞∈x 时)(x f ⇒单调增加)0()(f x f >⇒又因为0)(0)0(>⇒=x f f )1ln(x x +>⇒15.计算不定积分(1)xxde x x d e x 11111:⎰⎰-=-=原式解x de e xxx 1111⎰+-=ce e xx x ++-=111brV a r C ⋅-⋅⋅='222π由,2rV h ⋅=π(2)⎰⋅+=+==-tdttttxtx21:2112令原式解ctt++=2323cxx+-+-=12)1(3223(3)xdxlnln21:⎰-=原式解)ln2()ln2(21xdx---=⎰-cx+--=21)ln2(2(4)xdxxsin)sin1(sin:2⎰+=原式解)sin1()sin1(1)sin1(sin112xdxxdx++-++=⎰⎰cxx++++=sin11)sin1ln((5)⎰+⋅=2)(1:xxedxe原式解=earctan(6)dxx))32(52(⎰-=原式cxx+-=32ln)32(5216.计算定积分(1)⎰-=202sinsin41:πxdx原式解⎰++-⋅=2sin)sin21sin21(41πxdxx2sin2sin2ln41πxx-+=3ln41=(2)⎰⋅=π02sin2:xdx原式解⎰+=2)(1xxededxx x x ⎰-⋅=ππ02sin202sin242-=π(3)⎰=20sin 2:πxdxx 原式解02)sin cos (2πx x x +-=2=(4))1(:2212-+--=⎰-+-x x d ex x原式解0212-+--=x xe31---=ee(5)⎰+=32)2(2x dex 原式dxe e x xx⎰-+=322203)2(2236e =17. 解:dx x x x S ⎰--=32)4(03]3123[32x x -=29=18.由题意知:xy y y )1(+=' ⇒⎰⎰-=+xdx y y dy )1(⎪⎭⎪⎬⎫=+-=+⇒1)1(ln ln 1lny c x yy21ln ln =⇒c xyy 211=+⇒19.]2[121c dx e xe e y dx xdx +⎰⋅⎰=---⎰]2[2c dx exee xxx +⋅=-⎰)22(c e xe e xxx+-=⎭⎬⎫=+-=1)0()22(y c e xee xxx3=⇒c xx e e x y 3)1(22+-=⇒20.解:特征方程为042=+λ i i 2,221-==⇒λλxc x c y 2sin 2cos 21+=⇒2cos42ππx +=21. 解:特征方程为0652=+-λλ⇒3,221==λλxxec ec y 3221+=⇒-设特解x Ae y =*由待定系数法得A =1xxxe ec e c y y y ++=+=-3221*⎩⎨⎧=='1)0(0)0(y y 1,121-==⇒c cxxxe eey +-=⇒3222.解:特征方程为0232=++λλ⇒2,121-=-=λλ对应的齐次方程的通解:xxec ec y 221---+=设x B x A y sin cos *+=代入原方程得:x x B x A x B x A x B x A sin 3)sin cos (2)cos sin (3sin cos =+++-+--⇒ 103,109=-=B A⇒ x x y cos 109sin 103*-= ⇒ x x ec e c y x x c o s 109sin 103221-++=--。
2019 年电大高数基础形考 1-4 答案《高等数学基础》作业一第 1 章 函数第 2 章 极限与连续(一) 单项选择题 ⒈以下各函数对中,(C )中的两个函数相等.A.f ( x) ( x) 2 , g( x)C. f ( x) ln x 3, g (x)⒉设函数 f ( x) 的定义域为 ( A. 坐标原点 C. y 轴x B.f ( x)x 2 , g (x) x3 ln xD. f ( x)x 2 1x 1 , g( x)1x,) ,则函数 f ( x) f ( x) 的图形关于( C )对称.B. x 轴D.y x⒊以下函数中为奇函数是( B ).A. y ln( 1 x 2 )B.yx cos xC. ya xa x D. y ln(1 x)2C ).⒋以下函数中为基本初等函数是(A. y x 1B. y xC.y x2D.y1 , x 01 ,x 0⒌以下极限存计算不正确的选项是( D ).A. lim x 2 1B.lim ln(1 x)x 2x2x 0C.lim sin xD.1lim x sinxxxx⒍当 x 0 时,变量( C )是无量小量.A.sin xB.1xxC. x sin1D. ln( x 2)x⒎若函数 f ( x) 在点 x 0 满足( A ),则 f ( x) 在点 x 0 连续。
