2020新高考专题数学压轴题汇编 专题131—函数与导数压轴题命题区间02
- 格式:pdf
- 大小:1.68 MB
- 文档页数:56
2020高考数学《导数压轴题》1.已知函数 $f(x)=e^x(1+aln x)$,设 $f'(x)$ 为 $f(x)$ 的导函数。
1) 设 $g(x)=e^xf(x)+x^2-x$ 在区间 $[1,2]$ 上单调递增,求 $a$ 的取值范围;2) 若 $a>2$ 时,函数 $f(x)$ 的零点为 $x$,函数$f'(x)$ 的极小值点为 $x_1$,求证:$x>x_1$。
2.设函数 $f(x)=\frac{x^2-2x+3}{x-1}$,$x\in R$。
1) 求证:当 $x\ge 1$ 时,$f(x)\ge 2$ 恒成立;2) 讨论关于 $x$ 的方程 $f(x)=k$ 的根的个数。
3.已知函数 $f(x)=-x^2+ax+a-e^{-x}+1$,$a\in R$。
1) 当 $a=1$ 时,判断 $g(x)=e^xf(x)$ 的单调性;2) 若函数 $f(x)$ 无零点,求 $a$ 的取值范围。
4.已知函数 $f(x)=\frac{ax+b}{x-1}$,$x\in R$。
1) 求函数 $f(x)$ 的单调区间;2) 若存在 $f(f(x))=x$,求整数 $a$ 的最小值。
5.已知函数 $f(x)=e^{-ln x+ax}$,$a\in R$。
1) 当 $a=-e+1$ 时,求函数 $f(x)$ 的单调区间;2) 当 $a\ge -1$ 时,求证:$f(x)>0$。
6.已知函数 $f(x)=e^x-x^2-ax-1$。
1) 若函数 $f(x)$ 在定义域内单调递增,求实数 $a$ 的范围;2) 设函数 $g(x)=xf(x)-e^x+x^3+x$,若 $g(x)$ 至多有一个极值点,求 $a$ 的取值集合。
7.已知函数 $f(x)=x-1-ln x-a(x-1)^2$,$a\in R$。
1) 讨论函数 $f(x)$ 的单调性;2) 若对 $\forall x\in (0,+\infty)$,$f(x)\ge 0$,求实数$a$ 的取值范围。
导数与函数核心考点目录题型一切线型1.求在某处的切线方程2.求过某点的切线方程3.已知切线方程求参数题型二单调型1.主导函数需“二次求导”型2.主导函数为“一次函数”型3.主导函数为“二次函数”型4.已知函数单调性,求参数范围题型三极值最值型1.求函数的极值2.求函数的最值3.已知极值求参数4.已知最值求参数题型四零点型1.零点(交点,根)的个数问题2.零点存在性定理的应用3.极值点偏移问题题型五恒成立与存在性问题1.单变量型恒成立问题2.单变量型存在性问题3.双变量型的恒成立与存在性问题4.等式型恒成立与存在性问题题型六与不等式有关的证明问题1.单变量型不等式证明2.含有e x与lnx的不等式证明技巧3.多元函数不等式的证明4.数列型不等式证明的构造方法题型一 切线型1.求在某处的切线方程例1.【2015重庆理20】求函数f (x )=3x ²e x 在点(1,f (1))处的切线方程. 解:由f (x )=3x ²e x ,得f ′(x )=6x -3x ²e x ,切点为(1,3e ) ,斜率为f ′(1)=3e由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3e ;∴切线方程为y -3e =3e (x -1),即3x -ey =0.例2.求f (x )=e x (1x +2)在点(1,f (1))处的切线方程.解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x ²+1x +2)由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ;∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x1+x 在点(0,f (0))处的切线方程.解:由f (x )=ln1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -11+x由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2; ∴切线方程为y =-2x ,即2x +y =0.例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x ²4与直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程.解:由题意得:a =x ²4,则x =±2a ,即M (-2a ,a ),N (2a ,a ),由f (x )=x ²4,得f ′(x )=x2,当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0;当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0;解题模板一 求在某处的切线方程⑴写出f (x ); ⑵求出f ′(x );⑶写出切点(x 0,f (x 0)); ⑷切线斜率k =f ′(x 0);⑸切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 2.求过某点的切线方程Step 1 设切点为(x 0,f (x 0)),则切线斜率f ′(x 0),切线方程为: y -f (x 0)=f ′(x 0)(x -x 0)Step 2 因为切线过点(a ,b ),所以b -f (x 0)=f ′(x 0)(a -x 0),解得x 0=x 1或x 0=x 2 Step 2 当x 0=x 1时,切线方程为y -f (x 1)=f ′(x 0)(x -x 1) 当x 0=x 2时,切线方程为y -f (x 2)=f ′(x 0)(x -x 2)例1.求f (x )=13x 3+43过点P (2,4)的切线方程.解:设切点为(x 0,13x 03+43),则切线斜率f ′(x 0)=x 0²,所以切线方程为:y -13x 03+43=x 0² (x -x 0),由切线经过点P (2,4),可得4-13x 03+43=x 0² (2-x 0),整理得:x 03-3x 0²+4=0,解得x 0=-1或x 0=2当x 0=-1时,切线方程为:x -y +2=0; 当x 0=2时,切线方程为:4x -y -4=0. 例2.求f (x )=x 3-4x ²+5x -4过点 (2,-2)的切线方程. 解:设切点为(x 0,x 03-4x 0²+5x 0-4),则切线斜率f ′(x 0)=3x 0²-8x 0+5,所以切线方程为:y -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5) (x -x 0), 由切线经过点P (2,4),可得4-(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5) (2-x 0), 解得x 0=1或x 0=2当x 0=1时,切线方程为:2x +y -2=0; 当x 0=2时,切线方程为:x -y -4=0.例3.过A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线,求m 的取值范围. 解:设切点为(x 0,x 03-3x 0),则切线斜率f ′(x 0)=3x 0²-3,切线方程为y -(x 03-3x 0)=(3x 0²-3)(x -x 0)∵切线经过点P (1,m ),点P 不在曲线上 点P 在曲线上 点P 在曲线上∴m-(x03-4x0²+5x0-4)=(3x0²-8x0+5) (1-x0),即:-2x03+3x0²-3-m=0,即m=-2x03+3x0²-3∵过点A(1,m)(m≠2)可作f(x)=x3-3x的三条切线,∴方程m=-2x03+3x0²-3,有三个不同的实数根.∴曲线H(x0)=-2x03+3x0²-3与直线y=m有三个不同交点,H′(x0)=-6x0²+6x0=-6x0(x0-1)令H′(x0)>0,则0<x0<1;令H′(x0)<0,则x0<0或x0>1∴H(x0)在(-∞,0)递减,在(0,1)递增,在(1,+∞)递减,∴H(x0)的极小值=H(0)=-3,H(x0)的极大值=H(1)=-2,由题意得-3<x<-2.例4.由点(-e,e-2)可向曲线f(x)=lnx-x-1作几条切线,并说明理由.解:设切点为(x0,lnx0-x0-1),则切线斜率f′(x0)=1x0-1,切线方程为y-(lnx0-x0-1)=(1x0-1)(x-x0),∵切线经过点(-e,e-2),∴e-2-(lnx0-x0-1)=(1x0-1)(-e-x0),即lnx0=e x0∵y=lnx与y=ex只有一个交点∴方程lnx0=ex0有唯一的实数根∴由点(-e,e-2)可向曲线f(x)=lnx-x-1作一条切线.解题模板二求过某点的切线方程⑴设切点为(x0,f(x0)),则切线斜率f′(x0),切线方程为:y-f(x0)=f′(x0)(x-x0)⑵因为切线过点(a,b),所以b-f(x0)=f′(x0)(a-x0),解得x0=x1或x0=x2⑶当x0=x1时,切线方程为y-f(x1)=f′(x0)(x-x1)当x0=x2时,切线方程为y-f(x2)=f′(x0)(x-x2)3.已知切线方程求参数解题模板三已知切线方程求参数已知直线Ax+By+C=0与曲线y=f(x)相切⑴设切点横坐标为x0,则⎩⎪⎨⎪⎧切点纵坐标=切点纵坐标切线斜率=切线斜率即⎩⎪⎨⎪⎧f (x 0)=-Ax 0+CBf ′(x 0)=-A B⑵解方程组得x 0及参数的值.例1.函数f (x )=alnx x +1+bx 在(1,f (1))处的切线方程为x +2y -3=0,求a ,b 的值.解:∵f (x )=alnx x +1+bx ,∴f ′(x )=a (x +1)x -alnx (x +1)²-b x ²由题意知:⎩⎪⎨⎪⎧f (1)=1f ′(1)=-12,即⎩⎪⎨⎪⎧b =1a 2-b =-12 ∴a =b =1例2.f (x )=ae x lnx +bex -1 x 在(1,f (1))处的切线方程为y =e (x -1)+2,求a ,b 的值.解:∵f (x )=ae x lnx +be x -1 x ,∴f ′(x )=ae x (1x +lnx )+be x -1(-1x ²+1x )由题意知:⎩⎪⎨⎪⎧f (1)=2f ′(1)=-e ,即⎩⎪⎨⎪⎧b =2ae =e∴a =1,b =2例3.若直线y =kx +b 是y =lnx +2的切线,也是y =ln (x +1)的切线,求b .解:设y =kx +b 与y =lnx +2相切的切点横坐标为x 1,y =kx +b 与y =ln (x +1)相切的切点横坐标为x 2,⎩⎪⎨⎪⎧lnx 1+2=kx 1+b ①1x 1=k ②ln (x 2+1)=kx 2+b ③1x 2+1=k ④,由②③得:x 1=x 2+1,由①-③得:lnx 1-ln (x 2+1)+2=k (x 1-x 2),将上式代入得:k =2∴x 1=12,代入①得:-ln 2+2=1+b∴b =1-ln 2.例4.若f (x )=x 与g (x )=a lnx 相交,且在交点处有共同的切线,求a 和该切线方程.解:设切点横坐标为x 0,则⎩⎪⎨⎪⎧x 0=alnx 0 ①12x 0=a x 0②,由②得x 0=2a ,代入①得:x0=e²,∴a=e2∵切点为(e²,e),切线斜率为12e,∴切线方程为x-2ey+e²=0.例5.已知函数f(x)=x3+ax+14,当a为何值时,x轴为曲线方程y=f(x)的切线.例6.已知函数f(x)=x²+ax+b和g(x)=e x(cx+d)都过点P(0,2)且在P处有相同切线y=4x+2,求a,b,c,d的值.题型二 单调型1.主导函数需“二次求导”型 I 不含参求单调区间例1.求函数f (x )=x (e x -1)-12x ²的单调区间.解:f (x )的定义域为Rf ′(x )=e x (1+x )-1-x =(x +1)(e x +1)令f ′(x )>0,得x <-1或x >0;令f ′(x )<0,得-1<x <0 f (x )的增区间为(-∞,-1)和(0,+∞),减区间为(-1,0)。
2020年高考数学(新高考创新题型)之2.函数与导数(含精析)一、选择题。
1.设函数()y f x =在区间(),a b 上的导函数为()f x ',()f x '在区间(),a b 上的导函数为()f x '',若区间(),a b 上()0f x ''>,则称函数()f x 在区间(),a b 上为“凹函数”,已知()54112012f x x mx =- 22x -在()1,3上为“凹函数”,则实数m 的取值范围是( )A .31(,)9-∞ B .31[,5]9C .(,3]-∞D .(),5-∞ 2.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数1,()0,R x Qf x x Q∈⎧=⎨∈⎩ð被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数()f x 有如下四个命题: ①()()0f f x =; ②函数()f x 是偶函数;③任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立;④存在三个点()()()112233,(),,(),,()A x f x B x f x C x f x ,使得ABC ∆为等边三角形. 其中真命题的个数是( )A .1B .2C .3D .43.设函数()x f 的定义域为D ,若函数()x f 满足条件:存在[]D b a ⊆,,使()x f 在[]b a ,上的值域是⎥⎦⎤⎢⎣⎡2,2b a 则称()x f 为“倍缩函数”,若函数()()t x f x+=2log 2为“倍缩函数”,则的范围是( ) A.⎪⎭⎫⎝⎛+∞,41 B.()10, ⎥⎦⎤ ⎝⎛210.,C D. ⎪⎭⎫ ⎝⎛410, 4.函数(),0,ln 20,322⎪⎩⎪⎨⎧>-≤+--=x x x x x x f 直线m y =与函数()x f 的图像相交于四个不同的点,从小到大,交点横坐标依次记为d c b a ,,,,有以下四个结论①[)4,3∈m ②[)4,0e abcd ∈ ③562112,2a b c d e e e e ⎡⎫+++∈+-+-⎪⎢⎣⎭④若关于x 的方程()m x x f =+恰有三个不同实根,则m 取值唯一. 则其中正确的结论是( )A. ①②③B. ①②④C. ①③④D. ②③④5.)(x f 是定义在D 上的函数, 若存在区间D n m ⊆],[, 使函数)(x f 在],[n m 上的值域恰为],[kn km ,则称函数)(x f 是k 型函数.给出下列说法:型函数; x 是下列选项正确的是( )A .①③B .②③C .②④D .①④6.已知函数()121f x x =--,[0,1]x ∈.定义:1()()f x f x =,21()(())f x f f x =,……,1()(())n n f x f f x -=,2,3,4,n =满足()n f x x =的点[0,1]x ∈称为()f x 的n 阶不动点.则()f x 的n 阶不动点的个数是( )A.2n 个B.22n 个 C.2(21)n -个 D.2n 个二、填空题。
导数压轴一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,导数压轴参考答案与试题解析一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.【解答】(1)解:依题意,g(x)=e﹣x f(x)+x2﹣x=1+alnx+x2﹣x,x>0.故,x>0.∵g(x)在[1,2]上单调递增,∴g'(x)≥0在[1,2]上恒成立,故,即a≥x(1﹣2x)在[1,2]上恒成立,根据二次函数的知识,可知:x(1﹣2x)在[1,2]上的最大值为﹣1.∴a的取值范围为[﹣1,+∞).(2)证明:由题意,f′(x)=e x(1+lnx+),x>0,a>2.设h(x)=f′(x)=e x(1+lnx+),x>0,a>2.则h′(x)=e x(1+alnx+﹣).再设H(x)=1+alnx+﹣,则H′(x)=﹣+=.∵当x>0时,y=x2﹣2x+2=(x﹣1)2+1>0恒成立,∴当x>0时,H′(x)>0恒成立.∴H(x)在(0,+∞)上单调递增.又∵当a>2时,H(1)=1+a>0,H()=1﹣aln2<0,∴根据H(x)的单调性及零点定理,可知:存在一点x2∈(,1),使得H(x2)=0.∴f′(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,在x=x2处取得极小值.∴x2=x1.即且H(x1)=0,即1+alnx1+﹣=0,即…①又∵f(x)的零点为x0,故f(x0)=0,即,即alnx0=﹣1…②由①②,得,则,又,故,即lnx0﹣lnx1>0,∴x0>x1.故得证.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.【解答】解:(1)证明:的定义域为(0,+∞).∵,∴f(x)在[1,+∞)上是单调递增函数,∴f(x)≥f(1)=0对于x∈[1,+∞)恒成立.故当x≥1时,f(x)≥0恒成立得证.(2)化简方程得2lnx=x3﹣2ex2+tx.注意到x>0,则方程可变为.令,则.当x∈(0,e)时,L′(x)>0,∴L(x)在(0,e)上为增函数;当x∈(e,+∞)时,L′(x)<0,∴L(x)在(e,+∞)上为减函数.当x=e时,.函数在同一坐标系内的大致图象如图所示:由图象可知,①当时,即时,方程无实根;②当时,即时,方程有一个实根;③当时,即时,方程有两个实根.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.【解答】解:(1)当a=1时,g(x)=e x f(x)=e x(﹣x2+x+1﹣e﹣x+1)=(﹣x2+x+1)e x﹣e,g′(x)=(﹣2x+1)e x+(﹣x2+x+1)e x=﹣e x(x﹣1)(x+2),∴当x∈(﹣∞,﹣2)∪(1,+∞)时,g′(x)<0,故g(x)在(﹣∞,﹣2),(1,+∞)单调递减;当x∈(﹣2,1)时,g′(x)>0,故g(x)在(﹣2,1)单调递增;(2)函数f(x)=﹣x2+ax+a﹣e﹣x+1,∴f′(x)=﹣2x+a+e﹣x+1,设h(x)=﹣2x+a+e﹣x+1,∴h′(x)=﹣2﹣e﹣x+1<0恒成立,∴h(x)在(﹣∞,+∞)上单调递减,∴存在x0∈R,使得h(x0)=0,∴当x∈(﹣∞,x0)时,h(x)=f′(x)>0,函数f(x)单调递增,∴当x∈(x0,+∞)时,h(x)=f′(x)<0,函数f(x)单调递减,∴f(x)max=f(x0)=﹣x02+ax0+a﹣,∵函数f(x)无零点,∴f(x)max=f(x0)=﹣x02+ax0+a﹣<0在R上恒成立,又∵h(x0)=﹣2x0+a+=0,即=2x0﹣a.∴f(x)max=f(x0)=﹣x02+(a﹣2)x0+2a<0在R上恒成立,∴△=(a﹣2)2﹣4•2a=a2﹣12a+4<0,解得6﹣4<a<6+4.∴a的取值范围为(6﹣4,6+4).4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.【解答】解:(1)由题意可知,x>0,,方程﹣x2+x﹣a=0对应的△=1﹣4a,当△=1﹣4a≤0,即时,当x∈(0,+∞)时,f'(x)≤0,∴f(x)在(0,+∞)上单调递减;…(2分)当时,方程﹣x2+x﹣a=0的两根为,且,此时,f(x)在上f'(x)>0,函数f(x)单调递增,在上f'(x)<0,函数f(x)单调递减;…(4分)当a≤0时,,,此时当,f(x)单调递增,当时,f'(x)<0,f(x)单调递减;…(6分)综上:当a≤0时,,f(x)单调递增,当时,f(x)单调递减;当时,f(x)在上单调递增,在上单调递减;当时,f(x)在(0,+∞)上单调递减;…(7分)(2)原式等价于(x﹣1)a>xlnx+2x﹣1,即存在x>1,使成立.设,x>1,则,…(9分)设h(x)=x﹣lnx﹣2,则,∴h(x)在(1,+∞)上单调递增.又h(3)=3﹣ln3﹣2=1﹣ln3<0,h(4)=4﹣ln4﹣2=2﹣2ln2>0,根据零点存在性定理,可知h(x)在(1,+∞)上有唯一零点,设该零点为x0,则x0∈(3,4),且h(x0)=x0﹣lnx0﹣2=0,即x0﹣2=lnx0,∴…(11分)由题意可知a>x0+1,又x0∈(3,4),a∈Z,∴a的最小值为5.…(12分)5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.【解答】(Ⅰ)解:f(x)=e x﹣lnx+(﹣e+1)x;令,得x=1;当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增;(Ⅱ)证明:当a=﹣1时,f(x)=e x﹣lnx﹣x(x>0);令,则;∴h(x)在(0,+∞)上单调递增;又,h(1)=e﹣2>0;∴∃,使得,即;∴函数f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增;∴函数f(x)的最小值为;又函数是单调减函数;∴f(x0)>1+1﹣ln1﹣1=1>0,即e x﹣lnx﹣x>0恒成立;又e x>x>lnx;∴e x﹣lnx>0;又a≥﹣1,x>0;∴ax≥﹣x;∴f(x)=e x﹣lnx+ax≥e x﹣lnx﹣x>0,得证.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.【解答】解:(1)由条件得,f'(x)=e x﹣2x﹣a≥0,得a≤e x﹣2x,令h(x)=e x﹣2x,h'(x)=e x﹣2=0.得x=ln2,当x<ln2时,h'(x)<0,当x>ln2时,h'(x)>0.故当x=ln2时,h(x)min=h(ln2)=2﹣2ln2.∴a≤2﹣2ln2.(2)g(x)=xe x﹣ax2﹣e x,g'(x)=x(e x﹣2a).当a≤0时,由x>0,g'(x)>0且x<0,g'(x)<0,故0是g(x)唯一的极小值点;令g'(x)=0得x1=0,x2=ln(2a).当a=时,x1=x2,g'(x)≥0恒成立,g(x)无极值点.故a∈.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.【解答】解:(1)由题意知,f(x)的定义域为(0,+∞),由函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R)得f'(x)=1﹣﹣2a(x﹣1)=;①当a≤0时,令f'(x)>0,可得x>1,令f'(x)<0,可得0<x<1;故函数f(x)的增区间为(1,+∞),减区间为(0,1).②当0<a<时,,令f'(x)>0,可得,令f'(x)<0,可得0<x <1或x>,故f(x)的增区间为(1,),减区间为(0,1),();③当a=时,f'(x)=≤0,故函数f(x)的减区间为(0,+∞);④当a>时,0<<1,令f'(x)>0,可得;令f'(x)<0,可得或x>1.故f(x)的增区间为(),减区间为(0,),(1,+∞).综上所述:当a≤0时,f(x)在(0,1)上为减函数,在(1,+∞)上为增函数;当0<a<时,f(x)在(0,1),()上为减函数,在(1,)上为增函数;当a=时,f(x)在(0,+∞)上为减函数;当a>时,f(x)在(0,),(1,+∞)上为减函数.在(,1)上为增函数.(2)由(1)可知:①当a≤0时,f(x)min=f(1)=0,此时,f(x)≥0;②当0<a<时,f(1)=0,当x∈(,+∞)时,lnx>0,ax>a+1,可得f(x)=x﹣1﹣lnx﹣a(x﹣1)2<x﹣1﹣a(x﹣1)2=(x﹣1)(a+1﹣ax)<0,不合题意;③当a=时,f(1)=0,由f(x)的单调性可知,当x∈(1,+∞)时,f(x)<0,不合题意;④当a>时,f(1)=0,由f(x)的单调性可知,当x∈(,1)时,f(x)<0,不合题意.综上可知:所求实数a的取值范围为:(﹣∞,0].8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.【解答】(Ⅰ)解:f′(x)=e2x﹣ae x﹣(a2﹣1)x;由f′(x)=x,得e2x﹣ae x﹣(a2﹣1)x=x,即e2x﹣ae x﹣a2x=0;∵0是函数f(x)得好点;∴1﹣a=0,∴a=1;(Ⅱ)解:令g(x)=e2x﹣ae x﹣a2x,问题转化为讨论函数g(x)的零点问题;∵当x→﹣∞时,g(x)→+∞,若函数f(x)不存在好点,等价于g(x)没有零点,即g(x)的最小值大于零;g′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a);①若a=0,则g(x)=e2x>0,g(x)无零点,f(x)无好点;②若a>0,则由g′(x)=0得x=lna;易知;当且仅当﹣a2lna>0,即0<a<1时,g(x)>0;∴g(x)无零点,f(x)无好点;③若a<0,则由g′(x)=0得;故;当且仅当,即时,g(x)>0;∴g(x)无零点,f(x)无好点;综上,a的取值范围是.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.【解答】解(1)由题意x>0,f′(x)==①若a≥0,对x>0,f′(x)>0恒成立,f(x)在(0,+∞)单调递增;②若a<0,则﹣>0,当0<x<﹣时,f′(x)>0,x>时,f′(x)<0,所以f(x)在(0,﹣)单调递增,在(﹣,+∞)单调递减,(2)由(1)知,若函数f(x)恰好有两个零点,则a<0,且f(x)在x=处有极大值,也是最大值;f(x)max=f()>0,∵f()=ln(﹣)+a(﹣)2+(a+2)(﹣)+2=ln(﹣)+(﹣)+1,又∵a为整数且a<0,∴当a=﹣1时,且f(x)max=f()=0+2=2>0,当a=﹣2时,且f(x)max=f()=>0,当a=﹣3时,且f(x)max=f()=ln+1>0,当a=﹣4时,且f(x)max=f()=<0,故a的值为:﹣1,﹣2,﹣3.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.【解答】解:(1)∵函数f(x)=xlnx﹣ax2,a∈R.∴f′(x)=lnx+1﹣2ax,∵函数f(x)存在单调增区间∴只需f'(x)=1+lnx﹣2ax>0有解;即有解.令g(x)=,g′(x)=,当x∈(0,1)时g′(x)>0当x∈(1,+∞)时g′(x)<0当x=1时g(x)有最大值,g(1)=1.故2a<g(1)=1∴a时,函数f(x)存在增区间.证明:(2)要证明>e﹣1,即证明2lnx1+lnx2>﹣1,∵f′(x)=1+lnx﹣2ax,∴x1,x2是方程lnx=2ax﹣1的两个根,即,lnx1=2ax1﹣1 ①,lnx2=2ax2﹣1 ②,即证明2a(2x1+x2)>2.∵①﹣②,得:2a=,即证(2x1+x2)>2,不妨设x1>x2,则t=>1,则证(2t+1)>2,∴lnt﹣>0,设g(t)=lnt﹣,则g′(t)═﹣=;∵t>1∴4(t+)2﹣6>4(1+)2﹣6=3>0,∴g'(x)>0;∴g(t)在(1,+∞)单调递增,g(t)>g(1)=0,故>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.【解答】解(1)函数的定义域为R,f'(x)=x2﹣2a(x+1)=x2﹣2ax﹣2a,△=4a2+8a=4a(a+2),1)△≤0时,﹣2≤a≤0时,f'(x)≥0,∴f(x)在R上递增…(1分)2)当△>0时,即a<﹣2或a>0时,令f'(x)=0,∴x2﹣2ax﹣2a=0,解得,;∴f(x)在(﹣∞,a﹣)递增,递减,递增;(2)由(1)知①△≤0时,﹣2≤a≤0时,当f(x)在R上递增.f(﹣1)=<0,f(1)=﹣4a>0;∴存在唯一零点x0∈(﹣1,1);②当a<﹣2或a>0时,1)a<﹣2时,∵=a+<a+|a+1|;∵a<﹣2,∴a+|a+1|=﹣1,即,x2<﹣1,∴x1<x2<﹣1;∵f(﹣1)=<0,f(0)=﹣a>0,∴存在零点x0∈(﹣1,0).又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∴f(x)在x=x1处有极大值,∴f(x1)<0,,(*)又∵,将a(x1+1)=代入(*)得;,得,∴x1>﹣3,且x1≠0;∴﹣3<x1<﹣1,即﹣3<a﹣<﹣1;,解得;2)当a>0时,∵x1•x2=﹣2a<0,∴x1<0<x2;当x∈(﹣∞,0)时,又∵,﹣a(x+1)2<0,∴f(x)=,又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∵f(0)=﹣a<0,∴f(x2)<f(0)<0,又∵3a+2>2,而f(3a+2)==3a+>0,∴存在零点x0∈(x2,3a+2);综上,a∈().12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.【解答】(1)证明:f(x)的定义域为(0,+∞);;令g(x)=x2﹣mx+1,则△=m2﹣4;∵0<m<2;∴△<0;∴g(x)>0在x∈(0,+∞)上恒成立;∴f(x)在(0,+∞)上单调递增;∴f(x)至多有一个零点;∵;∴当0<x<2m且x<1时,f(x)<0;当x>2m且x>1时,f(x)>0;∴f(x)有一个零点;∴当0<m<2时,f(x)只有一个零点;(x>0)处的切线经过原点,则有;(2)证明:假设曲线y=f(x)在点(x,f(x))即,化简得;令,则;令h′(x)=0,解得x=1;当0<x<1时,h′(x)<0,h(x)单调递减;当x>1时,h′(x)>0,h(x)单调递增;∴;∴与矛盾;∴曲线y=f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.【解答】解:(1)由题意,,令y=x2﹣mx+2,则△=m2﹣8,①若,则△≤0,则f'(x)≥0,故函数f(x)在(0,+∞)上单调递增;②若或,y=x2﹣mx+2有两个零点x1,x2,则x1x2=2>0,其中,;(i)若,则x1<0,x2<0,此时f'(x)>0,故函数f(x)在(0,+∞)上单调递增;(ii)若,则x1>0,x2>0,此时当x∈(0,x1)时,f'(x)>0,当x∈(x1,x2)时,f'(x)<0,当x∈(x2,+∞)时,f'(x)>0,故函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减;综上所述,可知:①当时,函数f(x)在(0,+∞)上单调递增;②当时,函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.(2)证明:(反证法)假设存在一条直线与函数的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨令0<x1<x2,则T1处切线l1的方程为:,T2处切线l2的方程为:.∵切线l1,l2为同一直线,所以有.即,整理得.消去x2得,.①令,由0<x1<x2与x1x2=2,得t∈(0,1),记,则,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0.从而①式不可能成立,所以假设不成立,即若直线l为曲线的切线,则直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.【解答】(1)解:f(x)的定义域为R,f′(x)=(x+2)(e x+a);若a≥0,则e x+a>0;∴当x∈(﹣∞,﹣2)时,f′(x)<0,f(x)单调递减;当x∈(﹣2,+∞)时,f′(x)>0,f(x)单调递增;∴x=﹣2是f(x)唯一的极小值点,无极大值点,故此时f(x)有1个极值点;若a<0,令f′(x)=(x+2)(e x+a)=0,则x1=﹣2,x2=ln(﹣a);当a<﹣e﹣2时,x1<x2,可知当x∈(﹣∞,x1)∪(x2.