激光原理第三章
- 格式:ppt
- 大小:1.42 MB
- 文档页数:64
激光原理_第三章激光原理第三章主要涉及激光和光学腔的特性以及激光光束的聚焦、散焦以及其应用。
第一节中,我们将讨论激光器和光学腔的特性。
激光器是产生激光的重要设备,它包括三个基本部分:能够将电能转化为光能的活性介质、激活活性介质的能量源以及谐振腔。
激光器的原理是通过在活性介质中加入能量,使活性原子或分子跃迁到激发态,然后通过受激辐射释放光子,并进一步激发周围的活性原子或分子,从而实现光的倍增。
在光学腔方面,我们将讨论两个关键特性:腔长度和腔的几何形状。
腔长度对激光的频率起着决定性的作用,而腔的几何形状则决定了激光的模式。
第二节中,我们将介绍激光光束的聚焦和散焦。
激光光束的聚焦是通过使用透镜或其他透镜系统实现的。
透镜的焦距决定了光束的聚焦程度,而透镜的直径决定了光束的聚焦区域的大小。
同时,我们还将讨论光束的散焦现象,即光束随着传播距离的增加逐渐扩散。
散焦现象的产生是因为光束在传播过程中受到了折射、散射和衍射的影响。
第三节中,我们将探讨激光的应用。
激光在许多领域中都有广泛的应用,包括通信、测量、医学、材料加工等。
在通信领域,激光被用于传输信息,其高密度和高速度的特性使其成为一种理想的通信媒介。
在医学领域,激光被用于进行手术和治疗,例如激光手术可以实现精确的切割和无创伤的治疗。
在材料加工领域,激光能够实现高精度的切割、焊接和打孔,被广泛应用于工业制造。
总的来说,激光原理第三章主要涉及激光器和光学腔的特性,包括激光光束的聚焦和散焦,以及激光的应用。
通过学习这些内容,我们可以更好地理解激光的原理和性能,从而更好地应用于实际生活和工作中。
第二章速率方程理论一、学习要求与重点难点学习要求1.了解典型激光器的工作能级和常见激光介质的三、四能级特征;2.掌握激光三、四能级系统单模速率方程组的建立方法;3.掌握稳态情形下对小信号增益的求解;4.理解均匀和非均匀加宽介质的增益饱和;5.了解增益介质的色散;6.理解超辐射现象和超辐射激光器工作原理;7.了解激光放大现象和激光放大器工作原理。
重点1.激光三、四能级系统特征;2.速率方程组的建立方法,及其近似处理;3.稳态情形下对小信号增益的求解;4.介质增益饱和的机制;5.超辐射现象。
难点1.速率方程组的近似处理;2.介质增益饱和的机制;3.超辐射激光器工作原理。
二、知识点总结1. 典型激光器的主要工作能级⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧−−−−−→−⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧−−−−−→−++3/27/29/25/29/23/2122S F H F I F YAG Nd F F A E .)Cr (I 4424443444239209503694和抽运能级:激发能级激光下能级:基态激光上能级:激发能级钕玻璃中中:掺钕离子和抽运能级:激发能级激光下能级:基态中的激光上能级:激发能级:掺离子红宝石:三能级系统离子电子态间跃迁离子电子态间跃迁nm nm E nm ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧→∏∏−−−−−−−−→−⎪⎩⎪⎨⎧−−−−−→−∑++自终止基态:组激光下能级:激发能级激光上能级:激发能级最强分子:多条近紫外光,基态:激发能级组激光下能级:激发能级组激光上能级:激发能级波段和绿:蓝氩离子:三能级系统态跃迁向低电子态的分子振动离子电子态间跃迁g g u X B C nm p s p p p nm nm 13354413773335514488.N 44.He II 2⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−−−−−→−-⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−→−++9/23/27/29/25/211/29/23/27/29/25/213/23/29/23/27/29/25/211/23/2I:S F H F I E )Tr (I:S F H F I F ..YAG I :S F H F I F ..YAG Nd I 4442442344424444442444390070037131910610641基态和抽运能级:激发能级激光下能级:激发能级中振动基态能级激光上能级:电子激发宽带:离子掺钛蓝宝石基态和抽运能级:激发能级激光下能级:激发能级激光上能级:激发能级,钕玻璃中中基态和抽运能级:激发能级激光下能级:激发能级激光上能级:激发能级,钕玻璃中中:掺钕离子:四能级系统能级间跃迁离子不同电子态中振动离子电子态间跃迁离子电子态间跃迁nm m m m m μμμμ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−→−⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−−→−⎪⎪⎩⎪⎪⎨⎧−−−−−−→−0000010021006900000101010061013339312215112363301000100111基态:振动基态级带级带下泻能级:振动激发能能级带激光下能级:振动激发能级带激光上能级:振动激发基态:振动基态级带级带下泻能级:振动激发能能级带激光下能级:振动激发能级带激光上能级:振动激发:碰撞激励基态:下泻能级:激发能级激光下能级:激发能级激光上能级:激发能级基态:下泻能级:激发能级激光下能级:激发能级激光上能级:激发能级基态:下泻能级:激发能级激光下能级:激发能级激光上能级:激发能级:碰撞激励:四能级系统分子振动态间跃迁分子振动态间跃迁原子电子态间跃迁原子电子态间跃迁原子电子态间跃迁m m m m nm μμμμ..)(N CO S S P S .S S P S .S S P S )HeNe(He II 220Ne 0Ne 0Ne 2. 