A. lim f ( x) f ( x 0 )B. f ( x) 在点 x 0 的某个邻域内有定义x x 0C. lim f ( x)f ( x 0 )D. limf ( x) lim f ( x)x x 0x x 0x x 0(二)填空题x 2 9ln(1 x) 的定义域是x | x 3 .⒈函数 f ( x)3xx ,则 f (x) x2-x⒉已知函数 f ( x 1) x 2 .⒊ lim (1 1 )x .x2xlim(1 1) x lim(11 2 x 1 1) 2 e2x 2x x 2x1⒋若函数 f ( x) (1 x) x , x 0,在 x 0 处连续,则 k e .x k , x 0⒌函数 y x 1 , x 0的中止点是x 0 .sin x , x 0⒍若 lim f (x) A,则当x x0时, f ( x) A 称为x x0时的无量小量.x x0(二)计算题⒈设函数f (x) e x , x 0 x , x 0求: f ( 2) , f (0) , f (1) .解: f 2 2 , f 0 0, f 1 e1 e2 x 1的定义域.⒉求函数y lg x2x 1x 0lg 2x1 x1或x 0解: y 有意义,要求解得xx 02 x 0则定义域为x | x 0或 x 1 2⒊在半径为 R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解: DARO h EBC设梯形 ABCD 即为题中要求的梯形,设高为直角三角形AOE 中,利用勾股定理得h,即OE=h,下底CD = 2R AE OA2 OE2 R2 h2则上底= 2AE 2 R2h2故 Shg 2R 2 R 2 h 2h R R 2 h 22⒋求 lim sin 3x .x 0sin 2 xsin3 xsin3 x解: lim sin3 x3x3 = 1 3 3 lim 3xlim 3xx 0sin 2x x 0 sin2x 2xx 0 sin2x 2 1 2 22 x2xx 2⒌求 lim1 . x1sin( x 1)解: limx 2 1 lim (x 1)(x 1) limx 1 1 1 2x1sin( x 1) x1sin( x 1) x1 sin( x 1)1x 1⒍求 lim tan 3x .x 0x解:limtan3 xlim sin3 x 1lim sin3 x13 11g3 3x 0xx 0xcos3 x x 03xcos3x1⒎求 lim1 x2 1 .x 0sin x解: lim1 x2 1 lim ( 1 x2 1)( 1 x 21) limsin x( 1 x 21)sin xx 0x 0x0 ( 1limx0 02sin x1 1 1x 01x 1)(x⒏求 lim (x1 )x .xx 311)x1 )x 11 (1[(1x ] 1 解: lim( xlim( x ) x limxlimxxx )33x1x3x1 x (1 ) x3 3[(1 x)]x xx 23 ⒐求 lim 6x 8 .x 4x 25x 4解: limx 26 x 8x4 x 2limx24 22limx 4x25x 4x 4x 4 x 1x 4 x1 4 1 3⒑设函数(x2)2 , x 1f ( x) x , 1 x 1x1,x1谈论 f (x) 的连续性,并写出其连续区间. 解:分别对分段点x 1,x 1 处谈论连续性( 1)x 2x 2 1)sin xe 1 e 4e 3lim f x lim x 1x 1 x 1lim f x lim x 1 1 1 0x 1 x 1所以lim f x lim f x ,即 f x 在 x 1 处不连续x 1 x 1( 2)lim f x lim x 2 2 1 2 12x 1 x 1lim f x lim x 1x 1 x 1f 1 1所以 lim f x lim f x f 1 即 f x 在 x 1 处连续x 1 x 1由( 1)( 2)得f x 在除点 x 1 外均连续故 f x 的连续区间为, 1 U 1,《高等数学基础》作业二第 3 章导数与微分(一)单项选择题⒈设 f (0) 0 且极限 lim f ( x)存在,则 limf ( x)(C ).x 0 x x 0 xf (0) f (0)A. B.C. f (x)D. 0 cvx⒉设 f (x) 在 x0可导,则 lim f ( x0 2h) f (x0 )h 0 2hA. 2 f ( x0 )B. f (x0)C. 2 f ( x0)D. f ( x0 )⒊设 f (x) e x,则 lim f (1 x) f (1) (Ax 0 xA. eB. 2eC. 1 eD. 1 e2 4⒋设 f ( x) x(x 1)( x 2) (x 99) ,则 f (0)A. 99B. 99(D ).).(D ).C. 99!D.99!⒌以下结论中正确的选项是(C ).A. 若 f ( x) 在点 x0有极限,则在点x0可导.B. 若 f ( x) 在点 x0连续,则在点x0 可导.C. 若 f ( x) 在点 x0可导,则在点 x0 有极限.D. 若 f ( x) 在点 x0有极限,则在点x0连续.(二)填空题f ( x)x 2sin 1, x 0 ( 0)⒈设函数x ,则 f .0 , x 0⒉设 f (e x )e 2 x 5e x ,则 df (ln x)2 lnx5 .dxxx⒊曲线 f ( x) x 1 在 (1, 2) 处的切线斜率是k12⒋曲线 f ( x) πy2 2 )sin x 在 ( , 1) 处的切线方程是x(14224⒌设 y x 2x ,则 y 2x 2 x (1 ln x)⒍设 y1x ln x ,则 yx(三)计算题⒈求以下函数的导数y :31⑴ y (x x 3)exy(x23)ex3x 2e xx 2 ln xcsc 22⑵ y cot x yx x 2x ln x⑶ yx 2y2x ln x xln xln 2x2 x 2x2 x )⑷ ycos xx( sin x ln 2) 3(cos xx 3yx 41ln x x 2sin x( 2 x) (ln x x 2 ) cos x⑸ yyxsin 2 xsin x⑹ yx 4sin x ln x y4x 3 sin x cosxln xx23xx x 2 )3xln 3⑺ ysin x(cos x 2x) (sin x3xy32x⑻ ye x tan x