+∞)时,f′(x)>0;当x∈(x1,x2)时,f′(x)<0;∴x1,x2分别是f(x)的极大值点和极小值点,故此时f(x)有2个极值点;当a=﹣e﹣2时,x1=x2,f′(x)≥0,此时f(x)在R上单调递增,无极值点;当﹣e﹣2<a<0时,x1>x2,同理可知,f(x)有2个极值点;综上,当a=﹣e﹣2时,f(x)无极值点;当a≥0时,f(x)有1个极值点;当a<﹣e﹣2或﹣e﹣2<a<0时,f(x)有2个极值点.(2)证明:若x0(x0≠﹣2)是f(x)的一个极值点,由(1)知a∈(﹣∞,﹣e﹣2)∪(﹣e﹣2,0);又f(﹣2)=﹣e﹣2﹣2a>e﹣2;∴a∈(﹣∞,﹣e﹣2);则x0=ln(﹣a);∴;令t=ln(﹣a)∈(﹣2,+∞),则a=﹣e t;∴;∴;又∵t∈(﹣2,+∞);∴t+4>0;令g′(t)=0,得t=0;当t∈(﹣2,0)时,g′(t)>0,g(t)单调递增;当t∈(0,+∞)时,g′(t)<0,g(t)单调递减;∴t=0是g(t)唯一得极大值点,也是最大值点,即g(t)≤g(0)=1;∴f[ln(﹣a)]≤1,即f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.【解答】解:(1)f'(x)=[x2+(2﹣2a)x+a2﹣2a]e x,因为f(x)在x=0处的切线方程为x+y﹣1=0,所以,解得,所以f(x)=(x﹣1)2e x.(2)g(x)的定义域为(0,+∞),,①若k≤0时,则g'(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上单调递增,无极值.②若k>0时,则当0<x<k时,g'(x)<0,g(x)在(0,k)上单调递减;当x>k时,g'(x)>0,g(x)在(k,+∞)上单调递增;所以当x=k时,g(x)有极小值2k﹣klnk,无极大值.(3)因为f(x)=0仅有一个零点1,且f(x)≥0恒成立,所以g(x)在(0,+∞)上有仅两个不等于1的零点.①当k≤0时,由(2)知,g(x)在(0,+∞)上单调递增,g(x)在(0,+∞)上至多一个零点,不合题意,舍去,②当0<k<e2时,g(x)min=g(k)=k(2﹣lnk)>0,g(x)在(0,+∞)无零点,③当k=e2时,g(x)≥0,当且仅当x=e2等号成立,g(x)在(0,+∞)仅一个零点,④当k>e2时,g(k)=k(2﹣lnk)<0,g(e)=e>0,所以g(k)•g(e)<0,又g(x)图象不间断,g(x)在(0,k)上单调递减,故存在x1∈(e,k),使g(x1)=0,又g(k2)=k(k﹣2lnk+1),下面证明,当x>e2时,h(x)=x﹣2lnx+1>0>0,h(x)在(e2,+∞)上单调递增h(x)>h(e2)=e2﹣3>0,所以g(k2)=k•(k﹣2lnk+1)>0,g(k)•g(k2)<0,又g(x)图象在(0,+∞)上不间断,g(x)在(k,+∞)上单调递增,故存在,使g(x2)=0,综上可知,满足题意的k的范围是(e2,+∞).16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).【解答】解:(1)设切点为(x0,),则切线为y﹣=(x﹣x0),即y=x+;所以,消去a得:x0﹣1+lnx0﹣2x0lnx0=0,记m(t)=t﹣1+lnt﹣2tlnt(t>0),则m′(t)=,显然m′(t)单调递减,且m′(1)=0,所以t∈(0,1)时,m′(t)>0,m(t)单调递增,t∈(1,+∞)时,m′(t)<0,m(t)单调递减,故m(t)当且仅当t=1时取到最大值,又m(1)=0,所以方程x0﹣1+lnx0﹣2x0lnx0=0有唯一解x0=1,此时a=1,所以a=1,切点为(1,0).(2)证明:由(1)得f(x)=,g(x)=e x﹣1﹣1,记F(x)=e x﹣1﹣x(x>0),则F′(x)=e x﹣1﹣1,当x∈(1,+∞)时,F′(x)>0,F(x)单调递增;当x∈(0,1)时,F′(x)<0,F(x)单调递减,所以F(x)≥F(1)=1﹣1=0,所以e x﹣1≥x,即g(x)≥x﹣1①,记G(x)=x2﹣x﹣lnx(x>0),则G′(x)=2x﹣1﹣==,所以x∈(0,1)时,G′(x)<0,G(x)单调递减,x∈(1,+∞)时,G′(x)>0,G(x)单调递增,所以G(x)≥G(1)=0,即x2﹣x≥lnx,所以x﹣1≥,即x﹣1≥f(x)②,由①②得g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.【解答】解:(1)f(x)=x2﹣x﹣alnx(x>0),则f'(x)=,f(1)=0,∵不等式f(x)<0无解,∴f(x)极小值=f(1),∴f'(1)=2﹣1﹣a=0,∴a=1;(2)∵函数f(x)存在两个极值点x1、x2,且x1<x2,∴f'(x)在(0,+∞)上有两个不相等的实根,即x1、x2是方程2x2﹣x﹣a=0的两个不相等的正实根,∴,.令,则0<t<1,∴==﹣==,令g(t)=(0<t<1),则g'(t)=,∴g(t)在(0,1)上单调递增,∴g(t)<g(1)=0.∵当恒成立,∴m>g(t)在(0,1)上恒成立,∴m≥g(1)=0,∴实数m的最小值为0.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.【解答】解:(Ⅰ)当a=1时,f'(x)=(x>0),由f(x)存在极大值,可知方程2x2+bx+1=0有两个不等的正根,∴解得b<﹣2.故b的取值范围是(﹣∞,﹣2).(Ⅱ)f′(x)=(x>0).由f(x)存在极大值,可知方程:2x2+bx+a=0有两个不等的正根,设为x1<x2,由x1x2=>0,可得:0<x1<.可得表格:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增∴f(x)的极大值为f(x1)=alnx1++bx1.2+bx1+a=0,解得:bx1=﹣2﹣a,∴f(x1)=alnx1﹣﹣a.构造函数:g(x)=alnx﹣x2﹣a.当:0<x<.g′(x)=>0,∴g(x)在(0,]上单调递增.可得:g(x1)<g()=(ln﹣3).当0<a≤2e3时,f(x)极大=f(x1)=g(x1)<g()≤0.当a>2e3时,取b=﹣2(+﹣),即x1=,x2=.此时f(x)极大=f()=﹣e3>0,不符合题意.∴a的最大值为2e3.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.【解答】解:(1)f(x)=x﹣1nx,(x∈(0,+∞)).f′(x)=1﹣=,可得:x=1时,函数f(x)取得极小值f(1)=1.(2)g(x)=xf(x)=x2﹣xlnx.(x∈[,+∞)).g′(x)=2x﹣lnx﹣1=h(x),h′(x)=2﹣=≥0,∴函数h(x)在x∈[,+∞)上单调递增,h()=1+ln2﹣1=ln2>0.∴g′(x)>0.∴函数g(x)在x∈[,+∞)上单调递增.∴函数g(x)的值域为:[g(m),g(n)].已知函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],∴m2﹣mlnm=k(m+2)﹣2,n2﹣nlnn=k(n+2)﹣2,≤m<n.令u(x)=x2﹣xlnx﹣k(x+2)+2.x∈[,+∞).则u(x)在x∈[,+∞)存在两个不同的实数根.化为:k=,x∈[,+∞).令u(x)=,x∈[,+∞).u′(x)=.u′(1)=0.令v(x)=x2+3x﹣2lnx﹣4,x∈[,+∞).v′(x)=2x+3﹣=≥0,∴函数v(x)在x∈[,+∞)上单调递增.∴x∈[,1),u′(x)<0;x∈(1,+∞),u′(x)>0.∴x=1时,u(x)取得极小值即最小值,u(1)=1.又u()==.x→+∞时,u(x)→+∞.∴1<k≤时,函数y=k与u(x)的图象有两个交点.∴实数k的取值范围是(1,].20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,【解答】解:(Ⅰ)由题意得直线x+2y+1=0的斜率为﹣,即曲线y=f(x)在x=1处的切线斜率为2,f'(x)=,∴f'(1)=1+a=2,得a=1.∴f(x)=,=,∴g'(x)=,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0,当x>e时,g'(x)<0;∴函数在(0,e)单调递增,在(e,+∞)单调递减,∴g(x)在(0,+∞)上有唯一的极大值g(e)=;(Ⅱ)由题意得≤,即证明,设φ(x)=,φ'(x)=,当0<x<e时,φ'(x)>0,∴函数φ(x)在(0,e)单调递增.当x>e,φ'(x)<0.∴函数在(e,+∞)上单调递减,当x=e时,φ(x)取最大值φ(e)=,即φ(x)≤,再令h(x)=,则h(x)=()≥,∴φ(x)<h(x),即e x f(x)<.。
第一章 函数与导数专题02 曲线的切线问题探究【压轴综述】纵观近几年的高考命题,对曲线的切线问题的考查,主要与导数相结合,涉及切线的斜率、倾斜角、切线方程等问题,题目的难度有难有易.利用导数的几何意义解题,主要题目类型有求切线方程、求切点坐标、求参数值(范围)等.与导数几何意义有关问题的常见类型及解题策略有: 1.已知斜率求切点.已知斜率k ,求切点()()11,x f x ,即解方程()f x k '=.2.求切线方程:注意区分曲线在某点处的切线和曲线过某点的切线.即注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.(1)已知切点求切线方程:①求出函数()y f x =在点0x x =处的导数,即曲线()y f x =在点()()00,x f x 处切线的斜率;②由点斜式求得切线方程为()()000y y f x x x '-=-. (2)求过点P 的曲线的切线方程的步骤为: 第一步,设出切点坐标P ′(x 1,f(x 1));第二步,写出过P ′(x 1,f(x 1))的切线方程为y-f(x 1)=f ′(x 1)(x-x 1); 第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y-f(x 1)=f ′(x 1)(x-x 1)可得过点P(x 0,y 0)的切线方程.3.求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.4.根据导数的几何意义求参数的值(范围)时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.5.已知两条曲线有公切线,求参数值(范围).6.导数几何意义相关的综合问题.【压轴典例】例1.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 【答案】(e, 1). 【解析】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e .例2.(2019·全国高考真题(理)) 已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)证明见解析. 【解析】(1)函数()f x 的定义域为(0,1)(1,)⋃+∞,2211()ln ()1(1)x x f x x f x x x x ++'=-⇒=--,因为函数()f x 的定义域为(0,1)(1,)⋃+∞,所以()0f x '>,因此函数()f x 在(0,1)和(1,)+∞上是单调增函数;当(0,1)x ∈,时,0,x y →→-∞,而11112()ln 0111e f e e e e+=-=>--,显然当(0,1)x ∈,函数()f x 有零点,而函数()f x 在(0,1)x ∈上单调递增,故当(0,1)x ∈时,函数()f x 有唯一的零点;当(1,)x ∈+∞时,2222221213()ln 0,()ln 01111e e ef e e f e e e e e e +-+-=-=<=-=>----,因为2()()0f e f e ⋅<,所以函数()f x 在2(,)e e 必有一零点,而函数()f x 在(1,)+∞上是单调递增,故当(1,)x ∈+∞时,函数()f x 有唯一的零点综上所述,函数()f x 的定义域(0,1)(1,)⋃+∞内有2个零点; (2)因为0x 是()f x 的一个零点,所以000000011()ln 0ln 11x x f x x x x x ++=-=⇒=-- 1ln y x y x'=⇒=,所以曲线ln y x =在00A(,ln )x x 处的切线l 的斜率01k x =,故曲线ln y x =在00A(,ln )x x 处的切线l 的方程为:0001ln ()y x x x x -=-而0001ln 1x x x +=-,所以l 的方程为0021x y x x =+-,它在纵轴的截距为021x -.设曲线x y e =的切点为11(,)x B x e ,过切点为11(,)x B x e 切线'l ,x xy e y e '=⇒=,所以在11(,)x B x e 处的切线'l 的斜率为1x e ,因此切线'l 的方程为111(1)x xy e x e x =+-,当切线'l 的斜率11xk e =等于直线l 的斜率01k x =时,即11001(ln )x e x x x =⇒=-, 切线'l 在纵轴的截距为01ln 110001(1)(1ln )(1ln )x xb e x ex x x -=-=+=+,而0001ln 1x x x +=-,所以01000112(1)11x b x x x +=+=--,直线',l l 的斜率相等,在纵轴上的截距也相等,因此直线',l l 重合,故曲线ln y x =在00A(,ln )x x 处的切线也是曲线x y e =的切线.例3. (2019·湖北高考模拟(理))已知函数2()1f x x ax =-+,()ln ()g x x a a R =+∈. (1)讨论函数()()()h x f x g x =+的单调性;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围.【答案】(1)见解析;(2)(],1-∞ 【解析】(1)函数()h x 的定义域为()0,∞+,()()()2h x f x g x x ax lnx a 1(x 0)=+=-+++>,所以()212x ax 1x 2x a x xh -+=-+='所以当2Δa 80=-≤即a -≤≤()'x 0h >,()h x 在()0,∞+上单调递增;当2Δa 80=->即a a ><-当a <-()'x 0h >,()h x 在()0,∞+上单调递增;当a >时,令()'x 0h =得x =综上:当a ≤时,()h x 在()0,∞+上单调递增;当a >时()h x 在⎛ ⎝⎭,∞⎫+⎪⎪⎝⎭单调递增,在⎝⎭单调递减.(2)设函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同,()()111x 2,x f x a g x''=-=,则()()()()121212f x g x x x x x f g -==-'',由1212x a x -=,得121a x 2x 2=+,再由()2112212x ax 1lnx a 1x x x -+-+=- 得2121122x x x ax 1lnx a x -=-+--,把121a x 2x 2=+代入上式得()222221a a lnx a 20*4x 2x 4++++-= 设()221a a F x lnx a 24x 2x 4=++++-(∵x 2>0,∴x ∈(0,+∞)), 则()23231a 12x ax 1x 2x 2x x 2xF --=--+=' 不妨设20002x ax 10(x 0)--=>. 当00x x <<时,()x 0F '<,当0x x >时,()x 0F '>所以()F x 在区间()00,x 上单调递减,在区间()0x ,∞+上单调递增, 把001a=2x x -代入可得:()()20000min1F x F x x 2x lnx 2x ==+-+- 设()21G x x 2x lnx 2x =+-+-,则()211x 2x 20x xG =+++>'对x 0>恒成立, 所以()G x 在区间()0,∞+上单调递增,又()G 1=0所以当0x 1<≤时()G x 0≤,即当00x 1<≤时()0F x 0≤,又当2ax e -=时,()22a 42a 2a 1a a F x lne a 24e 2e 4---=-+++- 22a 11a 04e -⎛⎫=+≥ ⎪⎝⎭因此当00x 1<≤时,函数()F x 必有零点;即当00x 1<≤时,必存在2x 使得()*成立; 即存在12x ,x 使得函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同. 又由()1y 2x 0,1x=-在单调递增得,因此(]0001a=2x ,x 0,1x -∈所以实数a 的取值范围是(],1-∞. 【总结提升】(1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程;(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. 例4.(2019·山东高考模拟(文))已知函数ln 1()x f x x+=. (Ⅰ)证明:2()f x e x e ≤-; (Ⅱ)若直线(0)yax b a =+>为函数()f x 的切线,求b a的最小值.【答案】(1)见解析.(2) 1e-.【解析】(Ⅰ)证明:整理2()f x e x e ≤-得22ln 10(0)x e x ex x -++≤>令22()ln 1g x x e x ex =-++,2221(1)(21)()e x ex ex ex g x x x-++-+'==-当10,x e ⎛⎫∈ ⎪⎝⎭,()0g x '>,所以()g x 在1(0,)e上单调递增;当1,x e ⎛⎫∈+∞ ⎪⎝⎭,()0g x '<,所以()g x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,所以1()0g x g e ⎛⎫≤= ⎪⎝⎭,不等式得证.(Ⅱ)221(ln 1)ln ()x xf x x x-+-'==,设切点为()()00,x f x , 则02ln x a x -=,函数()f x 在()()00,x f x 点处的切线方程为()()()000y f x f x x x '-=- ()000200ln 1ln x x y x x x x +-=--,令0x =,解得002ln 1x b x +=, 所以()0002ln 1ln x x ba x +=-,令()()00002ln 1ln x x h x x +=-, 因为0a >,02ln 0x x ->,所以100<<x , ()()()()20000000022202ln 3ln 2ln 12ln 1ln 12ln ln 1ln ln ln x x x x x x x h x x x x +---++-'=-=-=-,当010,x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在10,e ⎛⎫⎪⎝⎭上单调递减;当1,1x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在1,1e ⎛⎫⎪⎝⎭上单调递增,因为100<<x ,()011h x h e e⎛⎫≥=- ⎪⎝⎭. 【思路点拨】(1)由2()f x e x e ≤-即为22ln 10(0)x e x ex x -++≤>,令22()ln 1g x x e x ex =-++,利用导数求得函数()g x 的单调性与最值,即可得到结论; (2)求得函数()f x 的导数,设出切点,可得020ln x a x -=的值和切线方程,令0x =,求得002ln 1x b x +=,令()()00002ln 1ln x x h x x +=-,利用导数求得函数()0h x 的单调性与最小值.对于恒成立问题,往往要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题. 例5.(2014·北京高考真题(文))已知函数3()23f x x x =-. (1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 【答案】 【解析】(1)由3()23f x x x =-得2'()63f x x =-,令'()0f x =,得x =或x =, 因为(2)10f -=-,(2f -=()2f -=(1)1f =-, 所以()f x 在区间[2,1]-上的最大值为(f =(2)设过点P (1,t )的直线与曲线()y f x =相切于点00(,)x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为2000(63)()y y x x x -=--,因此2000(63)(1)t y x x -=--,整理得:32004630x x t -++=,设()g x =32463x x t -++,则“过点(1,)P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”,()g x '=21212x x -=12(1)x x -,()g x 与()g x '的情况如下:x(,0)-∞0 (0,1)1 (1,)+∞()g x '+0 -+()g xt+3所以,31t -<<-是()g x 的极大值,31t -<<-是()g x 的极小值, 当,即1t ≥-时,此时()g x 在区间(,0)-∞和(1,)+∞上分别至多有1个零点,所以()g x 至多有2个零点,当,(1,)P t 时,此时()g x 在区间(,0)-∞和(,0)-∞上分别至多有1个零点,所以()g x 至多有2个零点.当且(3,1)--,即时,因为,,所以()g x 分别为区间和()g x 上恰有1个零点,由于()g x 在区间(,0)-∞和(1,)+∞上单调,所以()g x 分别在区间(,0)-∞和上恰有1个零点.综上可知,当过点(1,)P t 存在3条直线与曲线()y f x =相切时,t 的取值范围是.(3)过点A (-1,2)存在3条直线与曲线()y f x =相切; 过点B (2,10)存在2条直线与曲线()y f x =相切; 过点C (0,2)存在1条直线与曲线()y f x =相切.例6. (2018·天津高考真题(理))已知函数()xf x a =, ()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 【答案】(Ⅰ)单调递减区间(),0-∞,单调递增区间为()0,+∞;(Ⅱ)证明见解析;(Ⅲ)证明见解析. 【解析】(I )由已知, ()xh x a xlna =-,有()xh x a lna lna ='-.令()0h x '=,解得x =0.由a >1,可知当x 变化时, ()h x ', ()h x 的变化情况如下表:所以函数()h x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞.(II )由()x f x a lna '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1xa lna .由()1g x xlna=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21x lna .因为这两条切线平行,故有121xa lna x lna=,即()1221x x a lna =. 两边取以a 为底的对数,得21220a log x x log lna ++=,所以()122lnlnax g x lna+=-. (III )曲线()y f x =在点()11,x x a 处的切线l 1: ()111xxy a a lna x x -=⋅-.曲线()y g x =在点()22,a x log x 处的切线l 2: ()2221a y log x x x x lna-=⋅-. 要证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线, 只需证明当1ea e ≥时,存在()1,x ∈-∞+∞, ()20,x ∈+∞,使得l 1和l 2重合.即只需证明当1ea e ≥时,方程组1112121{1x x x a a lna x lnaa x a lna log x lna=-=-①②有解,由①得()1221x x a lna =,代入②,得1111120x x lnlna a x a lna x lna lna-+++=. ③ 因此,只需证明当1ea e ≥时,关于x 1的方程③存在实数解. 设函数()12x x lnlnau x a xa lna x lna lna=-+++, 即要证明当1ea e ≥时,函数()y u x =存在零点.()()21x u x lna xa '=-,可知(),0x ∈-∞时, ()0u x '>;()0,x ∈+∞时, ()u x '单调递减,又()010u '=>, ()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦, 故存在唯一的x 0,且x 0>0,使得()00u x '=,即()02010x lna x a-=.由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x .因为1ea e ≥,故()1ln lna ≥-, 所以()()000000201212220xxlnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <.由(I )可得1xa xlna ≥+,当1x lna>时, 有()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++, 所以存在实数t ,使得()0u t <因此,当1e a e ≥时,存在()1,x ∈-∞+∞,使得()10u x =.所以,当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 例7.(2015·广东高考真题(理))(14分)(2015•广东)设a >1,函数f (x )=(1+x 2)e x﹣a . (1)求f (x )的单调区间;(2)证明f (x )在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行,(O 是坐标原点),证明:m≤﹣1.【答案】(1)f (x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)见解析 (3)见解析 【解析】(1)f'(x )=e x(x 2+2x+1)=e x(x+1)2∴f′(x )≥0,∴f(x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数. 又f (0)=1﹣a , ∵a>1.∴1﹣a <0∴f(0)<0.当x→+∞时,f (x )>0成立. ∴f(x )在(﹣∞,+∞)上有且只有一个零点 (3)证明:f'(x )=e x(x+1)2,设点P (x 0,y 0)则)f'(x )=e x0(x 0+1)2,∵y=f(x )在点P 处的切线与x 轴平行,∴f'(x 0)=0,即:e x0(x 0+1)2=0, ∴x 0=﹣1将x 0=﹣1代入y=f (x )得y 0=.∴,∴…10分令;g (m )=e m﹣(m+1)g (m )=e m﹣(m+1), 则g'(m )=e m﹣1,由g'(m )=0得m=0. 当m∈(0,+∞)时,g'(m )>0 当m∈(﹣∞,0)时,g'(m )<0 ∴g(m )的最小值为g (0)=0…12分 ∴g(m )=e m ﹣(m+1)≥0 ∴e m≥m+1∴e m(m+1)2≥(m+1)3即: ∴m≤…14分例8.(2019·四川棠湖中学高考模拟(文))已知抛物线2:4C x y = ,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA,MB ,切点分别为A,B.(1)当M 的坐标为(0,-1)时,求过M,A,B 三点的圆的方程; (2)证明:以AB 为直径的圆恒过点M. 【答案】(1)22(1)4x y +-=(2)见证明 【解析】(1)解:当M 的坐标为(0,1)-时,设过M 点的切线方程为1y kx =-,由24,1,x y y kx ⎧=⎨=-⎩消y 得2440x kx -+=. (1) 令2(4)440k ∆=-⨯=,解得1k =±. 代入方程(1),解得A(2,1),B(-2,1).设圆心P 的坐标为(0,)a ,由PM PB =,得12a +=,解得1a =. 故过,,M A B 三点的圆的方程为22(1)4x y +-=.(2)证明:设0(,1)M x -,由已知得24x y =,12y x '=,设切点分别为211(,)4x A x ,222(,)4x B x ,所以12MA x k =,22MB xk =, 切线MA 的方程为2111()42x x y x x -=-即2111124y x x x =-,切线MB 的方程为2222()42x x y x x -=-即2221124y x x x =-.又因为切线MA 过点0(,1)M x -,所以得201111124x x x -=-. ① 又因为切线MB 也过点0(,1)M x -,所以得202211124x x x -=-. ②所以1x ,2x 是方程2011124x x x -=-的两实根,由韦达定理得1202,x x x +=124x x =-.因为2110(,1)4x MA x x =-+,2220(,1)4x MB x x =-+,所以22121020()()(1)(1)44x x MA MB x x x x ⋅=--+++22221212012012121()()21164x x x x x x x x x x x x ⎡⎤=-+++++-+⎣⎦. 将1202,x x x +=124x x =-代入,得0MA MB ⋅=. 所以以AB 为直径的圆恒过点M .【压轴训练】1.(2019·湖南高考模拟(理))过抛物线()220x py p =>上两点,A B 分别作抛物线的切线,若两切线垂直且交于点()12P -,,则直线AB 的方程为( ) A .122y x =+ B .134y x =+ C .132y x =+ D .124y x =+ 【答案】D 【解析】由22x py =,得22x y p=,∴'x y p =.设()()1122,,,A x y B x y ,则1212','x x x x x x y y p p====,抛物线在点A 处的切线方程为2112x x y x p p=-, 点B 处的切线方程为2222x x y x p p=-, 由21122222x x y x p px x y x p p⎧=-⎪⎪⎨⎪=-⎪⎩,解得121222x x x x x y p +⎧=⎪⎪⎨⎪=⎪⎩, 又两切线交于点()1,2P -,∴12121222x x x x p+⎧=⎪⎪⎨⎪=-⎪⎩,故得12122,4x x x x p +==- (*). ∵过,A B 两点的切线垂直,∴121x x p p⋅=-, 故212x x p =-,∴4p =,故得抛物线的方程为28x y =.由题意得直线AB 的斜率存在,可设直线方程为y kx b =+, 由28y kx bx y=+⎧⎨=⎩消去y 整理得2880x kx b --=, ∴12128,8x x k x x b +==- (**),由(*)和(**)可得14k =且2b =, ∴直线AB 的方程为124y x =+.故选:D .2.(2019·山东高考模拟(文))设函数的图象上任意一点处的切线为,若函数的图象上总存在一点,使得在该点处的切线满足,则的取值范围是__________.