考点13 三角函数定义(讲解)(解析版)-2021年高考数学复习一轮复习笔记
- 格式:docx
- 大小:430.14 KB
- 文档页数:10
2023高考数学一轮复习辅导:三角函数1500字三角函数是数学中非常重要的一个概念,它在几何、物理等多个领域都有广泛的应用。
下面我将为大家总结一下2023高考数学一轮复习的三角函数知识点。
一、基本概念1. 常用三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)。
2. 基本关系:在单位圆上,设点P(x,y)是角θ的终边与单位圆的交点,则x=cos(θ),y=sin(θ)。
二、三角函数的性质1. 奇偶性:sin(-x)=-sin(x),cos(-x)=cos(x),tan(-x)=-tan(x)。
2. 周期性:sin(x+2π)=sin(x),cos(x+2π)=cos(x),tan(x+π)=tan(x)。
3. 互余关系:- sin(x)与cos(x)互为余角。
- tan(x)与cot(x)互为余角。
三、三角函数的基本关系1. 和差公式:- sin(x±y)=sin(x)cos(y)±cos(x)sin(y)。
- cos(x±y)=cos(x)cos(y)∓sin(x)sin(y)。
- tan(x±y)= (tan(x)±tan(y))/(1∓tan(x)tan(y))。
2. 积化和差公式:- sin2x=(1-cos2x)/2。
- cos2x=(1+cos2x)/2。
- tan2x=(1-cos2x)/(1+cos2x)。
3. 半角公式:- sin(x/2)=±√((1-cosx)/2)。
- cos(x/2)=±√((1+cosx)/2)。
- tan(x/2)=±√((1-cosx)/(1+cosx))。
四、三角函数的图像与性质1. 正弦函数sin(x):- 定义域:(-∞,∞)。
- 值域:[-1,1]。
- 奇函数,周期为2π。
- 在[0,2π]上的图像是一个完整的波形,过原点和(π/2, 1)。
高中三角函数知识点总结三角函数是数学中的重要概念,它在几何学、物理学和工程学等领域都具有广泛应用。
在高中数学中,三角函数的学习是一项重要的内容,掌握了三角函数的基本概念和性质,能够熟练运用三角函数解决问题,对于学生后续学习和职业发展都具有良好的帮助。
本文将对高中三角函数的知识点进行详细介绍,包括正弦函数、余弦函数、正切函数、割函数、余割函数和反三角函数等。
一、平面内的角度与弧度1. 角度角度是用来衡量两条射线之间夹角大小的单位,常用°表示。
一个完整的圆周的角度为360°。
根据圆周角度的定义,可知所有角度都可以转化为小于360°的角。
2. 弧度弧度是表示角度大小的另一种单位,用rad表示。
弧度的定义是通过角所对的弧长与半径之比来确定。
一个完整的圆周的弧度为2πrad,即360°=2πrad。
3. 弧度与角度的转化弧度与角度之间的转化公式为:θ(rad) = θ(°) * π/180,θ(°) = θ(rad) *180/π。
二、三角函数的定义1. 正弦函数(sine function)正弦函数是一种周期性的函数,用sin表示。
对于一个给定角度θ,其正弦值定义为单位圆上对应点的y坐标值,即sinθ = y/r。
2. 余弦函数(cosine function)余弦函数也是一种周期性的函数,用cos表示。
对于给定角度θ,其余弦值定义为单位圆上对应点的x坐标值,即cosθ = x/r。
3. 正切函数(tangent function)正切函数是一种周期性的函数,用tan表示。
对于给定角度θ,其正切值定义为正弦值与余弦值的比值,即tanθ = sinθ/cosθ。
4. 割函数(secant function)割函数是余弦函数的倒数,用sec表示。
对于给定角度θ,其割值定义为1除以余弦值,即secθ = 1/cosθ。
5. 余割函数(cosecant function)余割函数是正弦函数的倒数,用csc表示。
数学2021年高考一轮复习解析三角函数知识点知识点总结高中学习常见的三角函数包括正弦函数、余弦函数和正切函数。
以下是整理的解析三角函数知识点,请考生学习。
有些学生仍然在遇到三角函数题目的时候画直角三角形协助理解,这是十分危险的,也是我们所不提倡的。
三角函数的定义在引入了实数角和弧度制之后,已经发生了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数弧度制的角。
有了这样一个思维上的飞跃,三角函数就不再是三角形的一个附属产品(初中三角函数很多时候依附于相似三角形),而是一个具有独立意义的函数表现形式。
既然三角函数作为一种函数意义的理解,那么,它的知识结构就可以完全和函数一章联系起来,函数的精髓,就在于图象,有了图象,就有了所有的性质。
对于三角函数,除了图象,单位圆作为辅助手段,也是非常有效就好像配方在二次函数中应用广泛是一个道理。
三角恒等变形部分,并无太多诀窍,从教学中可以看出,学生听懂公式都不难,应用起来比较熟练的都是那些做题比较多的同学。
题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的统一论,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。
关键是,一定要多做题。
解析三角函数知识点的内容就是这些,更多精彩内容请考生持续关注。
高考数学第一轮复习三角函数解析要点三角函数是以角度(数学上最常用弧度制,下同)为自变量,角度对应恣意角终边与单位圆交点坐标或其比值为因变量的函数,查字典数学网整理了三角函数解析要点,协助广阔高中先生学习数学知识!