ln xye x tan xe x x 1y :cos 2 x⒉求以下函数的导数⑴y e1 x 2y e 1 x 2x1 x 2⑵ y ln cos x 33sin x223y3 3x 3x tan x⑶ yx x x771y x8y8x8⑷ y3x x1 21y1 ( x x2 ) 3(1 1x 2 )3 2 ⑸ ycos 2 e xye x sin( 2e x)2⑹ycosexyx 2x 22xe sin e⑺ ysin n x cos nxyn sin n 1 x cos x cosnx n sin n x sin( nx)⑻y5sin x 2y2x ln 5cosx 2 sin x25⑼yesin 2 xysin 2 xsin 2xe⑽yx x2ex2yx x2(xx22xln x) 2xe⑾yxe xee xyx e x( e xe x ln x ) e e x e xx⒊在以下方程中, 是由方程确定的函数,求 ⑴ y cos xe 2 yy cos x y sin x2e 2 y yyy sin xcos x 2e 2 y⑵ y cos y ln xy sin y.y ln x cos y.1xycos ysin y ln x)x(1⑶ 2xsin yx 2y2 yx x2 y 2 sin y2 y (2 x cos yy:x 2 )2yx 2sin yy 2y 2y2xy 2y sin y2xy 2 cos y x 2⑷ y x ln y yy 1yyyy 1⑸ ln xe yy 21 e y y2 yy x1 yx(2 ye y)⑹ y 2 1 e x sin y2yye x cos y. yxye x sin y2 y e xcos y⑺ e ye x y 3e y y e x 3y 2 yye x 3y 2 ey⑻ y5x2 yy5x ln 5 y 2 y ln 2 5x ln 5 y1 2 y ln 2⒋求以下函数的微分 d y :⑴ y cot x cscxdy (1 cos x )dxcos 2 x sin 2 x ⑵ yln xsin x1sin x ln x cosx dyx 2 dxsin x⑶ y arcsin1x1 xdy1(1 x) (1 x) 1 x 21 2 dx1 x(1 x) 2dxx(1 x) 1 ( ) 21 x⑷ y31x1 x两边对数得:1 ln(1 x ) ln(1 ) ln yx3y111y (x1 )3 1 xy1 3 1 x ( 1 1 1 )3 1 x 1 xx⑸ y sin 2 e xdyx x3xsin(2e xx2 sin e e e dx )e dx⑹ ytan e x 3dy 2 x3 3x 2dx 3x 2 e x32sec e sec xdx⒌求以下函数的二阶导数:⑴ y x ln xy 1 ln x y1 x⑵ y x sin xy yx cos x x sin xsin x2cosx⑶ y arctanxy 1x 21 y2x(1 x 2)2⑷ y 3x2y2x3x 2ln 3y4x 23x 2ln 23 2 ln 3 3x 2(四)证明题设 f (x) 是可导的奇函数,试证 f ( x) 是偶函数.证:因为 f(x) 是奇函数 所以 两边导数得: f (x)( 1)所以 f (x) 是偶函数。
高等数学基础作业 Prepared on 22 November 2020成绩:高等数学基础形 成 性 考 核 册专业: 建筑学号:姓名: 牛萌河北广播电视大学开放教育学院(请按照顺序打印,并左侧装订)高等数学基础形考作业1:第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称.A. 坐标原点B. x 轴C. y 轴D. x y =⒊下列函数中为奇函数是( B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+=D. )1ln(x y += ⒋下列函数中为基本初等函数是( C ).A. 1+=x yB. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→xx x ⒍当0→x 时,变量( C )是无穷小量.A.xx sin B. x 1 C. x x 1sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义 C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 00x f x f x x x x -+→→= (二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是X > 3. ⒉已知函数x x x f +=+2)1(,则=)(x f. ⒊=+∞→x x x )211(lim .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量。