【答案】【解析】,即又,即本题正确结果:3.(2019·山东高考模拟(理))已知函数()2f x x 2ax =+,()2g x 4a lnx b =+,设两曲线()y f x =,()y g x =有公共点P ,且在P 点处的切线相同,当()a 0,∞∈+时,实数b 的最大值是______.【答案】e 【解析】 设()00,P x y ,()'22f x x a =+,()24'a g x x=.由题意知,()()00f x g x =,()()00''f x g x =,即2200024x ax a lnx b +=+,①200422a x a x +=,②解②得0x a =或02(x a =-舍),代入①得:2234b a a lna =-,()0,a ∞∈+,()'684214b a alna a a lna =--=-,当140,a e ⎛⎫∈ ⎪⎝⎭时,'0b >,当14,a e ∞⎛⎫∈+ ⎪⎝⎭时,'0b <.∴实数b 的最大值是1144342b e e elne e ⎛⎫=-= ⎪⎝⎭. 故答案为:2e .4.(2013·北京高考真题(理))设l 为曲线C :在点(1,0)处的切线.(I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 【答案】(I)(II)见解析【解析】 (1)设f(x)=,则f′(x)=所以f′(1)=1,所以L 的方程为y =x -1.(2)证明:令g(x)=x -1-f(x),则除切点之外,曲线C 在直线L 的下方等价于g(x)>0(∀x>0,x≠1). g(x)满足g(1)=0,且g′(x)=1-f′(x)=.当0<x <1时,x 2-1<0,ln x <0,所以g′(x)<0,故g(x)单调递减; 当x>1时,x 2-1>0,ln x>0,所以g′(x)>0,故g(x)单调递增. 所以,g(x)>g(1)=0(∀x>0,x≠1). 所以除切点之外,曲线C 在直线L 的下方.5.(2015·天津高考真题(文))已知函数(Ⅰ)求的单调区间;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若方程有两个正实数根且,求证:.【答案】(Ⅰ)的单调递增区间是,单调递减区间是;(Ⅱ)见试题解析;(Ⅲ)见试题解析.【解析】(Ⅰ)由,可得的单调递增区间是,单调递减区间是;(Ⅱ),,证明在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有;(Ⅲ)设方程的根为,可得,由在单调递减,得,所以.设曲线在原点处的切线为方程的根为,可得,由在在单调递增,且,可得所以.试题解析:(Ⅰ)由,可得,当,即时,函数单调递增;当,即时,函数单调递减.所以函数的单调递增区间是,单调递减区间是.(Ⅱ)设,则,曲线在点P处的切线方程为,即,令即则.由于在单调递减,故在单调递减,又因为,所以当时,,所以当时,,所以在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有.(Ⅲ)由(Ⅱ)知,设方程的根为,可得,因为在单调递减,又由(Ⅱ)知,所以.类似的,设曲线在原点处的切线为可得,对任意的,有即.设方程的根为,可得,因为在单调递增,且,因此,所以.6.(2013·福建高考真题(文))已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值;(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(1)由,得.又曲线在点处的切线平行于轴,得,即,解得.(2),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值当,在处取得极小值,无极大值.(3)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(1)(2)同解法一.(3)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解, 解得的取值范围是.综上,得的最大值为.7.(2013·北京高考真题(文))已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【答案】(Ⅰ)求两个参数,需要建立两个方程.切点在切线上建立一个,利用导数的几何意义建立另一个,联立求解.(Ⅱ)利用导数分析曲线的走势,数形结合求解.【解析】由f(x)=x2+xsin x+cos x,得f′(x)=2x+sin x+x(sin x)′-sin x=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b=f(0)=1. (5分)(2)设g(x)=f(x)-b=x2+xsin x+cos x-b.令g′(x)=f′(x)-0=x(2+cos x)=0,得x=0.当x变化时,g′(x),g(x)的变化情况如下表:所以函数g(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,且g(x)的最小值为g(0)=1-b.①当1-b≥0时,即b≤1时,g(x)=0至多有一个实根,曲线y=f(x)与y=b最多有一个交点,不合题意.②当1-b<0时,即b>1时,有g(0)=1-b<0,g(2b)=4b2+2bsin 2b+cos 2b-b>4b-2b-1-b>0.∴y=g(x)在(0,2b)内存在零点,又y =g(x)在R 上是偶函数,且g(x)在(0,+∞)上单调递增, ∴y=g(x)在(0,+∞)上有唯一零点,在(-∞,0)也有唯一零点. 故当b>1时,y =g(x)在R 上有两个零点, 则曲线y =f(x)与直线y =b 有两个不同交点.综上可知,如果曲线y =f(x)与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).(12分)8.(2019·北京高考模拟(文))已知函数32()f x x ax =-.(Ⅰ)当3a =时,求函数()f x 在区间]2,0[上的最小值;(Ⅱ)当3a >时,求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切. 【答案】(I )4-.(Ⅱ)见解析. 【解析】(Ⅰ)当a =3时,f (x )=x 3﹣3x 2,f '(x )=3x 2﹣6x =3x (x ﹣2). 当x ∈[0,2]时,f '(x )≤0, 所以f (x )在区间[0,2]上单调递减.所以f (x )在区间[0,2]上的最小值为f (2)=﹣4.(Ⅱ)设过点P (1,f (1))的曲线y =f (x )的切线切点为(x 0,y 0),f '(x )=3x 2﹣2ax ,f (1)=1﹣a ,所以()()()32000200001321y x ax y a x ax x ⎧=-⎪⎨--=--⎪⎩,.所以()3200023210x a x ax a -+++-=.令g (x )=2x 3﹣(a +3)x 2+2ax +1﹣a ,则g '(x )=6x 2﹣2(a +3)x +2a =(x ﹣1)(6x ﹣2a ), 令g '(x )=0得x =1或3ax =, 因为a >3,所以1a >.∴g (x )的极大值为g (1)=0,g (x )的极小值为()103a g g ⎛⎫=⎪⎝⎭<, 所以g (x )在3a ,⎛⎫-∞ ⎪⎝⎭上有且只有一个零点x =1.因为g (a )=2a 3﹣(a +3)a 2+2a 2+1﹣a =(a ﹣1)2(a +1)>0,所以g (x )在3a ⎛⎫+∞ ⎪⎝⎭,上有且只有一个零点. 所以g (x )在R 上有且只有两个零点.即方程()3200023210x a x ax a -+++-=有且只有两个不相等实根,所以过点P (1,f (1))恰有2条直线与曲线y =f (x )相切. 9.(2019·四川高考模拟(理))已知函数,.(1)若,求函数在区间(其中,是自然对数的底数)上的最小值;(2)若存在与函数,的图象都相切的直线,求实数的取值范围.【答案】(1)见解析;(2).【解析】 (1)由题意,可得,,令,得. ①当时,在上单调递减,∴.②当时,在上单调递减,在上单调递增,∴.综上,当时,,当时,.(2)设函数在点处与函数在点处有相同的切线,则,∴,∴,代入得.∴问题转化为:关于的方程有解,设,则函数有零点,∵,当时,,∴. ∴问题转化为:的最小值小于或等于0.,设,则当时,,当时,.∴在上单调递减,在上单调递增,∴的最小值为.由知,故.设,则,故在上单调递增,∵,∴当时,,∴的最小值等价于.又∵函数在上单调递增,∴.10.(2019·湖南高考模拟(理))设函数()()()22,42x f x e ax g x x x =+=++.(Ⅰ)讨论()y f x =的极值;(Ⅱ)若曲线()y f x =和曲线()y g x =在点()0,2P 处有相同的切线,且当2x ≥-时,()()mf x g x ≥,求m 的取值范围 .【答案】(Ⅰ)见解析;(Ⅱ)21,e ⎡⎤⎣⎦.【解析】 (Ⅰ)∵()()2xf x e ax =+,∴()()2xf x eax a '=++.①当0a =时,()20xf x e '=>恒成立,所以()f x 在R 上单调递增,无极值.②当0a >时,由()0f x '=得2a x a+=-, 且当2a x a +<-时,()0,()f x f x '<单调递减;当2a x a+>-时,()0,()f x f x '>单调递增. 所以当2a x a+=-时,()f x 有极小值,且()2=a a f x ae +--极小值,无极大值. ③当0a <时,由()0f x '=得2a x a+=-,且当2a x a +<-时,()0,()f x f x '>单调递增;当2a x a+>-时,()0,()f x f x '<单调递减.所以当2a x a+=-时,()f x 有极大值,且()2=a a f x ae +--极大值,无极小值. 综上所述,当0a =时,()f x 无极值; 当0a >时,()2=a af x ae +--极小值,无极大值; 当0a <时, ()2=a af x ae +--极大值,无极小值.(Ⅱ)由题意得()2+4g x x '=,∵()y f x =和()y g x =在点()0,2P 处有相同的切线, ∴(0)(0)f g ='',即24a +=,解得2a =, ∴()()22xf x ex =+.令()()()()222(42)xF x mf x g x me x x x =-=+-++,则()()()124xF x me x '=-+,由题意可得()0220F m =-≥,解得1m ≥. 由()0F x '=得12ln ,2x m x =-=-.①当ln 2m ->-,即21m e ≤<时,则120x -<≤,∴当()12,x x ∈-时,()0,()F x F x '<单调递减;当()1,x x ∈+∞时,()0,()F x F x '>单调递增, ∴()()2,F x -+∞在上的最小值为()()2112111224220F x x x x x x =+---=-+≥,∴()()mf x g x ≥恒成立.②当ln 2m -=-,即2m e =时,则()()2()124x F x ex +'=-+,∴当2x ≥-时,()0,()F x F x '≥在()2,-+∞上单调递增, 又(2)0F -=,∴当2x ≥-时,()0F x ≥,即()()mf x g x ≥恒成立. ③当ln 2m -<-,即2m e >时, 则有()222(2)2220F me em e --=-=--+<-,从而当2x ≥-时,()()g x mf x ≤不可能恒成立.综上所述m 的取值范围为21,e ⎡⎤⎣⎦.11.(2019·天津高考模拟(理))已知函数()()()()21ln f x x x x a a R =---∈.(1)若()f x 在()0,∞+上单调递减,求a 的取值范围;(2)若()f x 在1x =处取得极值,判断当(]0,2x ∈时,存在几条切线与直线2y x =-平行,请说明理由; (3)若()f x 有两个极值点12,x x ,求证:1254x x +>. 【答案】(Ⅰ)(],1-∞;(Ⅱ)答案见解析;(Ⅲ)证明见解析. 【解析】(Ⅰ)由已知,()()11ln 2ln 2120x f x x x a x x a x x-=+--=--++≤'恒成立 令()1ln 212g x x x a x=--++,则()()()222221111212(0)x x x x g x x x x x x-+--++='=+-=>, ()210x -+<,令()'0g x >,解得:01x <<,令()'0g x <,解得:1x >,故()g x 在()0,1递增,在()1,+∞递减,()()max 122g x g a ∴==-,由()'0f x ≤恒成立可得1a ≤.即当()f x 在()0,+∞上单调递减时,a 的取值范围是(],1-∞. (Ⅱ)()f x 在1x =处取得极值,则()’10f =,可得1a =. 令()1ln 232f x x x x -'=-+=-,即 1ln 250x x x--+=. 设()1ln 25h x x x x =--+,则()()()222221111212x x x x h x x x x x-+--++='=+-=. 故()h x 在()0,1上单调递增,在()1,2上单调递减, 注意到()55520h eee --=--<,()()112,2ln202h h ==+>, 则方程1ln 250x x x--+=在(]0,2内只有一个实数根, 即当(]0,2x ∈时,只有一条斜率为2-且与函数()f x 图像相切的直线. 但事实上,若1a =,则()1'ln 23f x x x x=--+, ()()()2121''x x f x x--+=,故函数()'f x 在区间()0,1上单调递增,在区间()1,2上单调递减, 且()'101230f =--+=,故函数()'0f x ≤在区间(]0,2上恒成立, 函数()f x 在区间(]0,2上单调递减,即函数不存在极值点, 即不存在满足题意的实数a ,也不存在满足题意的切线. (Ⅲ)若函数有两个极值点12,x x ,不妨设120x x <<, 由(Ⅰ)可知1a >,且:()11111ln 212f x x x a x -+'=-+①, ()22221ln 212f x x x a x -+'=-+②, 由①-②得:()()112112122121221211ln20,2ln 0,2x x x x x x x x x x x x x x x x ⎛⎫-+--=∴--=->∴< ⎪⎝⎭, 即12112x x e>> , 由①+②得:()()12121212ln 2240x x x x x x a x x ++--++=, ()121212ln 24124512242x x a x x x x ++-++∴+=>=++. 12.(2019·辽宁高考模拟(理))已知a R ∈,函数()()2ln ,0,6.f x a x x x =+∈()I 讨论()f x 的单调性;()II 若2x -是()f x 的极值点,且曲线()y f x =在两点()()()()1122,,,P x f x Q x f x 12x x 处的切线相互平行,这两条切线在y 轴上的截距分别为12,b b ,求12b b -的取值范围 【答案】()I 当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增;()II 2ln 2,03⎛⎫- ⎪⎝⎭.【解析】(Ⅰ)()2222a ax f x x x x-'=-+=.()0,6x ∈∴ ①当0a ≤时,()0f x '<在()0,6x ∈上恒成立. ∴ ()f x 在()0,6上单调递减,无单调递增区间;②当0a >,且26a≥,即103≤a <时,()0f x '<在()0,6x ∈上恒成立.∴ ()f x 在()0,6上单调递减,无单调递增区间;③当0a >,且26a <,即13a >时,在20,x a ⎛⎫∈ ⎪⎝⎭上,()0f x '<,在2,6x a ⎛⎫∈ ⎪⎝⎭上,()0f x '>,∴ ()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增.综上,当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫⎪⎝⎭上单调递增. (Ⅱ)2x =是()f x 的极值点,∴由()1可知22,1a a=∴= 设在()()11.P x f x 处的切线方程为()112111221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭在()()22,Q x f x 处的切线方程为()222222221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭ ∴若这两条切线互相平行,则2211222121x x x x -+=-+,121112x x ∴+= 令0x =,则1114ln 1b x x =+-,同理,2224ln 1b x x =+- 【解法一】211112x x =- 121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ 111211114ln ln 22x x x ⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭设()182ln ln 2g x x x x ⎛⎫=--+-⎪⎝⎭,11,43x ⎛⎫∈ ⎪⎝⎭()2211168180122x x g x x x x x-+'∴=--=<--,()g x ∴在区间11,43⎛⎫ ⎪⎝⎭上单调递减,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭即12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法二】12122x x x =- 121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭1182ln 12x x ⎛⎫-+- ⎪⎝⎭令()1182ln 12x g x x ⎛⎫=-+- ⎪⎝⎭,其中()3,4x ∈ ()()2228181622x x g x x x x x -+'∴=-+=-- ()()22402x x x -=>-∴函数()g x 在区间()3,4上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭.∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法三】()12122x x x x =+121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ ()2111224ln ·x x x x x x -+ ()2112122ln x x x x x x -=++ 12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭=++设()()21ln 1x g x x x-=++,则()()()()22214111x g x x x x x --'=+=++ 11211,122x x x ⎛⎫=-∈ ⎪⎝⎭,()0g x ∴'>,∴函数()g x 在区间1,12⎛⎫ ⎪⎝⎭上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭ ∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭.13.(2019·安徽高考模拟(文))已知函数()ln x f x x =+,直线l :21y kx =-.(Ⅰ)设(,)P x y 是()y f x =图象上一点,O 为原点,直线OP 的斜率()k g x =,若()g x 在(,1)x m m ∈+(0)m 上存在极值,求m 的取值范围;(Ⅱ)是否存在实数k ,使得直线l 是曲线()y f x =的切线?若存在,求出k 的值;若不存在,说明理由; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由. 【答案】11e m e k -<<=Ⅰ,(Ⅱ),(Ⅲ)见解析 【解析】 (Ⅰ)∵()ln (0)y x x g x x x x +==>,∴()1ln 0xg x x='-=,解得x e =. 由题意得: 01m e m <<<+,解得1e m e -<<.(Ⅱ)假设存在实数k ,使得直线是曲线()y f x =的切线,令切点()00,P x y , ∴切线的斜率0121k x =+. ∴切线的方程为()()00001ln 1y x x x x x ⎛⎫-+=+- ⎪⎝⎭,又∵切线过(0,-1)点,∴()()000011ln 10x x x x ⎛⎫--+=+- ⎪⎝⎭.解得01x =,∴22k =, ∴1k =.(Ⅲ)由题意,令ln 21x x kx +=-, 得 ln 12x x k x++=.令()ln 1(0)2x x h x x x ++=>, ∴()2ln 2xh x x-=',由()0h x '=,解得1x =. ∴()h x 在(0,1)上单调递增,在()1,+∞上单调递减,∴()()max 11h x h ==,又0x →时,()h x →-∞;x →+∞时,()1ln 11222x h x x +=+→, {}1,12k ⎛⎤∴∈-∞⋃ ⎥⎝⎦时,只有一个交点;1,12k ⎛⎫∈ ⎪⎝⎭时,有两个交点;()1,k ∈+∞时,没有交点.14. (2019·河北高考模拟(理))已知函数()xf x e =,()g x alnx(a 0)=>. ()1当x 0>时,()g x x ≤,求实数a 的取值范围;()2当a 1=时,曲线()y f x =和曲线()y g x =是否存在公共切线?并说明理由.【答案】(1)(]0,e ;(2)存在公共切线,理由详见解析.【解析】()1令()()ln m x g x x a x x =-=-,则()1a a x m x x x-=-='. 若0x a <<,则()0m x '>,若x a >,则()0m x '<.所以()m x 在()0,a 上是增函数,在(),a +∞上是减函数.所以x a =是()m x 的极大值点,也是()m x 的最大值点,即()max ln m x a a a =-.若()g x x ≤恒成立,则只需()max ln 0m x a a a =-≤,解得0a e <≤.所以实数a 的取值范围是(]0,e . ()2假设存在这样的直线l 且与曲线()y f x =和曲线()y g x =分别相切与点()()1122,,,ln x A x e B x x . 由()x f x e =,得()xf x e '=. 曲线()y f x =在点A 处的切线方程为()111x x y e e x x -=-,即()1111x xy e x x e =+-. 同理可得,曲线()y g x =在点B 处的切线方程为()2121ln y x x x x -=-,即221ln 1y x x x =+-. 所以()11212111x x e x x e lnx ⎧=⎪⎨⎪-=-⎩则()1111lne 1x x x e --=-,即()111110x x e x -++= 构造函数()()x11,h x x e x =-++ x R ∈ 存在直线l 与曲线()y f x =和曲线()y g x =相切,等价于函数()()x11h x x e x =-++在R 上有零点对于()1xh x xe ='-. 当0x ≤时,()0h x '>,()h x 在上单调递增.当0x >时,因为()()()'10x h x x e +'=-<,所以()h x '在()0,+∞上是减函数.又()()010,110h h e ''=>=-<,,所以存在()00,1x ∈,使得()00010x h x x e'=-=,即001x e x =. 且当()000,x x ∈,()0h x '>时,当()00,x x ∈+∞时,()0h x '<.综上,()h x 在()00,x 上是增函数,在()0,x +∞上是减函数.所以()0h x 是()h x 的极大值,也是最大值,且()()()()0000000max 0011111?10x h x h x x e x x x x x x ==-++=-++=+>. 又()22310h e --=-<,()2230h e =-+<,所以()h x 在()02,x -内和()0,2x 内各有一个零点. 故假设成立,即曲线()y f x =和曲线()y g x =存在公共切线.15.(2019·广西高考模拟(理))已知函数1()ln f x x mx x =--在区间(0,1)上为增函数,m R ∈.(1)求实数m 的取值范围; (2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求+a b 的最小值.【答案】(1)2m ≤;(2)+a b 的最小值为-1.【解析】(1)∵()1ln f x x mx x =--, ∴()211f x m x x=+-'. 又函数()f x 在区间()0,1上为增函数,∴()2110f x m x x =-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭, 则当1x =时,()t x 取得最小值,且()2min t x =,∴2m ≤,∴实数m 的取值范围为(],2∞-.(2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭, 则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()11min h x h ==-,∴a b +的最小值为1-.16.(2019·四川高考模拟(理))已知函数()ln x a f x x e +=-.(1)若曲线()f x 在点()()1,1f 处的切线与x 轴正半轴有公共点,求a 的取值范围;(2)求证:11a e>-时,()1f x e <--.【答案】(1)1a <-;(2)证明见解析.【解析】(1)函数f (x )=lnx ﹣e x +a 的导数为f ′(x )=1x﹣e x +a .曲线f (x )在点(1,f (1))处的切线斜率为1﹣e 1+a ,切点为(1,﹣e 1+a ),可得切线方程为y +e 1+a =(1﹣e 1+a )(x ﹣1),可令y =0可得x =111a e +-,由题意可得111a e+->0, 可得e 1+a <1,解得a <﹣1; (2)证明:f ′(x )=1x ﹣e x +a .设g (x )=f ′(x )=1x ﹣e x +a . 可得g ′(x )=﹣(21x +e x +a ),当x >0时,g ′(x )<0,g (x )递减; 由a >1﹣1e ,e x +a >e x .若e x >1x ,g (x )<1x﹣e x <0, 当0<x <1时,e x +a <e 1+a .若e 1+a <1x,即x <e ﹣1﹣a , 故当0<x <e ﹣1﹣a 时,g (x )>0,即g (x )=f ′(x )有零点x 0,当0<x <x 0时,f ′(x )>0,f (x )递增;当x >x 0时,f ′(x )<0,f (x )递减,可得f (x )≤f (x 0),又f (x 0)=lnx 0﹣e x 0+a ,又e x 0+a =01x , 可得f (x 0)=lnx 0﹣01x ,在x 0>0递增, 又a =ln 01x ﹣x 0=﹣(lnx 0+x 0), a >1﹣1e ⇔﹣(lnx 0+x 0)>1﹣1e =﹣(ln 1e +1e), 所以lnx 0+x 0<ln 1e +1e,由于lnx 0+x 0递增, 可得0<x 0<1e ,故f (x )≤f (x 0)<f (1e )=﹣1﹣e .。