这一局部的重点是一定要从初中锐角三角函数的定义中跳出来。
在教学中,我留意到有些先生依然在遇到三角函数标题的时分画直角三角形协助了解,这是十分风险的,也是我们所不倡议的。
三角函数的定义在引入了实数角和弧度制之后,曾经发作了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数——弧度制的角。
有了这样一个思想上的飞跃,三角函数就不再是三角形的一个隶属产品(初中三角函数很多时分依靠于相似三角形),而是一个具有独立意义的函数表现方式。
既然三角函数作为一种函数意义的了解,那么,它的知识结构就可以完全和函数一章联络起来,函数的精髓,就在于图象,有了图象,就有了一切的性质。
关于三角函数,除了图象,单位圆作为辅佐手腕,也是十分有效——就似乎配方在二次函数中运用普遍是一个道理。
三角恒等变形局部,并无太多窍门,从教学中可以看出,先生听懂公式都不难,运用起来比拟熟练的都是那些做题比拟多的同窗。
标题做到一定水平,其实很容易发现,高一调查
的三角恒等只要不多的几种题型,在课程与温习中,我们也会注重给先生总结三角恒等变形的〝一致论〞,掌握住降次,辅佐角和万能公式这些关键方法,普通的三角恒等迎刃而解。
关键是,一定要多做题。
〞,更多信息查字典数学网将第一时间为广阔考生提供,预祝各位考生报考到心仪的大学!
2021年高考数学第一轮温习三角函数解析要点就为大家分享到这里,更多精彩内容请关注高考数学知识点栏目。
新高考数学复习考点知识与题型专题讲解29 三角函数的概念考点知识讲解一三角函数的定义(1)任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)把点P的纵坐标叫做α的正弦函数,如图所示:正弦一、二正,三、四负;余弦一、四正,二、三负;正切一、三正,二、四负. 考点知识讲解二 诱导公式(一) 终边相同的角的同一三角函数的值 (1)终边相同的角的同一三角函数的值. (2)公式:sin (α+k ·2π)=,cos (α+k ·2π)=,tan (α+k ·2π)=,其中k ∈Z. 答案:y sin αx cos αyxtan α(x ≠0)相等sin αcos αtan α 题型一 同角三角函数的基本关系1.已知x 是第二象限的角.____________.【答案】2tan x -【解析】因为x 是第二象限的角,所以cos 0x <,==1sin 1sin cos cos x xx x+-=---11tan tan cos cos x x x x=--+- 2tan x =-.故答案为:2tan x -.题型二 同角三角函数的基本关系求值2.如图,60C 是一种碳原子簇,它是由60个碳原子构成的,其结构是以正五边形和正六边形面组成的凸32面体,这60个C 原子在空间进行排列时,形成一个化学键最稳定的空间排列位置,恰好与足球表面格的排列一致,因此也叫足球烯.根据杂化轨道的正交归一条件,两个等性杂化轨道的最大值之间的夹角θ(0180θ<︒≤)满足233153cos cos cos cos 02222αβθγθδθθ⎛⎫⎛⎫++-+-= ⎪ ⎪⎝⎭⎝⎭,式中,,,αβγδ分别为杂化轨道中,,,s p d f 轨道所占的百分数. 60C 中的杂化轨道为等性杂化轨道,且无,d f 轨道参与杂化,碳原子杂化轨道理论计算值为 2.28sp ,它表示参与杂化的,s p 轨道数之比为1:2.28,由此可计算得一个60C 中的凸32面体结构中的六边形个数和两个等性杂化轨道的最大值之间的夹角的正弦值分别为( )A .20.12.20.12【答案】A【解析】解:设一个60C 中的凸32面体结构中共有x 个五边形,y 个六边形, ∵每个顶点都是三个面的公共点, ∴56603x y+=,又32x y +=,解得12,20x y ==, ∴共有20个六边形; 又由题意得13.28α=, 2.283.28β=,0γδ==, ∴1 2.28cos 03.28 3.28θ+=,解得25cos 57θ=-, ∵0180θ<≤,∴sin θ, 故选:A .题型三 三角函数的化简、求值3.已知sin cos αα-=()0,απ∈,则tan α=( ) A .1-B.D .1 【答案】A【解析】因为sin cos αα-=所以222(sin cos )sin 2sin cos cos 12sin cos 2αααααααα-=-+=-=,1sin cos 2αα=-,由sin cos 1sin cos 2αααα⎧-=⎪⎨=-⎪⎩,解得sin cos αα⎧⎪⎪⎨⎪=⎪⎩,所以sin tan 1cos ααα==-. 