速率方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-=∆⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧∆=++∆-=∆⎪⎪⎩⎪⎪⎨⎧∆=-+++∆-=∆21210221112211222112111ηηηηηνννϕϕηϕηηϕϕηηϕηη激光系统总量子效率::激光上下能级荧光效率驰豫效率:抽运能级向激光上能级率:一个光子的受激跃迁几布居反转粒子数密度::四能级系统:三能级系统单模:上下下下上上a a a a a P P a a a P P V g h B B n g g n n n V B dt d A B W n nW dt n d n V B dt d A n g g A B g g W n nW dt nd ),()(I ])([I3. 布居反转⎝⎛⎝⎛←−−→−==⎝⎛←<=←<=+-=∆ ⎝⎛ ⎝⎛←>+-=∆2100011111τηηβηββτητηβτητητητηP P P P P P P W S A n n g g S A g g n n n W W g g n W W n W W n 激光辐射效率:完全布居反转度之反比:激光上下能级粒子数密,增速放缓高泵浦强度:出现饱和低泵浦强度:线性增加上级短任一激光下能级寿命比反转条件:比下级多任一激光上能级粒子数反转条件::四能级系统激光辐射效率:,增速放缓高泵浦强度:出现饱和低泵浦强度:线性增加度速度:存在阈值激励速抽运速度大于自发辐射反转条件::三能级系统强光和饱于小远强光内质介小信号:最佳下基上下上下上下下基上下上下上下上下上下下上上下上下上下上下)(I I()()⎝⎛⎝⎛∆+±=-+∆=∆↑↓←∆=−−→−+∆=∆⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∆+-⎪⎭⎫ ⎝⎛∆+-=∆:未讨论。
思考练习题31.腔长为0.5m 的氩离子激光器,发射中心频率0ν=5.85⨯l014Hz ,荧光线宽ν∆=6⨯l08 Hz ,问它可能存在几个纵模?相应的q 值为多少? (设μ=1)答:Hz L cq 881035.0121032⨯=⨯⨯⨯==∆μν, 210310688=⨯⨯=∆∆=q n νν,则可能存在的纵模数有三个,它们对应的q 值分别为: 68141095.11031085.522⨯=⨯⨯=⨯=⇒=νμμνc L q L qc ,q +1=1950001,q -1=19499992.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν∆=1.5⨯l09Hz 。
今腔长L =lm ,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少?答:Hz L cq 88105.11121032⨯=⨯⨯⨯==∆μν,10105.1105.189=⨯⨯=∆∆=q n νν 即可能输出的纵模数为10个,要想获得单纵模输出,则:m c L Lcq 2.0105.1103298=⨯⨯=∆<∴=∆<∆νμμνν 故腔长最长不得大于m 2.0。
3.(1)试求出方形镜对称共焦腔镜面上30TEM 模的节线位置的表达式(腔长L 、光波波长λ、方形镜边长a )(2)这些节线是否等间距?答:(1)πλλπ43,02128)1()(0)(X F 213333323322L x x LxX X X e dX d eX H eX H X XX ±==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=-=-==--)=((2)这些节距是等间距的4.连续工作的CO 2激光器输出功率为50W ,聚焦后的基模有效截面直径2w =50μm ,计算(1)每平方厘米平均功率(50W 为有效截面内的功率) (2)试与氩弧焊设备(104W /cm 2)及氧乙炔焰(103W /cm 2)比较,分别为它们的多少倍? 答:(1)每平方厘米的平均功率为:26242/10546.2)1025(50W50cm W ⨯=⨯=-ππω(2)6.2541010546.246=⨯;是氩弧焊的6.254倍。
激光原理复习题第一章电磁波1、麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。
在方程组中是如何表示这一结果?答:每个方程的意义:1)第一个方程为法拉第电磁感应定律,揭示了变化的磁场能产生电场。
2)第二个方程则为Maxwell的位移电流假设。
这组方程描述了电荷和电流激发电磁场、以及变化的电场与变化的磁场互相激发转化的普遍规律。
第二个方程是全电流安培环路定理,描述了变化的电场激发磁场的规律,表示传导电流和位移电流(即变化的电场)都可以产生磁场。
第二个方程意味着磁场只能是由一对磁偶极子激发,不能存在单独的磁荷(至少目前没有发现单极磁荷)3)第三个方程静电场的高斯定理:描述了电荷可以产生电场的性质。
在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。
4)第四个方程是稳恒磁场的高斯定理,也称为磁通连续原理。
2、产生电磁波的典型实验是哪个?基于的基本原理是什么?答:赫兹根据电容器经由电火花隙会产生振荡原理设计的电磁波发生器实验。
(赫兹将一感应线圈的两端接于产生器二铜棒上。
当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。
瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。
有麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。
他将一小段导线弯成圆形,线的两端点间留有小电火花隙。
因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。
所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。
赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。
赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。