2020高考数学新题分类汇编 函数与导数(高考真题+模拟新题)课标文数13.B1[2020·安徽卷] 函数y =16-x -x2的定义域是________. 课标文数13.B1[2020·安徽卷] 【答案】 (-3,2)【解析】 由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2.课标理数15.B1,M1[2020·福建卷] 设V 是全体平面向量构成的集合,若映射f :V →R 满足:对任意向量a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,以及任意λ∈R ,均有f (λa +(1-λ)b )=λf (a )+(1-λ)f (b ).则称映射f 具有性质P . 现给出如下映射:①f 1:V →R ,f 1(m )=x -y ,m =(x ,y )∈V ;②f 2:V →R ,f 2(m )=x 2+y ,m =(x ,y )∈V ; ③f 3:V →R ,f 3(m )=x +y +1,m =(x ,y )∈V .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号) 课标理数15.B1,M1[2020·福建卷] 【答案】 ①③ 【解析】 设a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,则λa +(1-λ)b =λ(x 1,y 1)+(1-λ)(x 2,y 2)=(λx 1+(1-λ)x 2,λy 1+(1-λ)y 2), ①f 1(λa +(1-λ)b )=λx 1+(1-λ)x 2-[λy 1+(1-λ)y 2] =λ(x 1-y 1)+(1-λ)(x 2-y 2)=λf 1(a )+(1-λ)f 1(b ), ∴映射f 1具有性质P ;②f 2(λa +(1-λ)b )=[λx 1+(1-λ)x 2]2+[λy 1+(1-λ)y 2],λf 2(a )+(1-λ)f 2(b )=λ(x 21 +y 1 ) + (1-λ)(x 22 + y 2 ), ∴f 2(λa +(1-λ)b )≠λf 2(a )+(1-λ)f 2(b ), ∴ 映射f 2不具有性质P ;③f 3(λa +(1-λ)b )=λx 1+(1-λ)x 2+(λy 1+(1-λ)y 2)+1 =λ(x 1+y 1+1)+(1-λ)(x 2+y 2+1)=λf 3(a )+(1-λ)f 3(b ), ∴ 映射f 3具有性质P .故具有性质P 的映射的序号为①③.课标文数8.B1[2020·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3课标文数8.B1[2020·福建卷] A 【解析】 由已知,得f (1)=2;又当x >0时,f (x )=2x>1,而f (a )+f (1)=0, ∴f (a )=-2,且a <0,∴a +1=-2,解得a =-3,故选A.课标文数4.B1[2020·广东卷] 函数f (x )=11-x+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)课标文数4.B1[2020·广东卷] C 【解析】 要使函数有意义,必须满足⎩⎪⎨⎪⎧1-x ≠0,1+x >0,所以所求定义域为{x |x >-1且x ≠1},故选C.课标文数16.B1[2020·湖南卷] 给定k ∈N *,设函数f :N *→N *满足:对于任意大于k 的正整数n ,f (n )=n -k .(1)设k =1,则其中一个函数f 在n =1处的函数值为________________; (2)设k =4,且当n ≤4时,2≤f (n )≤3,则不同的函数f 的个数为________.课标文数16.B1[2020·湖南卷] (1)a (a 为正整数) (2)16 【解析】 (1)由法则f 是正整数到正整数的映射,因为k =1,所以从2开始都是一一对应的,而1可以和任何一个正整数对应,故f 在n =1处的函数值为任意的a (a 为正整数);(2)因为2≤f (n )≤3,所以根据映射的概念可得到:1,2,3,4只能是和2或者3对应,1可以和2对应,也可以和3对应,有2种对应方法,同理,2,3,4都有两种对应方法,由乘法原理,得不同函数f 的个数等于16.课标文数11.B1[2020·陕西卷] 设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x,x ≤0,则f (f (-2))=________.课标文数11.B1[2020·陕西卷] -2 【解析】 因为f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,-2<0,f (-2)=10-2,10-2>0,f (10-2)=lg10-2=-2.大纲文数16.B1[2020·四川卷] 函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数,例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②指数函数f (x )=2x(x ∈R )是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数.其中的真命题是________.(写出所有真命题的编号)大纲文数16.B1[2020·四川卷] ②③④ 【解析】 本题主要考查对函数概念以及新定义概念的理解.对于①,如-2,2∈A ,f (-2)=f (2),则①错误;对于②,当2x 1=2x 2时,总有x 1=x 2,故为单函数;对于③根据单函数的定义,函数即为一一映射确定的函数关系,所以当函数自变量不相等时,则函数值不相等,即③正确;对于④,函数f (x )在定义域上具有单调性,则函数为一一映射确定的函数关系,所以④正确.课标理数1.B1[2020·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0.若f (α)=4,则实数α=( )A .-4或-2B .-4或2C .-2或4D .-2或2课标理数1.B1[2020·浙江卷] B 【解析】 当α≤0时,f (α)=-α=4,α=-4;当α>0,f (α)=α2=4,α=2.课标文数11.B1[2020·浙江卷] 设函数f (x )=41-x,若f (α)=2,则实数α=________.课标文数11.B1[2020·浙江卷] -1 【解析】 ∵f (α)=41-α=2,∴α=-1.大纲理数2.B2[2020·全国卷] 函数y =2x (x ≥0)的反函数为( ) A .y =x 24(x ∈R ) B .y =x 24(x ≥0)C .y =4x 2(x ∈R )D .y =4x 2(x ≥0)大纲理数2.B2[2020·全国卷] B 【解析】 由y =2x 得x =y 24,∵x ≥0,∴y ≥0,则函数的反函数为y =x 24(x ≥0).故选B.大纲文数2.B2[2020·全国卷] 函数y =2x (x ≥0)的反函数为( )A .y =x 24(x ∈R )B .y =x 24(x ≥0)C .y =4x 2(x ∈R )D .y =4x 2(x ≥0)大纲文数2.B2[2020·全国卷] B 【解析】 由y =2x 得x =y 24,∵x ≥0,∴y ≥0,则函数的反函数为y =x 24(x ≥0).故选B.大纲理数7.B2[2020·四川卷] 已知f (x )是R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12x+1,则f (x )的反函数的图象大致是( )图1-2大纲理数7.B2[2020·四川卷] A 【解析】 当x >0时,由y =⎝ ⎛⎭⎪⎫12x+1可得其反函数为y =log 12(x -1)(1<x <2),根据图象可判断选择答案A ,另外对于本题可采用特殊点排除法.课标理数8.B3[2020·北京卷] 设A (0,0),B (4,0),C (t +4,4),D (t,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}课标理数 2.B3,B4[2020·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |课标理数2.B3,B4[2020·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝ ⎛⎭⎪⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数 3.B3,B4[2020·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |课标文数3.B3,B4[2020·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝ ⎛⎭⎪⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标数学2.B3[2020·江苏卷] 函数f (x )=log 5(2x +1)的单调增区间是________.课标数学2.B3[2020·江苏卷] ⎝ ⎛⎭⎪⎫-12,+∞ 【解析】 因为y =log 5x 为增函数,故结合原函数的定义域可知原函数的单调增区间为⎝ ⎛⎭⎪⎫-12,+∞.课标文数12.B3,B7[2020·天津卷] 已知log 2a +log 2b ≥1,则3a +9b的最小值为________.课标文数12.B3,B7[2020·天津卷] 18 【解析】 ∵log 2a +log 2b =log 2ab ≥1, ∴ab ≥2,∴3a+9b=3a+32b≥23a ·32b =23a +2b ≥2322ab=18.大纲理数5.B3[2020·重庆卷] 下列区间中,函数f (x )=||ln 2-x在其上为增函数的是( )A .(-∞,1] B.⎣⎢⎡⎦⎥⎤-1,43 C.⎣⎢⎡⎭⎪⎫0,32 D .[1,2)课标文数11.B4,B5[2020·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.课标文数11.B4,B5[2020·安徽卷] 【答案】 -3【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1) =-2×(-1)2+(-1)=-3.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3.课标理数3.B4,B5[2020·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3课标理数3.B4,B5[2020·安徽卷] A 【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3,故选A.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.大纲理数9.B4[2020·全国卷] 设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( ) A .-12 B .-14C.14D.12大纲理数9.B4[2020·全国卷] A 【解析】 因为函数的周期为2,所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫2+12=f ⎝ ⎛⎭⎪⎫12=12,又函数是奇函数,∴f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-12,故选A.大纲文数10.B4[2020·全国卷] 设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( ) A .-12 B .-14C.14D.12大纲文数10.B4[2020·全国卷] A 【解析】 因为函数的周期为2,所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫2+12=f ⎝ ⎛⎭⎪⎫12=12,又函数是奇函数,所以f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-12,故选A.课标理数9.B4[2020·福建卷] 对于函数f (x )=a sin x +bx +c (其中,a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是......( ) A .4和6 B .3和1C .2和4D .1和2课标理数9.B4[2020·福建卷] D 【解析】 由已知,有f (1)=a sin1+b +c ,f (-1)=-a sin1-b +c ,∴ f (1)+f (-1)=2c ,∵ c ∈Z ,∴ f (1)+f (-1)为偶数,而D 选项给出的两个数,一个是奇数,一个是偶数,两个数的和为奇数,故选D.课标理数4.B4[2020·广东卷] 设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数课标理数4.B4[2020·广东卷] A 【解析】 因为g (x )在R 上为奇函数,所以|g (x )|为偶函数,则f (x )+|g (x )|一定为偶函数.课标文数12.B4[2020·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.课标文数12.B4[2020·广东卷] -9 【解析】 由f (a )=a 3cos a +1=11得a 3cos a =10,所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.课标理数6.B4[2020·湖北卷] 已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x+2(a >0,且a ≠1).若g (2)=a ,则f (2)=( )A .2 B.154 C.174D .a 2课标理数6.B4[2020·湖北卷] B 【解析】 因为函数f (x )是奇函数,g (x )是偶函数,所以由f (x )+g (x )=a x -a -x +2①,得-f (x )+g (x )=a -x -a x+2②, ①+②,得g (x )=2,①-②,得f (x )=a x -a -x .又g (2)=a ,所以a =2,所以f (x )=2x -2-x,所以f (2)=154.课标文数3.B4[2020·湖北卷] 若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -xB.12(e x +e -x )C.12(e -x -e x )D.12(e x -e -x ) 课标文数3.B4[2020·湖北卷] D 【解析】 因为函数f (x )是偶函数,g (x )是奇函数,所以f ()-x +g ()-x =f (x )-g ()x =e -x .又因为f (x )+g ()x =e x,所以g ()x =e x -e -x 2.课标文数12.B4[2020·湖南卷] 已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________.课标文数12.B4[2020·湖南卷] 6 【解析】 由g (x )=f (x )+9,得当x =-2时,有g (-2)=f (-2)+9⇒f (-2)=-6.因为f (x )为奇函数,所以有f (2)=f (-2)=6.课标理数 2.B3,B4[2020·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |课标理数2.B3,B4[2020·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝ ⎛⎭⎪⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数 6.B4[2020·辽宁卷] 若函数f (x )=x2x +1x -a为奇函数,则a =( )A.12B.23C.34D .1 课标文数6.B4[2020·辽宁卷] A 【解析】 法一:由已知得f (x )=x2x +1x -a定义域关于原点对称,由于该函数定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12且x ≠a ,知a =12,故选A.法二:∵f (x )是奇函数,∴f (-x )=-f (x ),又f (x )=x2x 2+1-2a x -a ,则-x 2x 2-1-2a x -a =-x 2x 2+1-2a x -a 在函数的定义域内恒成立,可得a =12.课标文数 3.B3,B4[2020·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |课标文数3.B3,B4[2020·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝ ⎛⎭⎪⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数12.B4,B7,B8[2020·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个课标文数12.B4,B7,B8[2020·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5课标理数10.B4[2020·山东卷] 已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9课标理数10.B4[2020·山东卷] B 【解析】 当0≤x <2时,f (x )=x 3-x =x (x 2-1)=0,所以当0≤x <2时,f (x )与x 轴交点的横坐标为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,则f (x -2)=(x -2)3-(x -2),又周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,f (x )与x 轴交点的横坐标为x 3=2,x 4=3;同理当4≤x ≤6时,f (x )与x 轴交点的横坐标分别为x 5=4,x 6=5,x 7=6,所以共有7个交点.课标理数3.B4[2020·陕西卷] 设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图像可能是( )图1-1课标理数3.B4[2020·陕西卷] B 【解析】 由f (-x )=f (x )可知函数为偶函数,其图像关于y 轴对称,可以结合选项排除A 、C ,再利用f (x +2)=f (x ),可知函数为周期函数,且T =2,必满足f (4)=f (2),排除D ,故只能选B.课标理数11.B4[2020·浙江卷] 若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.课标理数11.B4[2020·浙江卷] 0 【解析】 ∵f (x )为偶函数,∴f (-x )=f (x ),即x 2-|x +a |=(-x )2-|-x +a |⇒||x +a =||x -a ,∴a =0.课标文数11.B4,B5[2020·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.课标文数11.B4,B5[2020·安徽卷] 【答案】 -3【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1) =-2×(-1)2+(-1)=-3.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3.课标理数3.B4,B5[2020·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3课标理数3.B4,B5[2020·安徽卷] A 【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3,故选A.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.课标文数8.B5,H2[2020·北京卷] 已知点A (0,2),B (2,0).若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1课标文数8.B5,H2[2020·北京卷] A 【解析】 由已知可得|AB |=22,要使S △ABC =2,则点C 到直线AB 的距离必须为2,设C (x ,x 2),而l AB :x +y -2=0,所以有|x +x 2-2|2=2,所以x 2+x -2=±2,当x 2+x -2=2时,有两个不同的C 点当x 2+x -2=-2时,亦有两个不同的C 点. 因此满足条件的C 点有4个,故应选A.课标理数12.B5[2020·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整.数.根的充要条件是n =________.课标理数12.B5[2020·陕西卷] 3或4 【解析】 由x 2-4x +n 得(x -2)2=4-n ,即x =2±4-n ,∵n ∈N +,方程要有整数根,满足n =3,4,故当n =3,4时方程有整数根.课标文数14.B5[2020·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整.数.根的充要条件是n =________.课标文数14.B5[2020·陕西卷] 3或4 【解析】 由x 2-4x +n =0得(x -2)2=4-n ,即x =2±4-n ,∵n ∈N +,方程要有整数根,满足n =3,4,当n =3,4时方程有整数根.课标理数8.B5[2020·天津卷] 对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝⎛⎭⎪⎫-1,32 B .(-∞,-2]∪⎝⎛⎭⎪⎫-1,-34C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞ 课标理数8.B5[2020·天津卷] B 【解析】 f (x )=⎩⎨⎧x 2-2,x 2-2-()x -x 2≤1,x -x 2,x 2-2-()x -x 2>1=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤32,x -x 2,x <-1,或x >32,则f ()x 的图象如图1-4.图1-4∵y =f (x )-c 的图象与x 轴恰有两个公共点, ∴y =f (x )与y =c 的图象恰有两个公共点,由图象知c ≤-2,或-1<c <-34.课标文数8.B5[2020·天津卷] 对实数a 和b ,定义运算“⊗”;a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞) B.(-2,-1]∪(1,2] C .(-∞,-2)∪(1,2] D .[-2,-1]课标文数8.B5[2020·天津卷] B 【解析】 f (x )=⎩⎪⎨⎪⎧x 2-2,x 2-2-x -1≤1x -1,x 2-2-x -1>1=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2x -1,x <-1,或x >2则f (x )的图象如图,∵函数y =f (x )-c 的图象与x 轴恰有两个公共点,∴函数y =f (x )与y =c 的图象有两个交点,由图象可得-2<c ≤-1,或1<c ≤2.图1-3课标理数 3.B6[2020·山东卷] 若点(a,9)在函数y =3x的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 3 课标理数3.B6[2020·山东卷]D 【解析】 因为点(a,9)在函数y =3x的图象上,所以9=3a,所以a =2,即tan a π6=tan 2π6=tan π3=3,故选D.课标文数 3.B6[2020·山东卷] 若点(a,9)在函数y =3x的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 3课标文数3.B6[2020·山东卷] D 【解析】 因为点(a,9)在函数y =3x的图象上,所以9=3a,所以a =2,即tan a π6=tan 2π6=tan π3=3,故选D.课标数学12.B6[2020·江苏卷] 在平面直角坐标系xOy 中,已知P 是函数f (x )=e x(x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是________.课标数学12.B6[2020·江苏卷] 12⎝⎛⎭⎪⎫e +1e【解析】 设P (x 0,y 0),则直线l :y -e x 0=e x 0(x -x 0).令x =0,则y =-x 0e x 0+e x 0,与l 垂直的直线l ′的方程为y -e x 0=-1e x 0(x -x 0),令x =0得,y =x 0e x 0+e x 0,所以t =-x 0e x 0+2e x 0+x 0e x 02.令y =-x e x +2e x +x e x 2,则y ′=-e xx -1+x -1ex2,令y ′=0得x =1,当x ∈(0,1)时,y ′>0,当x ∈(1,+∞)时,y ′<0,故当x =1时该函数的最大值为12⎝ ⎛⎭⎪⎫e +1e .课标理数7.B6,B7[2020·天津卷] 已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b课标理数7.B6,B7[2020·天津卷] C 【解析】 令m =log 23.4,n =log 43.6,l =log 3103,在同一坐标系下作出三个函数的图象,由图象可得m >l >n ,图1-3 又∵y=5x为单调递增函数,∴a>c>b.课标文数5.B7[2020·安徽卷] 若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( )A.⎝ ⎛⎭⎪⎫1a ,b B .(10a,1-b )C.⎝ ⎛⎭⎪⎫10a ,b +1 D .(a 2,2b ) 课标文数5.B7[2020·安徽卷] D 【解析】 由点(a ,b )在y =lg x 图像上,得b =lg a .当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图像上.课标文数3.B7[2020·北京卷] 如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x课标文数3.B7[2020·北京卷] D 【解析】 因为log 12x <log 12y <0=log 121,所以x >y >1,故选D.课标文数15.B7[2020·湖北卷] 里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.课标文数15.B7[2020·湖北卷] 6 10000 【解析】 由M =lg A -lg A 0知,M =lg1000-lg0.001=6,所以此次地震的级数为6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=()lg A 1-lg A 0-()lg A 2-lg A 0=9-5=4.所以A 1A 2=104=10000.所以9级地震的最大振幅是5级地震的最大振幅的10000倍.课标理数3.B7[2020·江西卷] 若f (x )=1log 122x +1,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞) 课标理数3.B7[2020·江西卷] A 【解析】 根据题意得log 12(2x +1)>0,即0<2x +1<1,解得x ∈⎝ ⎛⎭⎪⎫-12,0.故选A.课标文数3.B7[2020·江西卷] 若f ()x =1log 12()2x +1,则f ()x 的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞C.⎝ ⎛⎭⎪⎫-12,0∪()0,+∞D.⎝ ⎛⎭⎪⎫-12,2 课标文数3.B7[2020·江西卷] C 【解析】 方法一:根据题意得⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x ∈⎝ ⎛⎭⎪⎫-12,0∪(0,+∞).故选C. 方法二:取特值法,取x =0,则可排除B 、D ;取x =1,则排除A.故选C.课标文数12.B4,B7,B8[2020·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个课标文数12.B4,B7,B8[2020·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5课标理数7.B6,B7[2020·天津卷] 已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b课标理数7.B6,B7[2020·天津卷] C 【解析】 令m =log 23.4,n =log 43.6,l =log 3103,在同一坐标系下作出三个函数的图象,由图象可得m >l >n ,图1-3又∵y =5x为单调递增函数, ∴a >c >b .课标文数5.B7[2020·天津卷] 已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b课标文数5.B7[2020·天津卷] B 【解析】 ∵a =log 23.6>log 22=1.又∵y =log 4x ,x ∈(0,+∞)为单调递增函数,∴log 43.2<log 43.6<log 44=1, ∴b <c <a .课标文数12.B3,B7[2020·天津卷] 已知log 2a +log 2b ≥1,则3a +9b的最小值为________.课标文数12.B3,B7[2020·天津卷] 18 【解析】 ∵log 2a +log 2b =log 2ab ≥1, ∴ab ≥2,∴3a+9b=3a+32b≥23a ·32b =23a +2b≥2322ab=18.大纲文数6.B7[2020·重庆卷] 设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a大纲文数6.B7[2020·重庆卷] B 【解析】 a =log 1312=log 32,b =log 1323=log 332,则由log 343<log 332<log 32,得c <b <a .故选B.课标文数10.B8[2020·安徽卷] 函数f (x )=ax n (1-x )2在区间[0,1]上的图像如图1-2所示,则n 可能是( )图1-2A .1B .2C .3D .4课标文数10.B8[2020·安徽卷] A 【解析】 由函数图像可知a >0.当n =1时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x -1)(x -1),所以函数的极大值点为x =13<0.5,故A 可能;当n =2时,函数f (x )=ax 2(1-x )2=a (x 2-2x 3+x 4),f ′(x )=a (2x -6x 2+4x 3)=2ax (2x -1)(x -1),函数的极大值点为x =12,故B 错误;当n =3时,f (x )=ax 3(1-x )2=a (x 5-2x 4+x 3),f ′(x )=ax 2(5x 2-8x +3)=ax 2(5x -3)(x -1),函数的极大值点为x =35>0.5,故C 错误;当n =4时,f (x )=ax 4(1-x )2=a (x 6-2x 5+x 4),f ′(x )=a (6x 5-10x 4+4x 3)=2ax 3(3x-2)(x -1),函数的极大值点为x =23>0.5,故D 错误.课标理数10.B8[2020·安徽卷] 函数f (x )=ax m (1-x )n在区间[0,1]上的图像如图1-2所示,则m ,n 的值可能是( )图1-2A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1课标理数10.B8[2020·安徽卷] B 【解析】 由图可知a >0.当m =1,n =1时,f (x )=ax (1-x )的图像关于直线x =12对称,所以A 不可能;当m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ), f ′(x )=a (3x 2-4x +1)=a (3x -1)(x -1),所以f (x )的极大值点应为x =13<0.5,由图可知B 可能.当m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3), f ′(x )=a (2x -3x 2)=-ax (3x -2),所以f (x )的极大值点为x =23>0.5,所以C 不可能;当m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4), f ′(x )=a (3x 2-4x 3)=-ax 2(4x -3),所以f (x )的极大值点为x =34>0.5,所以D 不可能,故选B.课标理数13.B8[2020·北京卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -13,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.课标理数13.B8[2020·北京卷] (0,1) 【解析】 函数f (x )的图象如图1-5所示:图1-5由上图可知0<k <1.课标文数13.B8[2020·北京卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -13,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.课标文数13.B8[2020·北京卷] (0,1) 【解析】 函数f (x )的图象如图1-3所示:图1-3由上图可知0<k <1.课标文数12.B4,B7,B8[2020·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个课标文数12.B4,B7,B8[2020·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x =2π应在函数的减区间上,所以选C.课标文数10.B8[2020·山东卷] 函数y =x2-2sin x 的图象大致是( )图1-2课标文数10.B8[2020·山东卷] C 【解析】 由f (-x )=-f (x )知函数f (x )为奇函数,所以排除A ;又f ′(x )=12-2cos x ,当x 在x 轴右侧,趋向0时,f ′(x )<0,所以函数f (x )在x 轴右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x=2π应在函数的减区间上,所以选C.课标文数4.B8[2020·陕西卷] 函数y =x 13的图象是( )图1-1课标文数4.B8[2020·陕西卷] B 【解析】 因为y =x 13,由幂函数的性质,过点(0,0),(1,1),则只剩B ,C.因为y =x α中α=13,图象靠近x 轴,故答案为B.课标数学8.B8[2020·江苏卷] 在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x的图象交于P 、Q 两点,则线段PQ 长的最小值是________.课标数学8.B8[2020·江苏卷] 4 【解析】 设直线为y =kx (k >0),⎩⎪⎨⎪⎧y =kx ,y =2x⇒x2=2k,y 2=k 2x 2=2k ,所以PQ =2OP =x 2+y 2=22k+2k ≥224=4.