故选:A .题型四 三角函数恒等式的证明 4.已知sin tan 1cos x x βαβ=-,sin tan 1cos y y αβα=-,0xy ≠,2k παβ≠、,k Z ∈,求证:sin sin x y αβ=. 【答案】证明见解析. 【解析】因0xy ≠,2k παβ≠、,k Z ∈, 由sin tan 1cos x x βαβ=-及sin tan cos ααα=,有sin sin 1cos cos x x βαβα=-,整理得sin sin cos cos sin x ααβαβ+=,又sin tan 1cos y y αβα=-,同理得sin sin cos cos sin yβαβαβ+=,于是有sin sin x yαβ=,即sin sin xy αβ=, 所以sin sin xyαβ=. 1.若45角的终边上有一点(4,1)a a -+,则a =A .3B .32-C .1D .32【答案】D【解析】因为01tan4514a a +==-,所以32a =. 故选D2.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( )A .12B .12-C .D .【答案】C【解析】解:由题意得(1,P ,它与原点的距离2r ,所以sin y r α==. 故选:C.3.“tan 0x <,且sin cos 0x x -<”是“角x 的终边在第四象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】C【解析】若tan 0x <,则角x 的终边在第二、四象限,∵sin cos 0x x -<,∴角x 的终边在第四象限,反之也成立. 故选:C.4.以原点为圆心的单位圆上一点P 从(1,0)出发,沿逆时针方向运动73π弧长到达点Q ,则点Q 的坐标为( )A .12⎛⎫- ⎪ ⎪⎝⎭B .1,2⎛ ⎝⎭C .21⎛⎫ ⎪ ⎪⎝⎭D .12⎛ ⎝⎭ 【答案】D【解析】设(,)Q x y ,由任意角的三角函数定义可得71cos=cos 332x ππ==,7sin sin 33y ππ==∴点Q 的坐标为12⎛ ⎝⎭.故选:D.5.已知α是第二象限角,(,P x为其终边上一点,且cos x α=,则x 的值为_________.【答案】【解析】∵cos x rα===,∴0x =或22(5)16x +=,∴0x =或23x =, ∵α是第二象限角,∴0x =(舍去)或x =x =故答案为:6.如图所示,在平面直角坐标系xOy 中,动点P ,Q 从点(1,0)A 出发在单位圆上运动,点P 按逆时针方向每秒钟转6π弧度,点Q 按顺时针方向每秒钟转116π弧度,则P ,Q 两点在第2019次相遇时,点P 的坐标为________.【答案】(0,1)【解析】因为点P 按逆时针方向每秒钟转6π弧度,点Q 按顺时针方向每秒钟转116π弧度,所以两点相遇1次的路程是单位圆的周长,即2π,所以两点相遇一次用了1秒,因此当两点相遇2019次时,共用了2019秒,所以此时点P 所转过的弧度为2019673336622ππππ==+,由终边相同的角的概念可知,20196π与2π的终边相同,所以此时点P 位于y 轴上,故点P 的坐标为(0,1). 故答案为:(0,1). 7.已知函数cos 121()sin 2log 22x f x a x =-,若()06f π=,则a =______. 【答案】-2【解析】函数()cos 1211sin2log 2sin2cos 22x f x a x a x x =-=+,由06f π⎛⎫= ⎪⎝⎭, 得2a =-, 故答案为-2.8.已知角α的终边所在的直线上有一点(1)P m +,m ∈R . (1)若60α︒=,求实数m 的值;(2)若cos 0α<且tan 0α>,求实数m 的取值范围. 【答案】(1)4m =-;(2)1m <- 【解析】(1)依题意得,tan tan 60α︒===4m =-; (2)由cos 0α<且tan 0α>得,α为第三象限角,故10+<m ,所以1m <-. 9.