盒形件拉深模设计
- 格式:doc
- 大小:508.00 KB
- 文档页数:17
目录题目盒型件拉深模设计 (2)前言 (2)第一章审图 (5)第二章拉深工艺性分析 (6)2.1对拉深件形状尺寸的要求 (6)2.2拉深件圆角半径的要求 (6)2.3 形拉深件壁间圆角半径rpy (7)2.4 拉深件的精度等级要求不宜过高 (7)2.5 拉深件的材料 (7)2.6 拉深件工序安排的一般原则 (8)第三章拉深工艺方案的制定 (8)第四章毛坯尺寸的计算 (9)4.1 修边余量 (9)4.2毛坯尺寸 (9)第五章拉深次数确定 (10)第六章冲压力及压力中心计算 (11)6.1 冲压力计算 (11)6.2 压力中心计算 (12)第七章冲压设备选择 (12)第八章凸凹模结构设计 (13)8.1凸模圆角半径 (13)8.2 凸凹模间隙 (13)8.3 凸凹模尺寸及公差 (14)第九章总体结构设计 (14)9.1 模架的选取 (14)9.2 模柄 (15)9.3拉深凸模的通气孔尺寸 (15)9.4导柱和导套 (16)9.5 推杆 (17)9.6卸料螺钉 (17)9.7螺钉和销钉 (17)第十章拉深模装配图绘制和校核 (18)10.1拉深模装配图绘制 (18)10.2 拉深模装配图的校核 (20)第十一章非标准件零件图绘制 (21)11.1冲压凸模 (21)11.2 冲压凹模 (22)11.3 压边圈 (22)11.4 凸模垫板 (23)第十二章结论 (24)参考文献 (25)题目盒型件拉深模设计其目的在于巩固所学知识,熟悉有关资料,树立正确的设计思想,掌握设计方法,培养学生的实际工作能力。
通过模具结构设计,学生在工艺性分析、工艺方案论证、工艺计算、模具零件结构设计、编写技术文件和查阅文献方面受到一次综合训练,增强学生的实际工作能力前言从几何形状特点看,矩形盒状零件可划分成2 个长度为(A-2r) 和2 个长度为(B-2r) 的直边加上4 个半径为r 的1/4 圆筒部分(图4.4.1) 。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。
目录题目盒型件拉深模设计 (2)前言 (3)第一章审图 (5)第二章拉深工艺性分析 (6)2.1对拉深件形状尺寸的要求 (6)2.2拉深件圆角半径的要求 (6)2.3 形拉深件壁间圆角半径rpy (7)2。
4 拉深件的精度等级要求不宜过高 (7)2。
5 拉深件的材料 (7)2。
6 拉深件工序安排的一般原则 (8)第三章拉深工艺方案的制定 (8)第四章毛坯尺寸的计算 (9)4.1 修边余量 (9)4.2毛坯尺寸 (9)第五章拉深次数确定 (10)第六章冲压力及压力中心计算 (11)6.1 冲压力计算 (11)6。
2 压力中心计算 (11)第七章冲压设备选择 (12)第八章凸凹模结构设计 (12)8.1凸模圆角半径 (12)8.2 凸凹模间隙 (13)8.3 凸凹模尺寸及公差 (13)第九章总体结构设计 (13)9.1 模架的选取 (13)9.2 模柄 (14)9。
3拉深凸模的通气孔尺寸 (14)9。
4导柱和导套 (15)9。
5 推杆 (16)9。
6卸料螺钉 (16)9。
7螺钉和销钉 (16)第十章拉深模装配图绘制和校核 (17)10.1拉深模装配图绘制 (17)10.2 拉深模装配图的校核 (19)第十一章非标准件零件图绘制 (20)11。
1冲压凸模 (20)11.2 冲压凹模 (21)11。
3 压边圈 (21)11。
4 凸模垫板 (22)第十二章结论 (23)参考文献 (24)题目盒型件拉深模设计前 言从几何形状特点看,矩形盒状零件可划分成 2 个长度为 (A —2r ) 和 2 个长度为 (B-2r ) 的直边加上 4 个半径为 r 的 1/4 圆筒部分(图4。
4。
1) 。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲.但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深,有其特有的变形特点,这可通过网格试验进行验证。
摘要 (1)前言 (2)1. 工件的工艺性分析 (3)1.1 冲压件的工艺性分析 (3)1.2 拉深件的工艺性分析 (3)1.3 材料的工艺性分析 (4)1.4 拉深变形过程的分析 (4)2. 冲压工艺方案的确定 (7)3. 模具的技术要求及材料选用 (9)4. 主要设计尺寸的计算 (11)4.1 毛坯尺寸的确定 (11)4.2 冲压力的计算 (12)4.3 拉深间隙的确定 (13)4.4 冲裁件的排样 (14)5. 工作部分尺寸计算 (17)5.1 拉深凸凹尺寸的确定 (17)5.2 圆角半径的确定 (18)6. 模具的总体设计 (20)6.1 模具的类型及定位方式的选择 (20)6.2 推件零件的设计 (21)7. 主要零部件的结构设计 (23)7.1 工作零件的结构设计 (23)7.2 其他零部件的设计与选用 (24)8. 模具的总装图 (27)9. 模具的装配 (28)结束语 (29)致谢 (30)参考文献 (30)我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模模具设计实例等方面的资料。