大纲文数4.B8[2020·四川卷] 函数y =⎝ ⎛⎭⎪⎫12x+1的图象关于直线y =x 对称的图象大致是( )图1-1大纲文数4.B8[2020·四川卷] A 【解析】 由y =⎝ ⎛⎭⎪⎫12x+1可得其反函数为y =log 12(x-1)(x >1),根据图象可判断选择答案A.另外对于本题可采用特殊点排除法.课标理数21.B9,H8[2020·广东卷] 在平面直角坐标系xOy 上,给定抛物线L :y =14x 2,实数p ,q 满足p 2-4q ≥0,x 1,x 2是方程x 2-px +q =0的两根,记φ(p ,q )=max{|x 1|,|x 2|}.(1)过点A ⎝⎛⎭⎪⎫p 0,14p 20(p 0≠0)作L 的切线交y 轴于点B .证明:对线段AB 上的任一点Q (p ,q ),有φ(p ,q )=|p 0|2;(2)设M (a ,b )是定点,其中a ,b 满足a 2-4b >0,a ≠0.过M (a ,b )作L 的两条切线l 1,l 2,切点分别为E ⎝ ⎛⎭⎪⎫p 1,14p 21,E ′⎝⎛⎭⎪⎫p 2,14p 22,l 1,l 2与y 轴分别交于F 、F ′.线段EF 上异于两端点的点集记为X .证明:M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2;(3)设D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y ≤x -1,y ≥14x +12-54.当点(p ,q )取遍D 时,求φ(p ,q )的最小值(记为φmin )和最大值(记为φmax ).课标理数21.B9,H8[2020·广东卷] 【解答】 (1)证明:切线l 的方程为y =12p 0x -14p 20.∀Q (p ,q )∈AB 有φ(p ,q )=|p |+p 2-4q 2=|p |+p -p 022.当p 0>0时,0≤p ≤p 0,于是φ(p ,q )=p +p 0-p 2=p 02=||p 02; 当p 0<0时,p 0≤p ≤0,于是φ(p ,q )=-p +p -p 02=-p 02=|p 0|2.(2)l 1,l 2的方程分别为y =12p 1x -14p 21,y =12p 2x -14p 22.求得l 1,l 2交点M (a ,b )的坐标⎝ ⎛⎭⎪⎫p 1+p 22,p 1p 24.由于a 2-4b >0,a ≠0,故有|p 1|≠|p 2| . ①先证:M (a ,b )∈X ⇔|p 1|>|p 2|. (⇒)设M (a ,b )∈X .当p 1>0时,0<p 1+p 22<p 1⇒0<p 1+p 2<2p 1⇒|p 1|>|p 2|;当p 1<0时,p 1<p 1+p 22<0⇒2p 1<p 1+p 2<0⇒|p 1|>|p 2|.(⇐)设|p 1|>|p 2|,则⎪⎪⎪⎪⎪⎪p 2p 1<1⇒-1<p 2p 1<1⇒0<p 1+p 2p 1<2.当p 1>0时,0<p 1+p 22<p 1;当p 1<0时,p 1<p 1+p 22<0,注意到M (a ,b )在l 1上,故M (a ,b )∈X .②次证:M (a ,b )∈X ⇔φ(a ,b )=|p 1|2.(⇒)已知M (a ,b )∈X ,利用(1)有φ(a ,b )=|p 1|2.(⇐)设φ(a ,b )=|p 1|2,断言必有|p 1|>|p 2|.若不然,|p 1|<|p 2|.令Y 是l 2上线段E ′F ′上异于两端点的点的集合,由已证的等价式①M (a ,b )∈Y .再由(1)得φ(a ,b )=|p 2|2≠|p 1|2,矛盾.故必有|p 1|>|p 2|.再由等价式①,M (a ,b )∈X .综上,M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2.(3)求得y =x -1和y =14(x +1)2-54的交点Q 1(0,-1),Q 2(2,1).而y =x -1是L 的切点为Q 2(2,1)的切线,且与y 轴交于Q 1(0,-1),由(1)∀Q (p ,q )∈线段Q 1Q 2,有φ(p ,q )=1.当Q (p ,q )∈L 1:y =14(x +1)2-54(0≤x ≤2)时,q =14(p +1)2-54,∴h (p )=φ(p ,q )=p +p 2-4q 2=p +4-2p2(0≤p ≤2),在(0,2)上,令h ′(p )=4-2p -124-2p=0得p =32,由于h (0)=h (2)=1,h ⎝ ⎛⎭⎪⎫32=54,∴h (p )=φ(p ,q )在[0,2]上取得最大值h max =54.∀(p ,q )∈D ,有0≤p ≤2,14(p +1)2-54≤q ≤p -1,故φ(p ,q )=p +p 2-4q2≤p +p 2-4⎣⎢⎡⎦⎥⎤14p +12-542=p +4-2p2≤h max =54,φ(p ,q )=p +p 2-4q 2≥p +p 2-4p -12=p +p -222=p +2-p2=1,故φmin =1,φmax =54.课标理数21.B9,H8[2020·广东卷] 在平面直角坐标系xOy 上,给定抛物线L :y =14x 2,实数p ,q 满足p 2-4q ≥0,x 1,x 2是方程x 2-px +q =0的两根,记φ(p ,q )=max{|x 1|,|x 2|}.(1)过点A ⎝⎛⎭⎪⎫p 0,14p 20(p 0≠0)作L 的切线交y 轴于点B .证明:对线段AB 上的任一点Q (p ,q ),有φ(p ,q )=|p 0|2;(2)设M (a ,b )是定点,其中a ,b 满足a 2-4b >0,a ≠0.过M (a ,b )作L 的两条切线l 1,l 2,切点分别为E ⎝ ⎛⎭⎪⎫p 1,14p 21,E ′⎝⎛⎭⎪⎫p 2,14p 22,l 1,l 2与y 轴分别交于F 、F ′.线段EF 上异于两端点的点集记为X .证明:M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2;(3)设D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y ≤x -1,y ≥14x +12-54.当点(p ,q )取遍D 时,求φ(p ,q )的最小值(记为φmin )和最大值(记为φmax ).课标理数21.B9,H8[2020·广东卷] 【解答】 (1)证明:切线l 的方程为y =12p 0x -14p 20.∀Q (p ,q )∈AB 有φ(p ,q )=|p |+p 2-4q 2=|p |+p -p 022.当p 0>0时,0≤p ≤p 0,于是φ(p ,q )=p +p 0-p 2=p 02=||p 02; 当p 0<0时,p 0≤p ≤0,于是φ(p ,q )=-p +p -p 02=-p 02=|p 0|2.(2)l 1,l 2的方程分别为y =12p 1x -14p 21,y =12p 2x -14p 22.求得l 1,l 2交点M (a ,b )的坐标⎝ ⎛⎭⎪⎫p 1+p 22,p 1p 24.由于a 2-4b >0,a ≠0,故有|p 1|≠|p 2| . ①先证:M (a ,b )∈X ⇔|p 1|>|p 2|. (⇒)设M (a ,b )∈X .当p 1>0时,0<p 1+p 22<p 1⇒0<p 1+p 2<2p 1⇒|p 1|>|p 2|;当p 1<0时,p 1<p 1+p 22<0⇒2p 1<p 1+p 2<0⇒|p 1|>|p 2|.(⇐)设|p 1|>|p 2|,则⎪⎪⎪⎪⎪⎪p 2p 1<1⇒-1<p 2p 1<1⇒0<p 1+p 2p 1<2.当p 1>0时,0<p 1+p 22<p 1;当p 1<0时,p 1<p 1+p 22<0,注意到M (a ,b )在l 1上,故M (a ,b )∈X .②次证:M (a ,b )∈X ⇔φ(a ,b )=|p 1|2.(⇒)已知M (a ,b )∈X ,利用(1)有φ(a ,b )=|p 1|2.(⇐)设φ(a ,b )=|p 1|2,断言必有|p 1|>|p 2|.若不然,|p 1|<|p 2|.令Y 是l 2上线段E ′F ′上异于两端点的点的集合,由已证的等价式①M (a ,b )∈Y .再由(1)得φ(a ,b )=|p 2|2≠|p 1|2,矛盾.故必有|p 1|>|p 2|.再由等价式①,M (a ,b )∈X .综上,M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2.(3)求得y =x -1和y =14(x +1)2-54的交点Q 1(0,-1),Q 2(2,1).而y =x -1是L 的切点为Q 2(2,1)的切线,且与y 轴交于Q 1(0,-1),由(1)∀Q (p ,q )∈线段Q 1Q 2,有φ(p ,q )=1.当Q (p ,q )∈L 1:y =14(x +1)2-54(0≤x ≤2)时,q =14(p +1)2-54,∴h (p )=φ(p ,q )=p +p 2-4q 2=p +4-2p2(0≤p ≤2),在(0,2)上,令h ′(p )=4-2p -124-2p=0得p =32,由于h (0)=h (2)=1,h ⎝ ⎛⎭⎪⎫32=54,∴h (p )=φ(p ,q )在[0,2]上取得最大值h max =54.∀(p ,q )∈D ,有0≤p ≤2,14(p +1)2-54≤q ≤p -1,故φ(p ,q )=p +p 2-4q2≤p +p 2-4⎣⎢⎡⎦⎥⎤14p +12-542=p +4-2p2≤h max =54,φ(p ,q )=p +p 2-4q 2≥p +p 2-4p -12=p +p -222=p +2-p2=1,故φmin =1,φmax =54.课标文数21.H10,B9[2020·广东卷]在平面直角坐标系xOy 中,直线l :x =-2交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足∠MPO =∠AOP .(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知T (1,-1).设H 是E 上动点,求|HO |+|HT |的最小值,并给出此时点H 的坐标;(3)过点T (1,-1)且不平行于y 轴的直线l 1与轨迹E 有且只有两个不同的交点.求直线l 1的斜率k 的取值范围.课标文数21.H10,B9[2020·广东卷] 【解答】 (1)如图1-2(1).设MQ 为线段OP 的垂直平分线,交OP 于点Q .∵∠MPQ =∠AOP ,∴MP ⊥l ,且|MO |=|MP |.因此,x 2+y 2=|x +2|,即 y 2=4(x +1)(x ≥-1). ①图1-3E 1:y 2=4(x +1)(x ≥-1); E 2:y =0,x <-1.当H ∈E 1时,过T 作垂直于l 的直线,垂足为T ′,交E 1于D ⎝ ⎛⎭⎪⎫-34,-1.再过H 作垂直于l 的直线,交l 于H ′.因此,|HO |=|HH ′|(抛物线的性质).∴|HO |+|HT |=|HH ′|+|HT |≥|TT ′|=3(该等号仅当H ′与T ′重合(或H 与D 重合)时取得).当H ∈E 2时,则|HO |+|HT |>|BO |+|BT |=1+5>3.综合可得,|HO |+|HT |的最小值为3,且此时点H 的坐标为⎝ ⎛⎭⎪⎫-34,-1. (3)由图1-3知,直线l 1的斜率k 不可能为零. 设l 1:y +1=k (x -1)(k ≠0).故x =1k(y +1)+1,代入E 1的方程得:y 2-4ky -⎝ ⎛⎭⎪⎫4k +8=0.因判别式Δ=16k2+4⎝ ⎛⎭⎪⎫4k +8=⎝ ⎛⎭⎪⎫4k +22+28>0,所以l 1与E 中的E 1有且仅有两个不同的交点. 又由E 2和l 1的方程可知,若l 1与E 2有交点,则此交点的坐标为⎝⎛⎭⎪⎫k +1k ,0,且k +1k <-1.即当-12<k <0时,l 1与E 2有唯一交点⎝ ⎛⎭⎪⎫k +1k ,0,从而l 1与E 有三个不同的交点.因此,直线l 1斜率k 的取值范围是⎝⎛⎦⎥⎤-∞,-12∪(0,+∞).课标理数22.B9,M3[2020·湖南卷] 已知函数f (x )=x 3,g (x )=x +x . (1)求函数h (x )=f (x )-g (x )的零点个数,并说明理由;(2)设数列{a n }(n ∈N *)满足a 1=a (a >0),f (a n +1)=g (a n ),证明:存在常数M ,使得对于任意的n ∈N *,都有a n ≤M .课标理数22.B9,M3[2020·湖南卷] 【解答】 (1)由h (x )=x 3-x -x 知,x ∈[0,+∞),而h (0)=0,且h (1)=-1<0,h (2)=6-2>0,则x =0为h (x )的一个零点,且h (x )在(1,2)内有零点.因此,h (x )至少有两个零点.解法一:h ′(x )=3x 2-1-12x -12,记φ(x )=3x 2-1-12x -12,则φ′(x )=6x +14x -32.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ⎝ ⎛⎭⎪⎫33<0,则φ(x )在⎝ ⎛⎭⎪⎫33,1内有零点,所以φ(x )在(0,+∞)内有且只有一个零点.记此零点为x 1,则当x ∈(0,x 1)时,φ(x )<φ(x 1)=0;当x ∈(x 1,+∞)时,φ(x )>φ(x 1)=0.所以,当x ∈(0,x 1)时,h (x )单调递减.而h (0)=0,则h (x )在(0,x 1]内无零点; 当x ∈(x 1,+∞)时,h (x )单调递增,则h (x )在(x 1,+∞)内至多只有一个零点,从而h (x )在(0,+∞)内至多只有一个零点.综上所述,h (x )有且只有两个零点.解法二:由h (x )=x ⎝⎛⎭⎪⎫x 2-1-x -12,记φ(x )=x 2-1-x -12,则φ′(x )=2x +12x -32.当x ∈(0,+∞)时,φ′(x )>0,从而φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.因此h (x )在(0,+∞)内也至多只有一个零点.综上所述,h (x )有且只有两个零点.(2)记h (x )的正零点为x 0,即x 30=x 0+x 0. (i)当a <x 0时,由a 1=a ,即a 1<x 0.而a 32=a 1+a 1<x 0+x 0=x 30,因此a 2<x 0.由此猜测:a n <x 0.下面用数学归纳法证明. ①当n =1时,a 1<x 0显然成立.②假设当n =k (k ≥1)时,a k <x 0成立, 则当n =k +1时,由a 3k +1=a k +a k <x 0+x 0=x 30知,a k +1<x 0. 因此,当n =k +1时,a k +1<x 0成立.故对任意的n ∈N *,a n <x 0成立.(ii)当a ≥x 0时,由(1)知,h (x )在(x 0,+∞)上单调递增,则h (a )≥h (x 0)=0,即a 3≥a +a .从而a 32=a 1+a 1=a +a ≤a 3,即a 2≤a .由此猜测:a n ≤a .下面用数学归纳法证明.①当n =1时,a 1≤a 显然成立.②假设当n =k (k ≥1)时,a k ≤a 成立,则当n =k +1时,由a 3k +1=a k +a k ≤a +a ≤a 3知,a k +1≤a .因此,当n =k +1时,a k +1≤a 成立.故对任意的n ∈N *,a n ≤a 成立.综上所述,存在常数M =max{x 0,a },使得对于任意的n ∈N *,都有a n ≤M .。
【最新】高考数学《函数与导数》专题解析一、选择题1.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质2.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<,3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.3.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.4.三个数2233ln a b c e ===,的大小顺序为( ) A .b <c <a B .b <a <cC .c <a <bD .a <b <c【答案】D 【解析】 【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<.故选:D 【点睛】本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.5.函数()()2ln 43f x x x=+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦ B .32⎡⎫+∞⎪⎢⎣⎭, C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭, 【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.6.已知函数()2f x x x =+,且()1231ln log 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.7.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.8.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.31.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.9.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1,∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.10.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( )A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A 【解析】 【分析】通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-,∵()()()()220g x g x f x x f x x +-=-+--=,∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.11.若点1414(log 7,log 56)在函数()3f x kx =+的图象上,则()f x 的零点为( ) A .1 B .32C .2D .34【答案】B 【解析】 【分析】将点的坐标代入函数()y f x =的解析式,利用对数的运算性质得出k 的值,再解方程()0f x =可得出函数()y f x =的零点.【详解】141414141414log 56log 4log 1412log 212(1log 7)32log 7=+=+=+-=-Q ,2k ∴=-,()2 3.f x x =-+故()f x 的零点为32,故选B.【点睛】本题考查对数的运算性质以及函数零点的概念,解题的关键在于利用对数的运算性质求出参数的值,解题时要正确把握零点的概念,考查运算求解能力,属于中等题.12.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解.【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减,所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.13.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =, 据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.14.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.15.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A .(22,)+∞ B .(,22)-∞C .(,3)-∞D .27(,)5-∞ 【答案】D 【解析】 【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】16.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.17.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-, 令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增, ∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <. 故选:C.【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .17(1)a r +B .17[(1)(1)]a r r r +-+C .18(1)a r +D .18[(1)(1)]a r r r+-+ 【答案】D【解析】【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.【详解】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +, ⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.19.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为()S S a =,则()S a 的图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据函数的部分特征,利用排除法,即可得到本题答案.【详解】①当011a ≤+<时,即10a -≤<,21()(1)2S a a =+;②当11a +=时,即0a =,1()2S a =. 由此可知,当10a -≤<时,21()(1)2S a a =+且1(0)2S =,所以,,A B C 选项不正确. 故选:D【点睛】 本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】 根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x'=+-Q 在()0,∞+上单调递增 且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增 且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭且()g x 单调递增 12x x ∴>由()21ln 2x h x x-'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。
新数学复习题《函数与导数》专题解析一、选择题1.函数()()2ln 43f x x x =+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦B .32⎡⎫+∞⎪⎢⎣⎭,C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭,【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.2.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.3.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.4.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.5.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x =与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.6.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( ) A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e ⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e e x x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-,所以11ea >-, 故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.7.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.8.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f ff ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.9.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.11.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为()A .b a c <<B .c b d <<C .b c a <<D .a b c <<【答案】A 【解析】 【分析】 根据()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系. 【详解】()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称()f x ∴图象关于1x =对称()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫∴-<-< ⎪⎝⎭,即b a c << 本题正确选项:A 【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.12.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =, 据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.13.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A .【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.14.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.15.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( )A .)+∞B .(,-∞C .(,3)-∞D .27(,)5-∞ 【答案】D 【解析】 【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】16.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】 【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-, 因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<. 故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.17.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )A .()()2019202020202019f f >B .()()20192020f f >C .()()2019202020202019f f <D .()()20192020f f <【答案】A 【解析】 【分析】 构造函数()()f xg x x=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.【详解】令()()()0f x g x x x =>,则()()()2xf x f x g x x '-'=. 由已知得,当0x >时,()0g x '>.故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >, 即()()2020201920202019f f >,所以()()2019202020202019f f >.【点睛】本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.18.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.19.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D【解析】由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n ⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果. 【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系.()1x f x e x x'=+-Q 在()0,∞+上单调递增 且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增 且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭且()g x 单调递增 12x x ∴>由()21ln 2x h x x -'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。