高等数学基础第一次作业点评1第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是( C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量( C )是无穷小量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x点评:无穷小量乘以有界变量为无穷小量⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=二、填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 .}33{>-≤x x x 或 ⒉已知函数x x x f +=+2)1(,则=)(x f .x x -2⒊=+∞→xx x)211(lim .21e⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k .e⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 .0=x⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 .无穷小量三计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:2)2(-=-f0)0(=f e e f ==1)1(点评:求分段函数的函数值主要是要判断那一点是在哪一段上。
高等数学基础(19秋)形考作业1
1、
A ∞
B -∞
C 0
D +∞
我的得分:10分
我的答案:B
2、
A 1,-1
B 1,1
C 0,-1
D 0,-2
我的得分:10分
我的答案:D
3、下列函数为奇函数的是()
A
B
C
D
我的得分:10分
我的答案:B
4、在上的最大值和最小值分别为()
A 1,-1
B 0,1
C 0,-1
D 0,-2
我的得分:10分
我的答案:D
5、
A 0,3,3
B 3,4,3
C 0,4,3
D 3,4,3
我的得分:10分我的答案:C
6、
A 0
B 1
C -1
D 2
我的得分:10分我的答案:A
7、
A
B
C
D
我的得分:10分我的答案:C
8、
A 高阶无穷小
B 同阶无穷小,但不等价
C 低阶无穷小
D 等价无穷小
我的得分:10分
我的答案:A
9、
A 充分但非必要条件
B 必要但非充分条件
C 充分必要条件
单选题
高等数学基础(19秋)形考作业1 共10道题
100分
D 无关条件
我的得分:10分
我的答案:C
10、
A 无穷大量
B 无穷小量
C 无界变量
D 有界变量
我的得分:10分
我的答案:A。
高等数学基础第一次作业
第1章 函数
第2章 极限与连续
(一)单项选择题
⒈下列各函数对中,(C )中的两个函数相等.
A. 2
)()(x x f =,x x g =)( B. 2)(x x f =
,x x g =)(
C. 3
ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,1
1)(2--=x x x g
⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.
A. 坐标原点
B. x 轴
C. y 轴
D. x y = ⒊下列函数中为奇函数是(B ).
A. )1ln(2
x y += B. x x y cos =
C. 2
x
x a a y -+= D. )1ln(x y +=
⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2
x
y = D. ⎩
⎨⎧≥<-=0,10
,1x x y
⒌下列极限存计算不正确的是(D ).
A. 12lim 2
2
=+∞→x x x B. 0)1ln(lim 0
=+→x x C. 0sin lim
=∞→x x x D. 01
sin lim =∞→x x x ⒍当0→x 时,变量(C )是无穷小量.
A. x x sin
B. x 1
C. x
x 1
sin D. 2)ln(+x
⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00
x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义
C. )()(lim 00
x f x f x x =+→ D. )(lim )(lim 0
x f x f x x x x -+→→=
(二)填空题
⒈函数)1ln(3
9
)(2x x x x f ++--=的定义域是 .
⒉已知函数x x x f +=+2
)1(,则=)(x f x 2 -x .
⒊=+
∞→x
x x
)211(lim
. ⒋若函数⎪⎩⎪
⎨⎧≥+<+=0,0,)1()(1
x k x x x x f x ,在0=x 处连续,则=k e .
⒌函数⎩
⎨⎧≤>+=0,sin 0
,1x x x x y 的间断点是 x=0 .
⒍若A x f x x =→)(lim 0
,则当0x x →时,A x f -)(称为 x →x0 时的无穷小量 .
(三)计算题 ⒈设函数
⎩⎨
⎧≤>=0
,0
,e )(x x x x f x 求:)1(,)0(,)2(f f f -.
⒉求函数x
x y 1
2lg
-=的定义域.
⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.
⒋求x
x
x 2sin 3sin lim
0→.
⒌求)
1sin(1
lim
2
1+--→x x x .
⒍求x
x
x 3tan lim
0→.
⒎求x
x x sin 11lim 20-+→.
⒏求x
x x x )3
1(
lim +-∞
→.
⒐求4
58
6lim
2
2
4
+-+-→x x x x x .
⒑设函数
⎪⎩
⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f
讨论)(x f 的连续性.。