再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计模具中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的计算公式、盒形件用压边圈拉深系数、盒形件角部的第一次拉深系数等,然后再集结了自己平时的所学,还有通过对工件的零件、模具工作部分(凸凹模、拉深凸模、落料凹模)、模具装配图的绘制,我的绘图功底也有了一定程度地提高。
本次设计的主要内容:工件的工艺性分析;冲压工艺方案的确定;模具的技术要求及材料选用;主要设计尺寸的计算;工作部分尺寸计算;模具的总体设计;主要零部件的结构设计;模具的总装图;模具的装配等。
我觉得通过本次的毕业设计,达到了这样的目的:1.综合运用本专业所学课程的理论和生产实际知识,进行一次冷冲压模具(落料拉深冲裁模)设计工作的实际训练,从而培养和提高我们独立工作的能力。
方盒形拉深件的工艺性分析
方盒形拉深件是一种常用的金属加工工艺,用于制造各种形状的容器、外壳和零部件等。
其工艺性分析主要包括以下几个方面:
1. 材料选择:方盒形拉深件通常采用金属材料进行制造,如钢材、铝材等。
在选择材料时需要考虑材料的可加工性、强度、硬度和耐腐蚀性等性能,以满足产品的使用要求。
2.模具设计:方盒形拉深件的成形需要使用模具进行,模具的设计和制造对产品质量和工艺性有着重要影响。
模具设计需要考虑产品形状、尺寸、壁厚和材料特性等因素,以确保产品成形的精度和一致性。
3.拉深工艺参数:方盒形拉深件的加工过程需要控制好拉深工艺参数,包括下料尺寸、板材表面的润滑剂选择、压力和速度等。
这些参数的选择和调整能够影响产品的成形质量、表面质量和机械性能。
4.成形工艺:方盒形拉深件的成形工艺包括下料、冲裁、拉伸、回弹和修整等几个步骤。
在操作过程中需要注意控制好每个步骤的工艺要求和工艺参数,避免出现裂纹、变形或者表面质量不良等问题。
5.产品质量控制:方盒形拉深件的质量要求通常包括尺寸精度、表面质量和机械性能等方面。
在加工过程中需要控制好每个环节的工艺参数,及时发现并解决质
量问题,确保产品达到客户的要求。
总之,方盒形拉深件的工艺性分析需要综合考虑材料、模具设计、工艺参数和工艺过程等因素,以确保产品质量和工艺性能的要求。
更好地应用于实际生产中,提高方盒形拉深件的制造效率和质量。
盒形件盒形件属于非旋转体零件,包括方形盒、矩形盒和椭圆形盒等。
与旋转体零件的拉深相比,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何形状的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分组成(图4.4.1)。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于弯曲。
但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深复合,有其特有的变形特点,这可通过网格试验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图4.4.1所示) 。
这些变化主要表现在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中间部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大,愈靠近盒形件口部增大愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不同于纯粹的弯曲。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。
因此该处的变形不同于纯粹的拉深。
从以上可知,由于有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r相同,高度h相等的圆筒形件比较起来要小。
同时表明圆角部分的变形也是不均匀的,即圆角中心大,相邻直边处变形小。