函数与导数压轴题命题函数与导数专题131—函数与导数压轴题命题区间目录第一部分构造辅助函数求解导数问题 (2)技法一:“比较法”构造函数 (2)技法二:“拆分法”构造函数 (3)技法三:“换元法”构造函数 (5)技法四:二次(甚至多次)构造函数 (8)强化训练 (10)第二部分利用导数探究含参数函数的性质 (14)技法一:利用导数研究函数的单调性 (14)技法二:利用导数研究函数的极值 (17)技法三:利用导数研究函数的最值 (19)强化训练 (22)第三部分导数的综合应用 (29)技法一:利用导数研究函数的零点或方程的根 (29)技法二:利用导数证明不等式 (31)技法三:利用导数研究不等式恒成立问题 (34)技法四:利用导数研究存在性与任意性问题 (44)技法五:利用导数研究探究性问题 (47)强化训练 (50)第一部分构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.技法一:“比较法”构造函数[典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)单调递减;当x>ln 2时,f′(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f(x)=xe x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线,求证:f(x)≤g(x).证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e0x =1-x e 0x -1-x 0e x e 0+x x .设φ(x )=(1-x )e 0x -(1-x 0)e x ,则φ′(x )=-e 0x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ).技法二:“拆分法”构造函数[典例] 设函数f (x )=ae x ln x +bex -1x ,曲线y =f (x )在点(1,f (1))处的切线为y=e (x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.[解] (1)f ′(x )=ae x ⎝ ⎛⎭⎪⎫ln x +1x +be x-1x -1x 2(x >0),由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2), 所以⎩⎨⎧ f 1=2,f ′1=e ,即⎩⎨⎧ b =2,ae =e ,解得⎩⎨⎧a =1,b =2.(2)证明:由(1)知f (x )=e x ln x +2ex -1x (x >0),从而f (x )>1等价于x ln x >xe -x -2e . 构造函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .构造函数h (x )=xe -x -2e , 则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0;故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1. [方法点拨]对于第(2)问“ae x ln x +be x -1x >1”的证明,若直接构造函数h (x )=ae x ln x +bex -1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“ae x ln x +be x -1x >1”合理拆分为“x ln x >xe -x -2e ”,再分别对左右两边构造函数,进而达到证明原不等式的目的.QQ 群 545423319 微信公众号:中学数学研讨部落[对点演练] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1.解:(1)f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln xx +12-bx 2(x >0).由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得⎩⎨⎧a =1,b =1.(2)证明:由(1)知f (x )=ln x x +1+1x(x >0), 所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x (x >0), 则h ′(x )=2x -2x 2-x 2-1x 2=-x -12x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0, 故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; QQ 群 545423319 微信公众号:中学数学研讨部落当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln xx -1>0, 即f (x )>ln xx -1. 技法三:“换元法”构造函数[典例] 已知函数f (x )=ax 2+x ln x (a ∈R )的图象在点(1,f (1))处的切线与直线x +3y =0垂直.(1)求实数a 的值;(2)求证:当n >m >0时,ln n -ln m >m n -n m . [解] (1)因为f (x )=ax 2+x ln x , 所以f ′(x )=2ax +ln x +1,因为切线与直线x +3y =0垂直,所以切线的斜率为3,所以f ′(1)=3,即2a +1=3,故a =1. (2)证明:要证ln n -ln m >m n -nm ,即证ln n m >m n -n m ,只需证ln n m -m n +nm >0. 令n m =x ,构造函数g (x )=ln x -1x +x (x ≥1), 则g ′(x )=1x +1x 2+1.因为x ∈[1,+∞),所以g ′(x )=1x +1x 2+1>0, 故g (x )在(1,+∞)上单调递增. 由已知n >m >0,得nm >1, 所以g ⎝ ⎛⎭⎪⎫n m >g (1)=0,即证得ln n m -m n +nm >0成立,所以命题得证. [方法点拨]对“待证不等式”等价变形为“ln n m -m n +n m >0”后,观察可知,对“nm ”进行换元,变为“ln x -1x +x >0”,构造函数“g (x )=ln x -1x +x (x ≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g t ln t<12.解:(1)由已知,得f ′(x )=2x ln x +x =x (2ln x +1)(x >0), 令f ′(x )=0,得x =1e.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎫0,1e1e ⎝ ⎛⎭⎪⎫1e ,+∞ f ′(x ) - 0 + f (x )极小值所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞. (2)证明:当0<x ≤1时,f (x )≤0, ∵t >0,∴当0<x ≤1时不存在t =f (s ). 令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)上单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1, 从而ln g tln t=ln s ln f s =ln sln s 2ln s=ln s 2ln s +ln ln s =u2u +ln u , 其中u =ln s . 要使25<ln g t ln t<12成立,只需0<ln u <u 2.当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e )=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12, 令F ′(u )=0,得u =2. 当1<u <2时,F ′(u )>0; 当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0,因此ln u <u2成立.综上,当t >e 2时,有25<ln g tln t<12.技法四:二次(甚至多次)构造函数[典例] (2017·广州综合测试)已知函数f (x )=e x +m -x 3,g (x )=ln(x +1)+2. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值; (2)当m ≥1时,证明:f (x )>g (x )-x 3. [解] (1)因为f (x )=e x +m -x 3, 所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1, 所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2, 所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0. 当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2. 要证e x +m -ln(x +1)-2>0, 只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1. 设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1x +12>0,所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增.因为h ′⎝ ⎛⎭⎪⎫-12=e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=ex +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫-12,0.因为h ′(x 0)=0,所以ex 0+1=1x 0+1,即ln(x 0+1)=-(x 0+1). 当x ∈(-1,x 0)时,h ′(x )<0, 当x ∈(x 0,+∞)时,h ′(x )>0,所以当x =x 0时,h (x )取得最小值h (x 0),所以h(x)≥h(x0)=ex0+1-ln(x0+1)-2=1x0+1+(x0+1)-2>0.综上可知,当m≥1时,f(x)>g(x)-x3.QQ 群545423319 微信公众号:中学数学研讨部落[方法点拨]本题可先进行适当放缩,m≥1时,e x+m≥e x+1,再两次构造函数h(x),p(x).[对点演练](2016·合肥一模)已知函数f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,其中e为自然对数的底数.(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若g(x)≥f(x)对任意的x∈(0,+∞)恒成立,求t的取值范围.解:(1)由f(x)=ex-x ln x,知f′(x)=e-ln x-1,则f′(1)=e-1,而f(1)=e,则所求切线方程为y-e=(e-1)(x-1),即y=(e-1)x+1.(2)∵f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,∴g(x)≥f(x)对任意的x∈(0,+∞)恒成立等价于e x-tx2+x-ex+x ln x≥0对任意的x∈(0,+∞)恒成立,即t≤e x+x-ex+x ln xx2对任意的x∈(0,+∞)恒成立.令F(x)=e x+x-ex+x ln xx2,则F′(x)=xe x+ex-2e x-x ln xx3=1x2⎝⎛⎭⎪⎫e x+e-2e xx-ln x,令G(x)=e x+e-2e xx-ln x,则G′(x)=e x-2xe x-e xx2-1x=e x x-12+e x-xx2>0对任意的x∈(0,+∞)恒成立.∴G(x)=e x+e-2e xx-ln x在(0,+∞)上单调递增,且G(1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0, 即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1, ∴t ≤1,即t 的取值范围是(-∞,1].强化训练1.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点. (1)求a ,b 的值; (2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,比较f (x )与g (x )的大小. 解:(1)因为f ′(x )=e x -1(2x +x 2)+3ax 2+2bx =xe x -1(x +2)+x (3ax +2b ), 又x =-2和x =1为f (x )的极值点, 所以f ′(-2)=f ′(1)=0, 因此⎩⎨⎧-6a +2b =0,3+3a +2b =0,解得⎩⎪⎨⎪⎧a =-13,b =-1.(2)因为a =-13,b =-1, 所以f ′(x )=x (x +2)(e x -1-1), 令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1.因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0; 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0. 所以f (x )在(-2,0)和(1,+∞)上是单调递增的; 在(-∞,-2)和(0,1)上是单调递减的.(3)由(1)可知f (x )=x 2e x -1-13x 3-x 2. 故f (x )-g (x )=x 2e x -1-x 3=x 2(e x -1-x ), 令h (x )=e x -1-x ,则h ′(x )=e x -1-1. 令h ′(x )=0,得x =1,因为当x ∈(-∞,1]时,h ′(x )≤0, 所以h (x )在(-∞,1]上单调递减; 故当x ∈(-∞,1]时,h (x )≥h (1)=0; 因为当x ∈[1,+∞)时,h ′(x )≥0, 所以h (x )在[1,+∞)上单调递增; 故x ∈[1,+∞)时,h (x )≥h (1)=0. 所以对任意x ∈(-∞,+∞),恒有h (x )≥0; 又x 2≥0,因此f (x )-g (x )≥0.故对任意x ∈(-∞,+∞),恒有f (x )≥g (x ). 2.(2015·北京高考)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.解:(1)因为f (x )=ln(1+x )-ln(1-x )(-1<x <1), 所以f ′(x )=11+x +11-x,f ′(0)=2. QQ 群 545423319 微信公众号:中学数学研讨部落 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明:令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k +21-x 2.所以当0<x <4k -2k 时,h ′(x )<0, 因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减. 故当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.QQ 群 545423319 微信公众号:中学数学研讨部落所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.3.(2016·广州综合测试)已知函数f (x )=me x -ln x -1. (1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当m ≥1时,证明:f (x )>1. 解:(1)当m =1时,f (x )=e x -ln x -1, 所以f ′(x )=e x -1x .所以f (1)=e -1,f ′(1)=e -1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:当m ≥1时,f (x )=me x -ln x -1≥e x -ln x -1(x >0). 要证明f (x )>1,只需证明e x -ln x -2>0.设g (x )=e x -ln x -2,则g ′(x )=e x -1x . 设h (x )=e x -1x ,则h ′(x )=e x +1x 2>0,所以函数h (x )=g ′(x )=e x -1x 在(0,+∞)上单调递增. 因为g ′⎝ ⎛⎭⎪⎫12=e 12-2<0,g ′(1)=e -1>0,所以函数g ′(x )=e x-1x 在(0,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫12,1.因为g ′(x 0)=0,所以ex 0=1x 0,即ln x 0=-x 0.当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0. 所以当x =x 0时,g (x )取得最小值g (x 0). 故g (x )≥g (x 0)=ex 0-ln x 0-2=1x 0+x 0-2>0.综上可知,当m ≥1时,f (x )>1.QQ 群 545423319 微信公众号:中学数学研讨部落4.(2017·石家庄质检)已知函数f (x )=a x -x 2e x (x >0),其中e 为自然对数的底数.(1)当a =0时,判断函数y =f (x )极值点的个数;(2)若函数有两个零点x 1,x 2(x 1<x 2),设t =x 2x 1,证明:x 1+x 2随着t 的增大而增大.解:(1)当a =0时,f (x )=-x 2e x (x >0),f ′(x )=-2x ·e x --x 2·e xe x 2=x x -2e x,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减, 当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增, 所以x =2是函数的一个极小值点,无极大值点, 即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=ae x ,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=aex 1,x 322=aex 2,可得32ln x 1=ln a +x 1,32ln x 2=ln a +x 2.故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=32ln t ,解得x 1=32ln t t -1,x 2=32t ln tt -1.所以x 1+x 2=32·t +1ln tt -1.①令h (x )=x +1ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1xx -12.令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎪⎫x -1x 2. 当x ∈(1,+∞)时,u ′(x )>0. 因此,u (x )在(1,+∞)上单调递增, 故对于任意的x ∈(1,+∞),u (x )>u (1)=0, 由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增. 因此,由①可得x 1+x 2随着t 的增大而增大.第二部分 利用导数探究含参数函数的性质技法一:利用导数研究函数的单调性[典例] 已知函数g (x )=ln x +ax 2+bx ,函数g (x )的图象在点(1,g (1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.[解](1)依题意得g′(x)=1x+2ax+b(x>0).由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得g′(x)=2ax2-2a+1x+1x=2ax-1x-1x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1,当a>0时,令g′(x)=0,得x=1或x=12a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<12a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<12a,若12a=1,即a=12在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增, 当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增. [方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a =0或a >0两种情况,再比较12a 和1的大小. [对点演练](2016·太原一模)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)设函数h (x )=f (x )+1+ax ,求函数h (x )的单调区间. 解:(1)当a =2时,f (x )=x -2ln x ,f (1)=1, 即切点为(1,1),∵f ′(x )=1-2x ,∴f ′(1)=1-2=-1,∴曲线y =f (x )在点(1,1)处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由题意知,h (x )=x -a ln x +1+ax (x >0), 则h ′(x )=1-a x -1+a x 2=x 2-ax -1+ax 2=x +1[x -1+a]x 2,①当a +1>0,即a >-1时, 令h ′(x )>0,∵x >0,∴x >1+a , 令h ′(x )<0,∵x >0,∴0<x <1+a .②当a+1≤0,即a≤-1时,h′(x)>0恒成立,综上,当a>-1时,h(x)的单调递减区间是(0,a+1),单调递增区间是(a+1,+∞);当a≤-1时,h(x)的单调递增区间是(0,+∞),无单调递减区间.技法二:利用导数研究函数的极值[典例]设a>0,函数f(x)=12x2-(a+1)x+a(1+ln x).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.[解](1)由已知,得f′(x)=x-(a+1)+ax(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+a2=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f′(x)=x-(a+1)+ax=x2-a+1x+ax=x-1x-ax(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a2+a ln a,极小值是f(1)=-1 2.②当a=1时,f′(x)=x-12x≥0,所以函数f(x)在定义域(0,+∞)内单调递增,此时f (x )没有极值点,故无极值. ③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增; 若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减; 若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点,函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a , 极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a . [方法点拨]对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1) 参数是否影响f ′(x )零点的存在;QQ 群 545423319 微信公众号:中学数学研讨部落 (2)参数是否影响f ′(x )不同零点(或零点与函数定义域中的间断点)的大小; (3)参数是否影响f ′(x )在零点左右的符号(如果有影响,需要分类讨论). [对点演练](2016·山东高考)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x .当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增, 所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.技法三:利用导数研究函数的最值[典例] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[解] (1)由题意,f ′(x )=1x -a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0; 当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.(2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ; 当ln 2≤a <1时,最小值为f (2)=ln 2-2a .综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . [方法点拨](1)在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在,也可能只存在一个,或既无最大值也无最小值;(2)在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点. [对点演练] 1.若函数f (x )=x x 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A .33 B .3 C .3+1 D .3-1解析:选D f ′(x )=x 2+a -2x 2x 2+a 2=a -x 2x 2+a2.令f ′(x )=0,得x =a 或x =-a (舍去),若a ≤1,即0<a ≤1时,在[1,+∞)上f ′(x )<0,f (x )max =f (1)=11+a =33.解得a =3-1,符合题意.若a >1,即a >1时,在[1,a )上f ′(x )>0,在(a ,+∞)上f ′(x )<0,所以f (x )max =f (a )=a 2a =33, 解得a =34<1,不符合题意,综上知,a =3-1. 2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[]t ,t +2(t >0)上的最小值. 解:(1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e . 又g ′(x )=(-x 2+3x +2)e x , 故切线的斜率为g ′(1)=4e . 所以切线方程为y -e =4e (x -1), 即y =4ex -3e .(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x⎝ ⎛⎭⎪⎫0,1e 1e ⎝ ⎛⎭⎪⎫1e ,+∞f ′(x ) - 0 + f (x )极小值①当t ≥1e 时,在区间[]t ,t +2上f (x )为增函数, 所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .综上,f (x )min =⎩⎪⎨⎪⎧t ln t ,t ≥1e ,-1e ,0<t <1e .强化训练1.已知函数f (x )=x -12ax 2-ln(1+x )(a >0). (1)若x =2是f (x )的极值点,求a 的值; (2)求f (x )的单调区间. 解:f ′(x )=x 1-a -axx +1,x ∈(-1,+∞). (1)依题意,得f ′(2)=0,即21-a -2a 2+1=0,解得a =13.经检验,a =13符合题意,故a 的值为13. (2)令f ′(x )=0,得x 1=0,x 2=1a-1.①当0<a <1时,f (x )与f ′(x )的变化情况如下: x (-1,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) - 0 + 0 -f (x )f (x 1)f (x 2)∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞.②当a =1时,f (x )的单调减区间是(-1,+∞). ③当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,1a -1和(0,+∞).综上,当0<a <1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞;当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,1a -1和(0,+∞).2.已知函数f (x )=⎩⎨⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:=3. (2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增.因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0; 当a >0时,f (x )在[1,e ]上单调递增, 则f (x )在[1,e ]上的最大值为f (e )=a .综上所述,当a ≥2时,f (x )在[-1,e ]上的最大值为a ; 当a <2时,f (x )在[-1,e ]上的最大值为2. 3.已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f ′(x )=a -1x =ax -1x (x >0).当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. 当a >0时,由f ′(x )<0,得0<x <1a , 由f ′(x )>0,得x >1a ,∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,即f (x )在x =1a 处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=0,解得a =1,∴f (x )≥bx -2⇒1+1x -ln xx ≥b , 令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2, 令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2, 故实数b 的取值范围为⎝ ⎛⎦⎥⎤-∞,1-1e 2. 4.已知方程f (x )·x 2-2ax +f (x )-a 2+1=0,其中a ∈R ,x ∈R . (1)求函数f (x )的单调区间;(2)若函数f (x )在[0,+∞)上存在最大值和最小值,求实数a 的取值范围. 解:(1)由f (x )·x 2-2ax +f (x )-a 2+1=0得f (x )=2ax +a 2-1x 2+1,则f ′(x )=-2x +a ax -1x 2+12.①当a =0时,f ′(x )=2x x 2+12,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减, 即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:x (-∞,x 1)x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) - 0 + 0 -f (x )极小值极大值故f (x )的单调递减区间是(-∞,-a ),⎝ ⎛⎭⎪⎫1a ,+∞,单调递增区间是⎝ ⎛⎭⎪⎫-a ,1a . ③当a <0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:x (-∞,x 2)x 2 (x 2,x 1) x 1 (x 1,+∞)f ′(x ) + 0 - 0 +f (x )极大值极小值所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,1a ,(-a ,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a ,-a .(2)由(1)得,a =0不合题意.当a >0时,由(1)得,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以f (x )在[0,+∞)上存在最大值f ⎝ ⎛⎭⎪⎫1a =a 2>0.设x 0为f (x )的零点,易知x 0=1-a 22a ,且x 0<1a . 从而当x >x 0时,f (x )>0;当x <x 0时,f (x )<0. 若f (x )在[0,+∞)上存在最小值,必有f (0)≤0, 解得-1≤a ≤1.