已知11sin sin αα=,且()lg cos α有意义. (1)试判断角α所在的象限;(2)若角α的终边上一点是3,5M m ⎛⎫ ⎪⎝⎭,且1OM =(O 为坐标原点),求m 的值及sin α的值.【答案】(1)第四象限角;(2)45m =-,4sin 5α=-.【解析】(1)由11sin sin αα=,可知sin 0α<,由()lg cos α有意义可知cos 0α>, 所以角α是第四象限角;(2)由于角α是第四象限角,且点3,5M m ⎛⎫ ⎪⎝⎭是角α的终边上一点,则0m <,1OM ==,45m ∴=-,由正弦函数的定义可知4sin 5m OM α==-.10.化简求值:(1)sin 1380cos(1110)cos(10()20)sin 750︒︒︒︒-+-; (2)2317cos tan 34ππ⎛⎫-+ ⎪⎝⎭. 【答案】(1)1;(2)32【解析】(1)sin 1380cos(1110)cos(10()20)sin 750︒︒︒︒-+-sin(436060)cos(336030)cos(336060)sin(236030)︒︒︒︒︒︒︒︒=-⨯+⋅⨯++-⨯+⋅⨯+sin60cos30cos60sin30︒︒︒︒=+11122=+⨯=; (2)2317cos tan 34ππ⎛⎫-+ ⎪⎝⎭cos (4)2tan 2234ππππ⎡⎤⎛⎫=+-⨯++⨯ ⎪⎢⎥⎣⎦⎝⎭13costan13422ππ=+=+=.。
专题五三角函数与解三角形【考情探究】课标解读考情分析备考指导主题内容一、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.4.理解同角三角函数的基本关系式.5.能利用单位圆中的三角函数线推导出π2±α、π±α的正弦、余弦、正切的诱导公式.1.本专题考查的核心素养以数学运算、逻辑推理为主,同时兼顾考查直观想象.2.从近5年高考情况来看,本专题内容为高考必考内容,以中档题为主.几种题型均有可能出现.1.在备考复习中,注意基础知识的积累,基础概念、定义要弄清楚.2.切实掌握三角函数的图象、性质以及基本变换思想.3.三角函数与解三角形的综合问题,要灵活运用正弦定理或余弦定理.注意方程思想与函数思想的应用.二、三角恒等变换1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换.三、三角函数的图象、性质及应用1.理解正弦、余弦、正切函数的性质及图象.2.能画y=Asin(ωx+φ)的图象,了解参数A、ω、φ对函数图象变换的影响.3.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.四、解三角形及综合应用1.掌握正弦定理、余弦定理,并能解决一些简单的解三角形问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题.【真题探秘】§5.1三角函数的概念、同角三角函数的基本关系及诱导公式基础篇固本夯基【基础集训】考点三角函数的概念、同角三角函数的基本关系及诱导公式1.单位圆中,200°的圆心角所对的弧长为()A.10πB.9πC.910π D.109π答案D2.cos330°=()A.12B.-12C.√32D.-√32答案C3.若sinθ·cosθ<0,tanθsinθ>0,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案D4.若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=-√3x上,则角α的取值集合是()A.{α|α=2kπ-π3,k∈Z} B.{α|α=2kπ+2π3,k∈Z}C.{α|α=kπ-2π3,k∈Z} D.{α|α=kπ-π3,k∈Z}答案D5.已知扇形的周长为20cm,当这个扇形的面积最大时,半径R的值为()A.4cmB.5cmC.6cmD.7cm答案B6.已知sin(π2+θ)+3cos(π-θ)=sin(-θ),则sinθcosθ+cos2θ=()A.15B.25C.35D.√55答案 C综合篇知能转换【综合集训】考法一利用三角函数定义解题1.(2018河南天一大联考,2)在平面直角坐标系xOy中,角α的终边经过点P(3,4),则sin(α-2 017π2)=()A.-45B.-35C.35D.45答案B2.