拉深盒型件拉深工艺盒形件属于非扭转体零件,包含方形盒、矩形盒和卵形盒等。
与扭转体零件的拉深比拟,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何外形的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分构成(图4.4.1)。
若将圆角部分和直边部分别开推敲,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于曲折。
但实际上圆角部分和直边部分是接洽在一路的整体,是以盒形件的拉深又不完全等同于简单的曲折和拉深复合,有其特有的变形特点,这可经由过程网格实验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出互相垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的齐心圆弧构成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件外面的网格产生了明显的变更(如图4.4.1所示) 。
这些变更重要表示在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中心部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大年夜,愈接近盒形件口部增大年夜愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不合于纯粹的曲折。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
齐心圆弧的间距不再相等,而是变大年夜,越向口部越大年夜,且齐心圆弧不位于同一程度面内。
是以该处的变形不合于纯粹的拉深。
从以上可知,因为有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r雷同,高度h相等的圆筒形件比较起来要小。
华中科技大学材料学院盒形件加工工艺及模具设计班级:XXXXXXX学生姓名:X X X学号:XXXXXXX时间:2015年1月1、零件工艺性分析 (1)2、工艺方案的确定 (1)3、工艺计算 (3)3.1拉深部分工艺计算 (3)3.2落料时冲裁工艺计算 (8)4、冲压设备的选用 (12)5、落料拉深模主要零部件计算 (13)5.1落料凹模设计计算 (13)5.2拉深凸模设计计算 (14)5.3固定板设计计算 (15)5.4卸料结构计算 (16)5.5压边圈设计计算 (17)5.6凸凹模设计计算 (18)5.7其它零件设计和选用 (18)5.8模具闭合高度计算 (23)6、模具总装图的绘制 (24)7、结束语 (24)8、参考文献 (25)1、零件工艺性分析1.1零件结构图示图1.1:加工零件图1.2零件结构分析工件为矩形盒形件,零件形状简单,要求为外形尺寸;尺寸为长、宽、高分别为45mm ,27mm ,20mm ;料后t=0.4mm ,没有厚度方向上不变的要求;底部圆角半径p r =3mm ,矩形四个角处圆角半径为r =4mm ,满足拉深工艺对形状和圆角半径的要求。
1.3材料性能分析零件所用材料为H68M ,拉伸性能好,易于成形。
1.4精度等级分析公等级定为IT14级。
满足普通冲压工艺对精度等级的要求。
2、工艺方案的确定由上分析,该零件为矩形盒形件,可采用拉深成形。
为确定拉深工艺方案,先计算拉深次数及相关工艺尺寸。
2.1修边余量 工件相对高度0h 20==5r 4,则依据下表可知修边余量 0h=~h =0.0420=0.8mm ∆⨯(0.030.05)。
工件相对高度△h 2.5~6 7~17 18~44 45~100工件修边余量h0 (0.03~0.05)h0(0.03~0.05)h0 (0.03~0.05)h0 (0.03~0.05)h0表2.1:无凸缘盒形件的修边余量表 2.2相关工艺尺寸计算毛坯相对厚度t 0.4100100 1.48b 27⨯=⨯=; 矩形盒形件相对半径r 4==0.148b 27; 矩形盒形件拉深响度高度0h +h h 20+0.8===0.77b b 27∆;2.3判断拉深次数根据相关工艺尺寸计算结果,由下图可知,应选择一次拉深成形即可。
拉深盒型件拉深工艺盒形件盒形件属于非旋转体零件,包括方形盒、矩形盒和椭圆形盒等。