所以当a >0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(0,1].当a <0时,由(1)得,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增,所以f (x )在[0,+∞)上存在最小值f (-a )=-1.易知当x ≥-a 时,-1≤f (x )<0,所以若f (x )在[0,+∞)上存在最大值,必有f (0)≥0,解得a ≥1或a ≤-1.所以当a <0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(-∞,-1].综上所述,实数a 的取值范围是(-∞,-1]∪(0,1]. 5.设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝ ⎛⎭⎪⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值;(2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值D ;(3)在(2)中,取a 0=b 0=0,求z =b -a 24满足条件D ≤1时的最大值. 解:(1)由题意,f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b , 则f ′(sin x )=(2sin x -a )cos x ,因为-π2<x <π2,所以cos x >0,-2<2sin x <2. ①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值;②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值;③对于-2<a <2,在⎝ ⎛⎭⎪⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝ ⎛⎭⎪⎫a 2=b-a 24.(2)当-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|, 当(a 0-a )(b -b 0)≥0,x =π2时等号成立, 当(a 0-a )(b -b 0)<0时,x =-π2时等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|.(3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1,从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1. 由此可知,z =b -a 24满足条件D ≤1的最大值为1. 6.已知函数f (x )=x -1x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间;(2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝ ⎛⎦⎥⎤0,12,求h (x 1)-h (x 2)的最小值.解:(1)由题意得F (x )=x -1x -a ln x (x >0),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,所以F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为 x 1=a -a 2-42,x 2=a +a 2-42,所以F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞, F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x +a ln x ,x ∈(0,+∞)求导得, h ′(x )=1+1x 2+a x =x 2+ax +1x 2,h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , 所以x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x -x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x -1x ln x +x -1x ,即H ′(x )=2⎝ ⎛⎭⎪⎫1x 2-1ln x =21-x1+x ln xx 2(x >0).当x ∈⎝ ⎛⎦⎥⎤0,12时,H ′(x )<0,所以H (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1=h (x 1)-h (x 2),所以[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln 2-3.第三部分 导数的综合应用(一)技法一:利用导数研究函数的零点或方程的根[典例] (2016·北京高考)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [解] (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点. (3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0.当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增.所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0.故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.[方法点拨]利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[对点演练]已知函数f (x )=(2-a )x -2(1+ln x )+a .(1)当a =1时,求f (x )的单调区间.(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值. 解:(1)当a =1时,f (x )=x -1-2ln x ,则f ′(x )=1-2x ,其中x ∈(0,+∞).由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2,故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)f (x )=(2-a )x -2(1+ln x )+a=(2-a )(x -1)-2ln x ,令m (x )=(2-a )(x -1),h (x )=2ln x ,其中x >0,则f (x )=m (x )-h (x ).①当a <2时,m (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,h (x )在⎝ ⎛⎭⎪⎫0,12上为增函数, 结合图象知,若f (x )在⎝ ⎛⎭⎪⎫0,12上无零点, 则m ⎝ ⎛⎭⎪⎫12≥h ⎝ ⎛⎭⎪⎫12, 即(2-a )⎝ ⎛⎭⎪⎫12-1≥2ln 12, 所以a ≥2-4ln 2,所以2-4ln 2≤a <2.②当a ≥2时,在⎝ ⎛⎭⎪⎫0,12上m (x )≥0,h (x )<0, 所以f (x )>0,所以f (x )在⎝ ⎛⎭⎪⎫0,12上无零点. 由①②得a ≥2-4ln 2,所以a min =2-4ln 2.技法二:利用导数证明不等式[典例] 设f (x )=e x -1.(1)当x >-1时,证明:f (x )>2x 2+x -1x +1; (2)当a >ln 2-1且x >0时,证明:f (x )>x 2-2ax .[证明] (1)当x >-1时,f (x )>2x 2+x -1x +1,即e x-1>2x2+x-1x+1=2x-1,当且仅当ex>2x,即e x-2x>0恒成立时原不等式成立.令g(x)=e x-2x,则g′(x)=e x-2.令g′(x)=0,即e x-2=0,解得x=ln 2.当x∈(-∞,ln 2)时,g′(x)=e x-2<0,故函数g(x)在(-1,ln 2)上单调递减;当x∈[ln 2,+∞)时,g′(x)=e x-2≥0,故函数g(x)在[ln 2,+∞)上单调递增.所以g(x)在(-1,+∞)上的最小值为g(ln 2)=e ln 2-2ln 2=2(1-ln 2)>0,所以在(-1,+∞)上有g(x)≥g(ln 2)>0,即e x>2x.故当x∈(-1,+∞)时,f(x)>2x2+x-1x+1.(2)f(x)>x2-2ax,即e x-1>x2-2ax,则e x-x2+2ax-1>0.令p(x)=e x-x2+2ax-1,则p′(x)=e x-2x+2a,令h(x)=e x-2x+2a,则h′(x)=e x-2.由(1)可知,当x∈(-∞,ln 2)时,h′(x)<0,函数h(x)单调递减;当x∈[ln 2,+∞)时,h′(x)≥0,函数h(x)单调递增.所以h(x)的最小值为h(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a.因为a>ln 2-1,所以h(ln 2)>2-2ln 2+2(ln 2-1)=0,即h(x)≥h(ln 2)>0,所以p′(x)=h(x)>0,即p(x)在R上为增函数,故p(x)在(0,+∞)上为增函数,所以p(x)>p(0),而p(0)=0,所以p(x)=e x-x2+2ax-1>0,即当a>ln 2-1且x>0时,f(x)>x2-2ax.[方法点拨]对于最值与不等式的证明相结合试题的求解往往先对不等式进行化简,然后通过构造新函数,转化为函数的最值,利用导数来解决.解决此类问题应该注意三个方面:(1)在化简所证不等式的时候一定要注意等价变形,尤其是两边同时乘以或除以一个数或式的时候,注意该数或式的符号;(2)灵活构造函数,使研究的函数形式简单,便于计算最值;(3)在利用导数求解最值时要注意定义域的限制,且注意放缩法的灵活应用.[对点演练](2017·兰州诊断)已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数y=f(x)的单调区间;(3)若x1<ln 2,x2>ln 2,且f(x1)=f(x2),试证明:x1+x2<2ln 2.解:(1)由f(x)=e x-ax-1,得f′(x)=e x-a.又f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x-1,f′(x)=e x-2.由f′(x)=e x-2>0,得x>ln 2.所以函数y=f(x)在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.(2)证明:设x>ln 2,所以2ln 2-x<ln 2,f(2ln 2-x)=e(2ln 2-x)-2(2ln 2-x)-1=4e x+2x-4ln 2-1.令g(x)=f(x)-f(2ln 2-x)=e x-4e x-4x+4ln 2(x≥ln 2),所以g′(x)=e x+4e-x-4≥0,当且仅当x=ln 2时,等号成立,所以g(x)=f(x)-f(2ln 2-x)在(ln 2,+∞)上单调递增.又g(ln 2)=0,所以当x>ln 2时,g(x)=f(x)-f(2ln 2-x)>g(ln 2)=0,即f(x)>f(2ln 2-x),所以f(x2)>f(2ln 2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2ln 2-x2),由于x2>ln 2,所以2ln 2-x2<ln 2,因为x1<ln 2,由(1)知函数y=f(x)在区间(-∞,ln 2)上单调递减,所以x1<2ln 2-x2,即x1+x2<2ln 2.技法三:利用导数研究不等式恒成立问题[典例]设f(x)=e x-a(x+1).(1)若∀x∈R,f(x)≥0恒成立,求正实数a的取值范围;(2)设g(x)=f(x)+ae x,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.[解](1)因为f(x)=e x-a(x+1),所以f′(x)=e x-a.由题意,知a>0,故由f′(x)=e x-a=0,解得x=ln a.故当x∈(-∞,ln a)时,f′(x)<0,函数f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若∀x∈R,f(x)≥0恒成立,即f(x)=e x-a(x+1)≥0恒成立,故有-a ln a≥0,又a>0,所以ln a≤0,解得0<a≤1.所以正实数a的取值范围为(0,1].(2)设x1,x2是任意的两个实数,且x1<x2.则直线AB的斜率为k=g x2-g x1x2-x1,由已知k>m,即g x2-g x1x2-x1>m.因为x2-x1>0,所以g(x2)-g(x1)>m(x2-x1),即g(x2)-mx2>g(x1)-mx1.因为x1<x2,所以函数h(x)=g(x)-mx在R上为增函数,故有h′(x)=g′(x)-m≥0恒成立,所以m≤g′(x).而g′(x)=e x-a-ae x,又a≤-1<0,故g′(x)=e x+-ae x-a≥2ex·-ae x-a=2-a-a.而2-a-a=2-a+(-a)2。
2020年高考数学压轴必刷题专题01函数概念与基本初等函数(理科数学)1.【2019年天津理科08】已知a ∈R .设函数f (x )={x 2−2ax +2a ,x ≤1,x −alnx ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( ) A .[0,1]B .[0,2]C .[0,e ]D .[1,e ]【解答】解:当x =1时,f (1)=1﹣2a +2a =1>0恒成立;当x <1时,f (x )=x 2﹣2ax +2a ≥0⇔2a ≥x 2x−1恒成立,令g (x )=x 2x−1=−x 21−x =−(1−x−1)21−x =−(1−x)2−2(1−x)+11−x =−(1﹣x +11−x−2)≤﹣(2√(1−x)⋅11−x−2)=0, ∴2a ≥g (x )max =0,∴a >0.当x >1时,f (x )=x ﹣alnx ≥0⇔a ≤xlnx 恒成立,令h (x )=xlnx ,则h ′(x )=lnx−x⋅1x (lnx)2=lnx−1(lnx)2, 当x >e 时,h ′(x )>0,h (x )递增, 当1<x <e 时,h ′′(x )<0,h (x )递减, ∴x =e 时,h (x )取得最小值h (e )=e , ∴a ≤h (x )min=e ,综上a 的取值范围是[0,e ]. 故选:C .2.【2019年新课标3理科11】设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A .f (log 314)>f (2−32)>f (2−23)B .f (log 314)>f (2−23)>f (2−32)C .f (2−32)>f (2−23)>f (log 314)D .f (2−23)>f (2−32)>f (log 314)【解答】解:∵f (x )是定义域为R 的偶函数 ∴f(log 314)=f(log 34),∵log 34>log 33=1,<0<2−32<2−23<20=1, ∴0<2−32<2−23<log 34f (x )在(0,+∞)上单调递减, ∴f(2−32)>f(2−23)>f(log 314),故选:C .3.【2019年全国新课标2理科12】设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m ],都有f (x )≥−89,则m 的取值范围是( ) A .(﹣∞,94]B .(﹣∞,73]C .(﹣∞,52]D .(﹣∞,83]【解答】解:因为f (x +1)=2f (x ),∴f (x )=2f (x ﹣1),∵x ∈(0,1]时,f (x )=x (x ﹣1)∈[−14,0],∴x ∈(1,2]时,x ﹣1∈(0,1],f (x )=2f (x ﹣1)=2(x ﹣1)(x ﹣2)∈[−12,0]; ∴x ∈(2,3]时,x ﹣1∈(1,2],f (x )=2f (x ﹣1)=4(x ﹣2)(x ﹣3)∈[﹣1,0], 当x ∈(2,3]时,由4(x ﹣2)(x ﹣3)=−89解得m =73或m =83, 若对任意x ∈(﹣∞,m ],都有f (x )≥−89,则m ≤73.故选:B .4.【2019年浙江09】设a ,b ∈R ,函数f (x )={x ,x <0,13x 3−12(a +1)x 2+ax ,x ≥0.若函数y =f (x )﹣ax ﹣b 恰有3个零点,则( ) A .a <﹣1,b <0B .a <﹣1,b >0C .a >﹣1,b <0D .a >﹣1,b >0【解答】解:当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a ;y =f (x )﹣ax ﹣b 最多一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b , y ′=x 2﹣(a +1)x ,当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上递增,y =f (x )﹣ax ﹣b 最多一个零点.不合题意;当a +1>0,即a <﹣1时,令y ′>0得x ∈[a +1,+∞),函数递增,令y ′<0得x ∈[0,a +1),函数递减;函数最多有2个零点;根据题意函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如右图: ∴b 1−a<0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3. 故选:C .5.【2018年新课标1理科09】已知函数f(x)={e x,x≤0lnx,x>0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.6.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3=lg0.3−lg5,b=log20.3=lg0.3lg2,∴a+b=lg0.3lg2−lg0.3lg5=lg0.3(lg5−lg2)lg2lg5=lg0.3lg52lg2lg5,ab=−lg0.3lg2⋅lg0.3lg5=lg0.3⋅lg103lg2lg5,∵lg 103>lg52,lg0.3lg2lg5<0,∴ab<a+b<0.故选:B.7.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .√3B .√32C .√33D .0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=√3,√33,0时, 此时得到的圆心角为π3,π6,0,然而此时x =0或者x =1时,都有2个y 与之对应, 而我们知道函数的定义就是要求一个x 只能对应一个y , 因此只有当x =√32,此时旋转π6,此时满足一个x 只会对应一个y , 因此答案就选:B . 故选:B .8.【2017年新课标1理科11】设x 、y 、z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【解答】解:x 、y 、z 为正数, 令2x =3y =5z =k >1.lgk >0. 则x =lgk lg2,y =lgk lg3,z =lgklg5. ∴3y =lgk lg √33,2x =lgk lg √2,5z =lgklg √55. ∵√33=√96>√86=√2,√2=√3210>√2510=√55. ∴lg √33>lg √2>lg √55>0. ∴3y <2x <5z . 另解:x 、y 、z 为正数, 令2x =3y =5z =k >1.lgk >0. 则x =lgklg2,y =lgklg3,z =lgklg5. ∴2x 3y=23×lg3lg2=lg9lg8>1,可得2x >3y ,5z 2x=52×lg2lg5=lg25lg52>1.可得5z >2x .综上可得:5z >2x >3y .解法三:对k 取特殊值,也可以比较出大小关系. 故选:D .9.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093【解答】解:由题意:M ≈3361,N ≈1080, 根据对数性质有:3=10lg 3≈100.48, ∴M ≈3361≈(100.48)361≈10173, ∴M N≈101731080=1093,故选:D .10.【2017年天津理科08】已知函数f (x )={x 2−x +3,x ≤1x +2x,x >1,设a ∈R ,若关于x 的不等式f (x )≥|x 2+a |在R 上恒成立,则a 的取值范围是( ) A .[−4716,2]B .[−4716,3916] C .[﹣2√3,2]D .[﹣2√3,3916]【解答】解:当x ≤1时,关于x 的不等式f (x )≥|x 2+a |在R 上恒成立, 即为﹣x 2+x ﹣3≤x2+a ≤x 2﹣x +3, 即有﹣x 2+12x ﹣3≤a ≤x 2−32x +3,由y =﹣x 2+12x ﹣3的对称轴为x =14<1,可得x =14处取得最大值−4716;由y =x 2−32x +3的对称轴为x =34<1,可得x =34处取得最小值3916,则−4716≤a ≤3916①当x >1时,关于x 的不等式f (x )≥|x2+a |在R 上恒成立,即为﹣(x +2x )≤x 2+a ≤x +2x ,即有﹣(32x +2x )≤a ≤x 2+2x ,由y =﹣(32x +2x )≤﹣2√3x 2⋅2x =−2√3(当且仅当x =2√31)取得最大值﹣2√3;由y =12x +2x ≥2√12x ⋅2x =2(当且仅当x =2>1)取得最小值2. 则﹣2√3≤a ≤2②由①②可得,−4716≤a ≤2.另解:作出f (x )的图象和折线y =|x2+a |当x ≤1时,y =x 2﹣x +3的导数为y ′=2x ﹣1, 由2x ﹣1=−12,可得x =14, 切点为(14,4516)代入y =−x 2−a ,解得a =−4716; 当x >1时,y =x +2x的导数为y ′=1−22, 由1−2x 2=12,可得x =2(﹣2舍去), 切点为(2,3),代入y =x2+a ,解得a =2. 由图象平移可得,−4716≤a ≤2. 故选:A .11.【2016年新课标2理科12】已知函数f (x )(x ∈R )满足f (﹣x )=2﹣f (x ),若函数y =x+1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑ m i=1(x i +y i )=( ) A .0B .mC .2mD .4m【解答】解:函数f (x )(x ∈R )满足f (﹣x )=2﹣f (x ),即为f (x )+f (﹣x )=2, 可得f (x )关于点(0,1)对称,函数y =x+1x ,即y =1+1x 的图象关于点(0,1)对称, 即有(x 1,y 1)为交点,即有(﹣x 1,2﹣y 1)也为交点, (x 2,y 2)为交点,即有(﹣x 2,2﹣y 2)也为交点, …则有∑ m i=1(x i +y i )=(x 1+y 1)+(x 2+y 2)+…+(x m +y m )=12[(x 1+y 1)+(﹣x 1+2﹣y 1)+(x 2+y 2)+(﹣x 2+2﹣y 2)+…+(x m +y m )+(﹣x m +2﹣y m )] =m . 故选:B .12.【2016年上海理科18】设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于命题:①f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数;②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是以T 为周期的函数,则f (x )、g (x )、h (x )均是以T 为周期的函数,下列判断正确的是( ) A .①和②均为真命题 B .①和②均为假命题 C .①为真命题,②为假命题D .①为假命题,②为真命题 【解答】解:①不成立.可举反例:f (x )={2x ,x ≤1−x +3,x >1.g (x )={2x +3,x ≤0−x +3,0<x <12x ,x ≥1,h (x )={−x ,x ≤02x ,x >0.②∵f (x )+g (x )=f (x +T )+g (x +T ),f (x )+h (x )=f (x +T )+h (x +T ),h (x )+g (x )=h (x +T )+g (x +T ),前两式作差可得:g (x )﹣h (x )=g (x +T )﹣h (x +T ),结合第三式可得:g (x )=g (x +T ),h (x )=h (x +T ),同理可得:f (x )=f (x +T ),因此②正确. 故选:D .13.【2016年天津理科08】已知函数f (x )={x 2+(4a −3)x +3a ,x <0log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2﹣x 恰好有两个不相等的实数解,则a 的取值范围是( ) A .(0,23]B .[23,34]C .[13,23]∪{34}D .[13,23)∪{34}【解答】解:y =log a (x +1)+1在[0,+∞)递减,则0<a <1, 函数f (x )在R 上单调递减,则:{3−4a2≥00<a <102+(4a −3)⋅0+3a ≥log a (0+1)+1; 解得,13≤a ≤34;由图象可知,在[0,+∞)上,|f (x )|=2﹣x 有且仅有一个解, 故在(﹣∞,0)上,|f (x )|=2﹣x 同样有且仅有一个解, 当3a >2即a >23时,联立|x 2+(4a ﹣3)x +3a |=2﹣x , 则△=(4a ﹣2)2﹣4(3a ﹣2)=0, 解得a =34或1(舍去),当1≤3a ≤2时,由图象可知,符合条件, 综上:a 的取值范围为[13,23]∪{34},故选:C .14.【2015年新课标2理科10】如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )A .B .C .D .【解答】解:当0≤x ≤π4时,BP =tan x ,AP =2+BP 2=√4+tan 2x , 此时f (x )=√4+tan 2x +tan x ,0≤x ≤π4,此时单调递增,当P 在CD 边上运动时,π4≤x ≤3π4且x ≠π2时,如图所示,tan ∠POB =tan (π﹣∠POQ )=tan x =﹣tan ∠POQ =−PQ OQ =−1OQ, ∴OQ =−1tanx, ∴PD =AO ﹣OQ =1+1tanx ,PC =BO +OQ =1−1tanx , ∴P A +PB =√(1−1tanx )2+1+√(1+1tanx )2+1, 当x =π2时,P A +PB =2√2, 当P 在AD 边上运动时,3π4≤x ≤π,P A +PB =√4+tan 2x −tan x ,由对称性可知函数f (x )关于x =π2对称, 且f (π4)>f (π2),且轨迹为非线型,排除A ,C ,D , 故选:B .15.【2015年浙江理科07】存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sin x B.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|【解答】解:A.取x=0,则sin2x=0,∴f(0)=0;取x=π2,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sin x;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令x+1=t,则f(x2+2x)=|x+1|,化为f(t2﹣1)=|t|;令t2﹣1=x,则t=±√x+1;∴f(x)=√x+1;即存在函数f(x)=√x+1,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.16.【2015年北京理科07】如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}【解答】解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选:C.17.【2015年北京理科08】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故C 正确;对于D ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故D 错误.故选:C .18.【2015年天津理科07】已知定义在R 上的函数f (x )=2|x ﹣m |﹣1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a【解答】解:∵f (x )为偶函数;∴f (﹣x )=f (x );∴2|﹣x ﹣m |﹣1=2|x ﹣m |﹣1;∴|﹣x ﹣m |=|x ﹣m |;(﹣x ﹣m )2=(x ﹣m )2;∴mx =0;∴m =0;∴f (x )=2|x |﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|log 0.53|)=f (log 23),b =f (log 25),c =f (0); ∵0<log 23<log 25;∴c <a <b .故选:C .19.【2015年天津理科08】已知函数f (x )={2−|x|,x ≤2(x −2)2,x >2,函数g (x )=b ﹣f (2﹣x ),其中b ∈R ,若函数y =f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .(74,+∞)B .(﹣∞,74)C .(0,74)D .(74,2) 【解答】解:∵g (x )=b ﹣f (2﹣x ),∴y =f (x )﹣g (x )=f (x )﹣b +f (2﹣x ),由f (x )﹣b +f (2﹣x )=0,得f (x )+f (2﹣x )=b ,设h (x )=f (x )+f (2﹣x ),若x ≤0,则﹣x ≥0,2﹣x ≥2,则h (x )=f (x )+f (2﹣x )=2+x +x 2,若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,则h (x )=f (x )+f (2﹣x )=2﹣x +2﹣|2﹣x |=2﹣x +2﹣2+x =2,若x >2,﹣x <﹣2,2﹣x <0,则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x |=x 2﹣5x +8.即h (x )={x 2+x +2,x ≤02,0<x ≤2x 2−5x +8,x >2,作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x +x 2=(x +12)2+74≥74,当x >2时,h (x )=x 2﹣5x +8=(x −52)2+74≥74,故当b =74时,h (x )=b ,有两个交点,当b =2时,h (x )=b ,有无数个交点,由图象知要使函数y =f (x )﹣g (x )恰有4个零点,即h (x )=b 恰有4个根,则满足74<b <2, 故选:D .20.【2014年上海理科18】设f(x)={(x−a)2,x≤0x+1x+a,x>0,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x+1x+a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.21.【2013年新课标1理科11】已知函数f(x)={−x2+2x,x≤0ln(x+1),x>0,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.22.【2013年天津理科08】已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若[−12,12]⊆A,则实数a的取值范围是()A.(1−√52,0)B.(1−√32,0)C.(1−√52,0)∪(0,1+√32)D.(−∞,1−√52)【解答】解:取a=−12时,f(x)=−12x|x|+x,∵f(x+a)<f(x),∴(x−12)|x−12|+1>x|x|,(1)x<0时,解得−34<x<0;(2)0≤x≤12时,解得0≤x≤12;(3)x>12时,解得12<x<54,综上知,a=−12时,A=(−34,54),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选:A.23.【2011年新课标1理科12】函数y=11−x的图象与函数y=2sinπx,(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.8B.6C.4D.2【解答】解:函数y1=11−x,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象,如图,当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在(1,32)和(52,72)上是减函数; 在(32,52)和(72,4)上是增函数. ∴函数y 1在(1,4)上函数值为负数,且与y 2的图象有四个交点E 、F 、G 、H相应地,y 1在(﹣2,1)上函数值为正数,且与y 2的图象有四个交点A 、B 、C 、D且:x A +x H =x B +x G =x C +x F =x D +x E =2,故所求的横坐标之和为8.故选:A .24.【2011年北京理科08】设A (0,0),B (4,0),C (t +4,4),D (t ,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}【解答】解:当t =0时,▱ABCD 的四个顶点是A (0,0),B (4,0),C (4,4),D (0,4),符合条件的点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共九个,N (t )=9,故选项D 不正确.当t =1时,▱ABCD 的四个顶点是A (0,0),B (4,0),C (5,4),D (1,4),同理知N (t )=12,故选项A 不正确.当t =2时,▱ABCD 的四个顶点是A (0,0),B (4,0),C (6,4),D (2,4),同理知N (t )=11,故选项B 不正确.故选:C .25.【2011年天津理科08】对实数a 与b ,定义新运算“⊗”:a ⊗b ={a ,a −b ≤1b ,a −b >1.设函数f (x )=(x 2﹣2)⊗(x ﹣x 2),x ∈R .若函数y =f (x )﹣c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(−∞,−2]∪(−1,32)B .(−∞,−2]∪(−1,−34)C .(−∞,14)∪(14,+∞)D .(−1,−34)∪[14,+∞) 【解答】解:∵a ⊗b ={a ,a −b ≤1b ,a −b >1.,∴函数f (x )=(x 2﹣2)⊗(x ﹣x 2)={x 2−2,−1≤x ≤32x −x 2,x <−1或x >32, 由图可知,当c ∈(−∞,−2]∪(−1,−34)函数f (x ) 与y =c 的图象有两个公共点,∴c 的取值范围是 (−∞,−2]∪(−1,−34),故选:B .26.【2010年新课标1理科11】已知函数f(x)={|lgx|,0<x ≤10−12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)【解答】解:作出函数f (x )的图象如图,不妨设a <b <c ,则−lga =lgb =−12c +6∈(0,1)ab =1,0<−12c +6<1则abc =c ∈(10,12).故选:C .27.【2010年上海理科17】若x 0是方程(12)x =x 13的解,则x 0属于区间( ) A .(23,1) B .(12,23) C .(13,12) D .(0,13) 【解答】解:∵(12)13>(13)13,(12)12<(12)13,∴x 0属于区间(13,12). 故选:C .28.【2019年江苏14】设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当x ∈(0,2]时,f (x )=√1−(x −1)2,g (x )={k(x +2),0<x ≤1,−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是 .【解答】解:作出函数f (x )与g (x )的图象如图,由图可知,函数f (x )与g (x )=−12(1<x ≤2,3<x ≤4,5<x ≤6,7<x ≤8)仅有2个实数根; 要使关于x 的方程f (x )=g (x )有8个不同的实数根,则f (x )=√1−(x −1)2,x ∈(0,2]与g (x )=k (x +2),x ∈(0,1]的图象有2个不同交点, 由(1,0)到直线kx ﹣y +2k =0的距离为1,得√k 2+1=1,解得k =√24(k >0), ∵两点(﹣2,0),(1,1)连线的斜率k =13,∴13≤k <√24. 即k 的取值范围为[13,√24). 故答案为:[13,√24). 29.【2018年浙江15】已知λ∈R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .【解答】解:当λ=2时函数f (x )={x −4,x ≥2x 2−4x +3,x <2,显然x ≥2时,不等式x ﹣4<0的解集:{x |2≤x <4};x <2时,不等式f (x )<0化为:x 2﹣4x +3<0,解得1<x <2,综上,不等式的解集为:{x |1<x <4}.函数f(x)恰有2个零点,函数f(x)={x−4,x≥λx2−4x+3,x<λ的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).30.【2018年上海11】已知常数a>0,函数f(x)=2x2x+ax的图象经过点P(p,65),Q(q,−15).若2p+q=36pq,则a=.【解答】解:函数f(x)=2x2x+ax的图象经过点P(p,65),Q(q,−15).则:2p2p+ap +2q2q+aq=65−15=1,整理得:2p+q+2p aq+2q ap+2p+q2p+q+2p aq+2q ap+a2pq=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年天津理科14】已知a>0,函数f(x)={x2+2ax+a,x≤0−x2+2ax−2a,x>0.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=−x2x+1,设g(x)=−x2x+1,则g′(x)=−2x(x+1)−x2(x+1)2=−x2+2x(x+1)2,由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=x2 x−2设h(x)=x2x−2,则h′(x)=2x(x−2)−x2(x−2)2=x2−4x(x−2)2,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)32.【2017年江苏14】设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )={x 2,x ∈Dx ,x ∉D ,其中集合D ={x |x =n−1n ,n ∈N *},则方程f (x )﹣lgx =0的解的个数是 . 【解答】解:∵在区间[0,1)上,f (x )={x 2,x ∈D x ,x ∉D,第一段函数上的点的横纵坐标均为有理数, 又f (x )是定义在R 上且周期为1的函数, ∴在区间[1,2)上,f (x )={(x −1)2,x ∈D x −1,x ∉D,此时f (x )的图象与y =lgx 有且只有一个交点;同理:区间[2,3)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[3,4)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[4,5)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[5,6)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[6,7)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[7,8)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[8,9)上,f (x )的图象与y =lgx 有且只有一个交点; 在区间[9,+∞)上,f (x )的图象与y =lgx 无交点;故f (x )的图象与y =lgx 有8个交点,且除了(1,0),其他交点横坐标均为无理数; 即方程f (x )﹣lgx =0的解的个数是8, 故答案为:833.【2017年新课标3理科15】设函数f (x )={x +1,x ≤02x ,x >0,则满足f (x )+f (x −12)>1的x 的取值范围是 .【解答】解:若x ≤0,则x −12≤−12,则f (x )+f (x −12)>1等价为x +1+x −12+1>1,即2x >−12,则x >−14, 此时−14<x ≤0,当x >0时,f (x )=2x >1,x −12>−12,当x −12>0即x >12时,满足f (x )+f (x −12)>1恒成立, 当0≥x −12>−12,即12≥x >0时,f (x −12)=x −12+1=x +12>12,此时f (x )+f (x −12)>1恒成立, 综上x >−14, 故答案为:(−14,+∞).34.【2017年浙江17】已知a ∈R ,函数f (x )=|x +4x−a |+a 在区间[1,4]上的最大值是5,则a 的取值范围是 .【解答】解:由题可知|x +4x −a |+a ≤5,即|x +4x −a |≤5﹣a ,所以a ≤5, 又因为|x +4x−a |≤5﹣a , 所以a ﹣5≤x +4x −a ≤5﹣a , 所以2a ﹣5≤x +4x ≤5, 又因为1≤x ≤4,4≤x +4x ≤5, 所以2a ﹣5≤4,解得a ≤92, 故答案为:(﹣∞,92].35.【2016年江苏11】设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1)上,f (x )={x +a ,−1≤x <0|25−x|,0≤x <1,其中a ∈R ,若f (−52)=f (92),则f (5a )的值是 .【解答】解:f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1)上,f (x )={x +a ,−1≤x <0|25−x|,0≤x <1,∴f (−52)=f (−12)=−12+a , f (92)=f (12)=|25−12|=110,∴a =35,∴f(5a)=f(3)=f(﹣1)=﹣1+35=−25,故答案为:−2 536.【2016年浙江理科12】已知a>b>1,若log a b+log b a=52,ab=b a,则a=,b=.【解答】解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=52得t+1t=52,即2t2﹣5t+2=0,解得t=2或t=12(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,故答案为:4;2.37.【2015年江苏13】已知函数f(x)=|lnx|,g(x)={0,0<x≤1|x2−4|−2,x>1,则方程|f(x)+g(x)|=1实根的个数为.【解答】解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4. 故答案为:4.38.【2015年北京理科14】设函数f (x )={2x −a ,x <14(x −a)(x −2a),x ≥1,①若a =1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 . 【解答】解:①当a =1时,f (x )={2x −1,x <14(x −1)(x −2),x ≥1,当x <1时,f (x )=2x ﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x +2)=4(x −32)2﹣1, 当1<x <32时,函数单调递减,当x >32时,函数单调递增, 故当x =32时,f (x )min =f (32)=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,所以a >0,并且当x =1时,h (1)=2﹣a >0,所以0<a <2, 而函数g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以2a ≥1,且a <1, 所以12≤a <1,若函数h (x )=2x ﹣a 在x <1时,与x 轴没有交点, 则函数g (x )=4(x ﹣a )(x ﹣2a )有两个交点,当a ≤0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1)=2﹣a ≤0时,即a ≥2时,g (x )的两个交点满足x 1=a ,x 2=2a ,都是满足题意的, 综上所述a 的取值范围是12≤a <1,或a ≥2.39.【2014年江苏13】已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x +12|,若函数y =f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),则实数a 的取值范围是 . 【解答】解:f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x +12|,若函数y =f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f (x )与y =a 的图象如图:由图象可知a ∈(0,12). 故答案为:(0,12).40.【2014年天津理科14】已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )﹣a |x ﹣1|=0恰有4个互异的实数根,则实数a 的取值范围为 .【解答】解:由y =f (x )﹣a |x ﹣1|=0得f (x )=a |x ﹣1|, 作出函数y =f (x ),y =g (x )=a |x ﹣1|的图象,当a ≤0,两个函数的图象不可能有4个交点,不满足条件, 则a >0,此时g (x )=a |x ﹣1|={a(x −1)x ≥1−a(x −1)x <1,当﹣3<x <0时,f (x )=﹣x 2﹣3x ,g (x )=﹣a (x ﹣1), 当直线和抛物线相切时,有三个零点, 此时﹣x 2﹣3x =﹣a (x ﹣1), 即x 2+(3﹣a )x +a =0,则由△=(3﹣a )2﹣4a =0,即a 2﹣10a +9=0,解得a =1或a =9, 当a =9时,g (x )=﹣9(x ﹣1),g (0)=9,此时不成立,∴此时a =1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a=f(x)|x−1|=|x2+3x||x−1|=|(x−1)2+5(x−1)+4x−1|=|x﹣1+4x−1+5|,设g(x)=x﹣1+4x−1+5,当x>1时,g(x)=x﹣1+4x−1+5≥2√(x−1)4x−1+5=4+5=9,当且仅当x﹣1=4x−1,即x=3时取等号,当x<1时,g(x)=x﹣1+4x−1+5≤5−2√[−(x−1)]⋅−4x−1=5﹣4=1,当且仅当﹣(x﹣1)=−4x−1,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)41.【2013年上海理科12】设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x+a2x+7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为.【解答】解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x−a2x+7因为y=f(x)是定义在R上的奇函数,所以f(x)=9x+a2x−7;因为f(x)≥a+1对一切x≥0成立,所以当x=0时,0≥a+1成立,所以a≤﹣1;当x>0时,9x+a2x−7≥a+1成立,只需要9x+a2x−7的最小值≥a+1,因为9x +a 2x −7≥2√9x ⋅a 2x−7=6|a |﹣7, 所以6|a |﹣7≥a +1, 解得a ≥85或a ≤−87, 所以a ≤−87. 故答案为:a ≤−87.42.【2013年上海理科14】对区间I 上有定义的函数g (x ),记g (I )={y |y =g (x ),x ∈I }.已知定义域为[0,3]的函数y =f (x )有反函数y =f ﹣1(x ),且f ﹣1([0,1))=[1,2),f ﹣1((2,4])=[0,1).若方程f (x )﹣x =0有解x 0,则x 0= .【解答】解:因为g (I )={y |y =g (x ),x ∈I },f ﹣1([0,1))=[1,2),f ﹣1(2,4])=[0,1),所以对于函数f (x ),当x ∈[0,1)时,f (x )∈(2,4],所以方程f (x )﹣x =0即f (x )=x 无解; 当x ∈[1,2)时,f (x )∈[0,1),所以方程f (x )﹣x =0即f (x )=x 无解; 所以当x ∈[0,2)时方程f (x )﹣x =0即f (x )=x 无解, 又因为方程f (x )﹣x =0有解x 0,且定义域为[0,3],故当x ∈[2,3]时,f (x )的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞), 故若f (x 0)=x 0,只有x 0=2, 故答案为:2.43.【2012年江苏10】设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )={ax +1,−1≤x <0bx+2x+1,0≤x ≤1其中a ,b ∈R .若f(12)=f(32),则a +3b 的值为 .【解答】解:∵f (x )是定义在R 上且周期为2的函数,f (x )={ax +1,−1≤x <0bx+2x+1,0≤x ≤1,∴f (32)=f (−12)=1−12a ,f (12)=b+43;又f(12)=f(32),∴1−12a =b+43① 又f (﹣1)=f (1), ∴2a +b =0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.44.【2012年江苏13】已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为.【解答】解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0,则4b=a2不等式f(x)<c的解集为(m,m+6),即为x2+ax+b<c解集为(m,m+6),则x2+ax+b﹣c=0的两个根x1,x2分别为m,m+6∴两根之差为|x1﹣x2|=|m+6﹣m|=6根据韦达定理可知:x1+x2=−a1=−ax1x2=b−c1=b﹣c∵|x1﹣x2|=6∴√(x1+x2)2−4x1x2=6∴√(−a)2−4(b−c)=6∴√4b−4b+4c=6解得c=9故答案为:945.【2012年北京理科14】已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣∞,﹣4),f(x)g(x)<0.则m的取值范围是.【解答】解:对于①∵g(x)=2x﹣2,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面则{m<0−m−3<1 2m<1∴﹣4<m<0即①成立的范围为﹣4<m<0又∵②x∈(﹣∞,﹣4),f(x)g(x)<0∴此时g(x)=2x﹣2<0恒成立∴f(x)=m(x﹣2m)(x+m+3)>0在x∈(﹣∞,﹣4)有成立的可能,则只要﹣4比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣3,﹣m﹣3<﹣4不成立,(ii)当m=﹣1时,两个根同为﹣2>﹣4,不成立,(iii)当﹣4<m<﹣1时,较小的根为2m,2m<﹣4即m<﹣2成立.综上可得①②成立时﹣4<m<﹣2.故答案为:(﹣4,﹣2).46.【2012年天津理科14】已知函数y=|x2−1|x−1的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.【解答】解:y=|x2−1|x−1={x+1,x≤−1或x>1−x−1,−1<x<1,作出函数y=|x2−1|x−1与y=kx﹣2的图象如图所示:∵函数y=|x2−1|x−1的图象与函数y=kx﹣2的图象恰有两个交点,∴0<k<1或1<k<4.故答案为:(0,1)∪(1,4).47.【2011年江苏11】已知实数a ≠0,函数f (x )={2x +a ,x <1−x −2a ,x ≥1,若f (1﹣a )=f (1+a ),则a 的值为 .【解答】解:当a >0时,1﹣a <1,1+a >1∴2(1﹣a )+a =﹣1﹣a ﹣2a 解得a =−32舍去当a <0时,1﹣a >1,1+a <1∴﹣1+a ﹣2a =2+2a +a 解得a =−34故答案为−3448.【2011年上海理科13】设g (x )是定义在R 上,以1为周期的函数,若函数f (x )=x +g (x )在区间[3,4]上的值域为[﹣2,5],则f (x )在区间[﹣10,10]上的值域为 .【解答】解:法一:∵g (x )为R 上周期为1的函数,则g (x )=g (x +1)又∵函数f (x )=x +g (x )在[3,4]的值域是[﹣2,5]令x +6=t ,当x ∈[3,4]时,t =x +6∈[9,10]此时,f (t )=t +g (t )=(x +6)+g (x +6)=(x +6)+g (x )=[x +g (x )]+6所以,在t ∈[9,10]时,f (t )∈[4,11] (1)同理,令x ﹣13=t ,在当x ∈[3,4]时,t =x ﹣13∈[﹣10,﹣9]此时,f (t )=t +g (t )=(x ﹣13)+g (x ﹣13)=(x ﹣13)+g (x )=[x +g (x )]﹣13所以,当t ∈[﹣10,﹣9]时,f (t )∈[﹣15,﹣8] (2)…由(1)(2)…得到,f (x )在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]法二:由题意f (x )﹣x =g (x ) 在R 上成立故 f (x +1)﹣(x +1)=g (x +1)所以f (x +1)﹣f (x )=1由此知自变量增大1,函数值也增大1故f (x )在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]49.【2010年江苏11】已知函数f(x)={x 2+1,x ≥01x <0,则满足不等式f (1﹣x 2)>f (2x )的x 的范围是 . 【解答】解:由题意,可得{1−x 2>2x 1−x 2>0⇒x ∈(−1,√2−1) 故答案为:(−1,√2−1)50.【2010年天津理科16】设函数f (x )=x 2﹣1,对任意x ∈[32,+∞),f (x m )﹣4m 2f (x )≤f (x ﹣1)+4f (m )恒成立,则实数m 的取值范围是 .【解答】解:依据题意得x 2m 2−1﹣4m 2(x 2﹣1)≤(x ﹣1)2﹣1+4(m 2﹣1)在x ∈[32,+∞)上恒定成立, 即1m 2−4m 2≤−3x 2−2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =−3x 2−2x +1取得最小值−53, ∴1m −4m 2≤−53,即(3m 2+1)(4m 2﹣3)≥0,解得m ≤−√32或m ≥√32,故答案为:(−∞,−√32]∪[√32,+∞). 2020年高考数学压轴必刷题专题02函数概念与基本初等函数(文科数学)1.【2019年天津文科08】已知函数f (x )={2√x ,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( )A .[54,94]B .(54,94]C .(54,94]∪{1}D .[54,94]∪{1}【解答】解:作出函数f (x )={2√x ,0≤x ≤1,1x ,x >1.的图象,以及直线y =−14x 的图象,关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,即为y =f (x )和y =−14x +a 的图象有两个交点,平移直线y =−14x ,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a =94或a =54,考虑直线与y =1x 在x >1相切,可得ax −14x 2=1,由△=a 2﹣1=0,解得a =1(﹣1舍去),综上可得a 的范围是[54,94]∪{1}.故选:D .2.【2019年新课标3文科12】设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则() A .f (log 314)>f (2−32)>f (2−23)B .f (log 314)>f (2−23)>f (2−32)C .f (2−32)>f (2−23)>f (log 314)D .f (2−23)>f (2−32)>f (log 314)【解答】解:∵f (x )是定义域为R 的偶函数∴f(log 314)=f(log 34),∵log 34>log 33=1,<0<2−32<2−23<20=1,∴0<2−32<2−23<log 34f (x )在(0,+∞)上单调递减,∴f(2−32)>f(2−23)>f(log 314), 故选:C .3.【2018年新课标2文科12】已知f (x )是定义域为(﹣∞,+∞)的奇函数,满足f (1﹣x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .﹣50B .0C .2D .50【解答】解:∵f (x )是奇函数,且f (1﹣x )=f (1+x ),∴f (1﹣x )=f (1+x )=﹣f (x ﹣1),f (0)=0,则f (x +2)=﹣f (x ),则f (x +4)=﹣f (x +2)=f (x ),即函数f (x )是周期为4的周期函数,∵f (1)=2,∴f (2)=f (0)=0,f (3)=f (1﹣2)=f (﹣1)=﹣f (1)=﹣2,f (4)=f (0)=0,则f (1)+f (2)+f (3)+f (4)=2+0﹣2+0=0,则f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=f (1)+f (2)=2+0=2,故选:C .4.【2018年新课标1文科12】设函数f (x )={2−x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(﹣∞,﹣1]B .(0,+∞)C .(﹣1,0)D .(﹣∞,0) 【解答】解:函数f (x )={2−x ,x ≤01,x >0,的图象如图: 满足f (x +1)<f (2x ),可得:2x <0<x +1或2x <x +1≤0,解得x ∈(﹣∞,0).故选:D .5.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与M N 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093【解答】解:由题意:M ≈3361,N ≈1080,根据对数性质有:3=10lg 3≈100.48,∴M ≈3361≈(100.48)361≈10173,∴M N ≈1017310=1093,故选:D .6.【2017年天津文科08】已知函数f (x )={|x|+2,x <1x +2x ,x ≥1.,设a ∈R ,若关于x 的不等式f (x )≥|x 2+a |在R 上恒成立,则a 的取值范围是( )A .[﹣2,2]B .[−2√3,2]C .[−2,2√3]D .[−2√3,2√3] 【解答】解:根据题意,函数f (x )={|x|+2,x <1x +2x ,x ≥1.的图象如图: 令g (x )=|x 2+a |,其图象与x 轴相交与点(﹣2a ,0), 在区间(﹣∞,﹣2a )上为减函数,在(﹣2a ,+∞)为增函数,若不等式f (x )≥|x 2+a |在R 上恒成立,则函数f (x )的图象在g(x)上的上方或相交,则必有f(0)≥g(0),即2≥|a|,解可得﹣2≤a≤2,故选:A.7.【2016年新课标2文科12】已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则∑m i=1x i=()A.0B.m C.2m D.4m【解答】解:∵函数f(x)(x∈R)满足f(x)=f(2﹣x),故函数f(x)的图象关于直线x=1对称,函数y=|x2﹣2x﹣3|的图象也关于直线x=1对称,故函数y=|x2﹣2x﹣3|与y=f(x)图象的交点也关于直线x=1对称,故∑m i=1x i=m2×2=m,故选:B.8.【2016年北京文科08】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.学生序号1 2 3 4 5 67 89 10立定跳远1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60(单位:米)63a7560 6372 70a﹣1 b65 30秒跳绳(单位:次)在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛【解答】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a﹣1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B.9.【2015年新课标1文科12】设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f (﹣4)=1,则a=()A.﹣1B.1C.2D.4【解答】解:∵与y=2x+a的图象关于y=x对称的图象是y=2x+a的反函数,y=log2x﹣a(x>0),即g(x)=log2x﹣a,(x>0).∵函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,∴f(x)=﹣g(﹣x)=﹣log2(﹣x)+a,x<0,∵f(﹣2)+f(﹣4)=1,∴﹣log22+a﹣log24+a=1,。