与旋转体零件的拉深相比,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何形状的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分组成(图4.4.1)。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于弯曲。
但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深复合,有其特有的变形特点,这可通过网格试验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图4.4.1所示) 。
这些变化主要表现在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中间部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大,愈靠近盒形件口部增大愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不同于纯粹的弯曲。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。
因此该处的变形不同于纯粹的拉深。
从以上可知,由于有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r相同,高度h相等的圆筒形件比较起来要小。
同时表明圆角部分的变形也是不均匀的,即圆角中心大,相邻直边处变形小。
模具毕业设计44盒形件落料拉深模设计一、引言在现代工业生产中,模具起着非常重要的作用,特别是在金属加工领域中。
本文将介绍我设计的44盒形件落料拉深模具的设计过程。
该模具的主要功能是对44盒形件进行落料和拉深加工,以实现形状的改变和尺寸的精确控制。
二、设计要求该模具的设计要求如下:1.落料加工:能够将原材料切割成相应形状的板材,以便后续的拉深加工。
2.拉深加工:能够将板材拉深成所需的44盒形件,确保形状和尺寸的精确度。
3.高效性:提高生产效率,降低人工成本。
4.安全性:确保操作人员的安全。
5.可靠性:保证模具的可靠性和稳定性。
三、设计方案基于以上的设计要求,我设计了如下的模具结构和工作流程:1.模具结构:a.上模:用于落料加工,具有落料刀具和固定装置。
b.下模:用于拉深加工,具有拉深刀具和固定装置。
c.顶针:用于定位模具和控制深度。
d.螺杆:用于固定上模和下模。
e.润滑系统:用于减少模具与工件之间的摩擦,提高模具寿命和工作效率。
2.工作流程:a.上模将原材料切割成相应形状的板材,并使用固定装置固定在下模上。
b.下模通过拉深刀具将板材拉深成所需的44盒形件,通过顶针进行定位和深度控制。
c.完成拉深后,顶针向上拉起,使得模具和工件分离,下模通过润滑系统排出模具,准备下一次工作。
四、设计计算模具设计中的关键计算有以下几个方面:1.材料选择:根据要求的板材材料和形状,选择适当的材料来制作模具。
常见的模具材料有钢和铝合金等。
2.受力分析:对模具进行受力分析,确保其满足强度和刚度要求。
3.尺寸设计:根据要求的44盒形件的尺寸和形状,设计相应的模具尺寸,确保精确控制形状和尺寸。
4.温度控制:根据材料的热膨胀系数和工作温度,设计合适的温度控制系统,以避免模具变形和尺寸不稳定。
五、结论通过对44盒形件落料拉深模具的设计,可以实现对原材料的快速加工和形状的改变,提高生产效率和产品质量。
模具的设计要求高效、安全、可靠,并发挥其在金属加工中的重要作用。
拉深盒型件拉深工艺引言拉深技术(Deep drawing)是一种常用的金属成形工艺,广泛应用于各种盒型件的制造中。
拉深盒型件能够满足不同行业的需求,例如汽车零部件、电器外壳、容器等。
本文将详细介绍拉深盒型件的拉深工艺流程,包括材料选择、模具设计、拉深过程控制等方面内容。
1. 材料选择在拉深盒型件的制造中,常用的材料包括冷轧钢板、不锈钢、铝合金等。
不同的材料具有不同的性能和适用范围,因此在选择材料时应考虑以下几个因素:•材料的可塑性:材料必须具有良好的可塑性,能够在拉深过程中充分变形,以适应盒型件的形状需求。
•材料的强度:材料必须具有足够的强度,能够承受盒型件的工作载荷,并保持其结构的稳定性。
•材料的耐腐蚀性:根据具体使用环境的要求,选择具有良好耐腐蚀性的材料,以延长盒型件的使用寿命。
2. 模具设计模具的设计是拉深工艺中十分重要的一环。
一个合理设计的模具能够保证拉深过程的稳定性和成品的质量。
模具设计应考虑以下几个因素:•盒型件的形状和尺寸:根据盒型件的形状和尺寸要求,确定模具的结构和尺寸,以确保拉深盒型件的准确性和一致性。
•模具的材料选择:模具通常采用高强度、高硬度的材料,如工具钢。
选择合适的模具材料可以增加模具的使用寿命和抗磨耗性。
•模具的润滑与冷却:为了减少摩擦和热量积聚,需要在模具表面涂覆润滑剂,并设置冷却系统,以确保模具的稳定工作和成品的质量。
3. 拉深过程控制拉深过程中的控制是确保产品质量的关键。
合理的拉深过程控制可以预防一些常见的问题,例如皱纹、裂纹和破裂等。
以下是一些常用的拉深过程控制方法:•拉深力的控制:根据盒型件的形状和尺寸,合理调整拉深力,以避免过度应力导致拉深失效。
•润滑效果的控制:合适的润滑剂类型和涂覆方式可以减少摩擦,防止盒型件与模具之间的粘连,从而提高产品的表面质量。
•模具温度的控制:通过控制冷却系统的温度,可以有效地降低模具和盒型件的温度,从而减少热裂纹的发生。
•拉深速度的控制:拉深速度的选择要根据材料的可塑性和盒型件的复杂程度来确定,以保证拉深过程的稳定性和成品的质量。
拉深盒型件拉深工艺盒形件属于非扭转体零件,包含方形盒、矩形盒和卵形盒等。
与扭转体零件的拉深比拟,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何外形的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分构成(图4.4.1)。
若将圆角部分和直边部分别开推敲,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于曲折。
但实际上圆角部分和直边部分是接洽在一路的整体,是以盒形件的拉深又不完全等同于简单的曲折和拉深复合,有其特有的变形特点,这可经由过程网格实验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出互相垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的齐心圆弧构成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件外面的网格产生了明显的变更(如图4.4.1所示) 。
这些变更重要表示在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中心部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大年夜,愈接近盒形件口部增大年夜愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不合于纯粹的曲折。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
齐心圆弧的间距不再相等,而是变大年夜,越向口部越大年夜,且齐心圆弧不位于同一程度面内。
是以该处的变形不合于纯粹的拉深。
从以上可知,因为有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r雷同,高度h相等的圆筒形件比较起来要小。
《冲压工艺与模具设计》课程设计说明书设计题目盒形件首次拉深模设计系别机械工程系专业班级机自Y091学生姓名学号200900103017指导教师日期2012年6月目录设计任务零件工艺分析1.材料分析2.结构分析3.精度分析工艺方案的确定零件工艺计算1.拉伸工艺计算(1)确定零件修边余量(2)确定坯料尺寸(3)判断是否采用压边圈(4)确定拉深次数(5)确定各工序件尺寸(6)确定各工序件高度2.首次拉伸模工艺计算(1)首次拉深凸、凹模尺寸计算(2)拉伸力与压边力冲压设备的选用模具零部件结构的确定1.模架的确定2.模座3.凸模固定板4.模柄5.定位圈6.压边圈及卸料装置7.设置反顶装置8.螺钉与销钉拉深模装配图凸凹模零件图设计感想设计任务电器盒技术要求:未标注公差按IT14级精度制造材料为黄铜H62,t = 0.5mm设计任务:设计该零件的首次拉伸模具零件工艺性分析1.材料分析黄铜有很好塑形,拉深成形性能良好,易于冷热压力加工成型2. 结构分析零件为一无凸缘盒形件,结构简单,底部圆角半径为R1.5,壁间圆角半径也为R1.5,由最终拉伸凸模保证,材料厚度t=0.5,较薄,所以,零件具有良好的结构工艺性。
3. 精度分析盒形件外形尺寸公差为IT12级,由最后一道拉伸工序保证,侧壁孔中心距尺寸与定位尺寸公差也为IT12级,由冲孔工序保证工艺方案的确定零件的生产包括落料、拉深(需计算确定拉深次数)、冲孔,切边等工序,为了提高生产效率,可以考虑工序的复合,在此为简化模具设计不考虑工序复合。
毛坯落料后,经多次拉深成形,由机械加工方法切边保证零件高度,最后对盒形件进行冲孔。
零件工艺计算1.拉深工艺计算(1)确定零件修边余量 零件的相对高度23.12227==B H ,查表5-2(167)得修边余量mm h 5.2=∆,所以,修正后拉深件的总高应为H =27+2.5=29.5mm 。
(2)确定坯料尺寸由于盒形件壁间圆角半径与底部圆角相等,边长为B 的高方盒件毛坯直径为:mm62.70mm 5.133.05.295.172.15.143.05.292242213.133.0(72.1)43.0(413.122≈⨯+⨯⨯-⨯-⨯⨯+=+---=)()()r H r r H B B D 所以,高矩形盒椭圆形形毛坯尺寸为:mm B L D Lz 62.82)2234(62.70)(=-+=-+=mmrL B L 14.745.1234)2234()]5.10.43-29.5222 [5.12-(2262.072)(0.43r)]-H 2B [2r -(B D Bz =⨯--⨯⨯⨯++⨯⨯=--⨯⨯++⨯=()()mm D R b 31.35262.702===mmR B R L B L R bz bz z z l 62.4631.35214.7431.3561.82)14.7462.82(0.252)(0.252222=⨯-⨯-+⨯=--+⨯=(3)判断是否采用压边圈 零件的相对厚度压边圈67.010014.742100=⨯=⨯z B t ,经查表5-8(P181),需采用压边圈,防止拉伸起皱。
(4)确定拉深次数 零件相对高度341.1225.29==B H , 毛坯相对厚度67.010014.742100=⨯=⨯z B t , 查表5-15(P192)知盒形件所需拉伸次数为4,(5)确定各工序件尺寸矩形盒形件拉伸过渡工序件为椭圆形,最后再拉伸成矩形零件,已知零件为四次拉伸,从第三道工序开始计算,第三道拉伸成椭圆形,其工序件尺寸为: 由公式δ=(0.2-0.5)r ,取角部壁间距δ=0.25×1.5=0.375mm73.23375.05.141.0340.705r 41.0705.03=+⨯⨯=+=-δ-L R l 27.15375.05.141.0220.705r 41.0705.03=+⨯⨯=+=-δ-B R b 46.3522)23473.23(2)2(2B 42.5422-3415.272B)-L (23Z333=+-⨯=+-==+⨯==B L R R L l b Z + 按尺寸画出其轮廓如图 第二道工序尺寸:从椭圆形拉伸成椭圆形时,两道工序件的壁间距离为11)33.0~18.0()33.0~18.0(11--==--n n b n l n R b R l取5.427.152947.02947.0b 523.73211.0211.03333=⨯===⨯==b l R R l46.455246.35254.515.4254.422332332=⨯+=⨯+==⨯+=⨯+=l B B b L L Z Z Z Z按尺寸画出轮廓图可知应选曲率半径为:4.234.2722==b l R R第三道工序尺寸:取64.23256.0256.0b 727.40.255 255.02222=⨯===⨯==b l R R l46.597246.45254.636254.512221221=⨯+=⨯+==⨯+=⨯+=l B B b L L Z Z Z Z按尺寸画出轮廓图可知应选曲率半径为:5.301.3311==b l R R则54.9254.6362.82234.7246.5914.7421111=-=-==-=-=Z Z Z Z L L b B B l所以31.05.3054.922.01.3334.71111====b l R b R l在壁间距离范围之内 各工序轮廓尺寸如下图;(6)确定各工序件高度由t = 0.5,查表5-17(P205)取首次拉伸凹模圆角半径为4r 1=d ,根据公式1129.0~7.0)8.0~6.0(-==dn dn d d r r r r )(依次取4.22=d r 8.13=d r 5.14=d r取凸模圆角半径与盒形件底部圆角半径与凹模圆角半径相等 椭圆面积公式与周长公式为:ab s π= )(42b a b l -+=πa 和b 分别为椭圆的长半轴和短半轴,即2Z L ,2Z B根据表面积不变原则,得[][])(2)r 586.0(5.0)r ()(2)r 2)(r 2(25.025.011111111111111Z Z Z Z Z Z Z Z Z Z B L B r h B L B B L B L -+-+--++--=πππππ则[]12.11)(2)(2)r 586.0(r 5.0)r 2)(r 2(25.025.0r 11111111111111=-+-+-----+=Z Z Z Z Z Z Z Z Z Z B L B B L B B L B L h πππππ盒形件相对圆角半径0673.046.59411==Z B r 相对高度8.2412.1111==r h 查表5-13(P191)知拉伸高度符合要求,没超过拉伸极限 同理: [][][]5.29663.37)2(2)2(22)r 586.0()r 586.0(r )2)(2(25.0r 314.29)(2)(2)r 586.0(r 5.0)r 2)(r 2(25.025.0r 15.20)(2)(2)r 586.0(5.0)r 2)(r 2(25.025.0r 444443333333333333322222222222222≥=-+-+-+-----+==-+-+-----+==-+-+-----+=R L R L R B L R L R L B L h B L B B L B B L B L h B L B B L B r B L B L h Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z πππππππππππππ相对高度2.273.122633.374≤==B h ,查表5-15(P192)知拉伸高度符合要求, 各工序拉伸高度如图所示:2.首次拉深模工艺计算(1)首次拉深凸、凹模尺寸计算 第一次拉深件后椭圆形工序件曲率半径为1.331=l R 5.301=b R由公式Kt t Z +=max 确定拉深凸、凹模间隙值Z ,查表5-18得5.0=K ,所以间隙mm 75.05.05.05.0=⨯+=Z ,则首次拉深凹模尺寸315.05.306.335.01.3346.605.0246.592B B 54.645.0254.632L L 11Z1d1Z1d111=+=+==+=+==⨯+=+==⨯+=+=t R R t R R t t b b l l d d 首次拉深凸模2975.025.3026.3175.021.33296.5775.0246.592B B 04.6275.0254.632L L 11Z1p1Z1p111=⨯-=-==⨯-=-==⨯-=-==⨯-=-=Z R R Z R R Z Z b b l l p p(2)拉伸力与压边力经查资料,取黄铜抗拉强度MPA b 350=σ,取K=0.8, 首次拉伸工序件轮廓周长8644.194)46.5954.63(246.5914.3)(21111=-⨯+⨯=-+=Z Z Z B L B L π所以 KN KLt F b 28.273505.08644.1946.0=⨯⨯⨯==σ拉 由于采用了压边装置,查表5-9(P182)去单位压边力p=1.8,KNpB L B L apF Z Z Z Z 32.38.1)46.5954.6314.7462.82(14.325.0)(25.011=⨯⨯-⨯⨯⨯=-==π压 KN F F 6.3028.2732.3=+=+拉压,初选冲压设备为J23—6.3,冲压设备的选用根据以上计算,同时考虑拉深高度选取开式可倾压力机J23—6.3,其主要技术参数如下:模具零部件结构的确定1.模架的选用标准模架的选用依据为凹模的外形尺寸,所以应首先计算凹模周界的大 从以上计算可知凹模尺寸46.605.0246.592B B 54.645.0254.632L L Z1d1Z1d1=⨯+=+==⨯+=+=t t而最初毛坯尺寸为:62.82=Z L 14.74=Z B综合考虑,为了保证凹模有足够的强度,取凹模周界尺寸为100×100mm,模具采用后置导柱模架,其优点是工作面敞开,适于大件边缘冲裁。
缺点是刚性与安全性差,工作不平稳,常用于小型冲模。
查得模架规格为 模架150~130100100⨯⨯:GB/T 2851.3-90 mm凹模周界闭合高度(参考) H零件件号、名称及标准编号 1 2 3 4上模座下模座导 柱导 套数 量LB 最小最大1122规 格100 100 130 150 100×100 ×25 100×100 ×3020×12020×65×232.模座根据模架查得相应的上模座规格 模座 25100100⨯⨯ :GB/T 2855.5-90 mm 凹模周界 H1LS1A2AR2lDL B 1001002511011675130326023和相应的下模座规格 模座 30100100⨯⨯ :GB/T 2855.6-90 mm 凹模周界 H1LS1A2AR2ldL B 10010030110116751303260203.凸模固定板凸模固定板有沉孔,按凸模实际尺寸配作加工,与凸模为H7/n6配合(过度配合)4.模柄采用凸缘式模柄,凸缘与上模座的沉孔为H7/n6配合并用螺钉进行固定,优点在于凸缘的厚度一般不到模座厚度的一半,凸缘模柄以下的模座部分仍可加工出形孔,以便螺钉固定凸模或容纳推件装置的推板。