(2018广东深圳四校期中联考,5)已知角θ的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点(1,4),则cos2θ-sin2θ的值为()A.35B.-35C.717D.-717答案D3.(2020届四川绵阳南山中学月考,4)已知角α的终边过点(-8m,-6sin30°),且cosα=-45,则m的值为()A.±12B.-12C.12D.√32答案C考法二同角三角函数的基本关系式的应用技巧4.(2018福建福州八校联考,8)已知sinα+3cosα2cosα-sinα=2,则cos2α+sinαcosα=()A.65B.35C.25D.-35答案A5.(2019河北邯郸重点中学3月联考,5)已知3sin(33π14+α)=-5cos(5π14+α),则tan(5π14+α)=()A.-53B.-35C.35D.53答案A6.(2018湖北武汉调研,13)若tan α=cos α,则1sinα+cos 4α= .答案 2考法三 利用诱导公式化简求值的思路和要求7.(2020届广东珠海摸底测试,3)若角θ的终边过点(4,-3),则cos(π-θ)=( ) A.45 B.-45 C.35 D.-35答案 B8.(2018河北衡水中学2月调研,3)若cos (π2-α)=√23,则cos(π-2α)=( )A.29 B.59 C.-29 D.-59答案 D9.(2018浙江名校协作体考试,13)已知sin (-π2-α)cos (-7π2+α)=1225,且0<α<π4,则sin α= ,cos α= .答案35;45考法四 同角三角函数的基本关系和诱导公式的综合应用10.(2019江西赣州五校协作体期中,15)已知角α终边上有一点P(1,2),则sin(2π-α)-sin (π2-α)cos (3π2+α)+cos(π-α)= .答案 -3【五年高考】考点 三角函数的概念、同角三角函数的基本关系及诱导公式1.(2016课标Ⅲ,5,5分)若tan α=34,则cos 2α+2sin 2α=( ) A.6425B.4825C.1D.1625 答案 A2.(2018课标Ⅱ,15,5分)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= . 答案 -123.(2017北京,12,5分)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)= . 答案 -794.(2018浙江,18,14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(-35,-4 5 ).(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cosβ的值.解析(1)由角α的终边过点P(-35,-45)得sinα=-45,所以sin(α+π)=-sinα=45.(2)由角α的终边过点P(-35,-45)得cosα=-35,由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cosβ=cos(α+β)cosα+sin(α+β)sinα,所以cosβ=-5665或cosβ=1665.思路分析(1)由三角函数的定义得sinα的值,由诱导公式得sin(α+π)的值.(2)由三角函数的定义得cosα的值,由同角三角函数的基本关系式得cos(α+β)的值,由两角差的余弦公式得cosβ的值.教师专用题组考点三角函数的概念、同角三角函数的基本关系及诱导公式1.(2014大纲全国,3,5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b答案C2.(2011课标,5,5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.-45B.-35C.35D.45答案B【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届吉林白城通榆一中月考,3)已知角α的终边过点(12,-5),则sinα+12cosα等于()A.-113B.113C.112D.-112答案 B2.(2020届四川邻水实验学校月考,4)已知tan(π-θ)=3,则sin (π2+θ)-cos(π-θ)sin (π2-θ)-sin(π-θ)=( )A.-1B.-12C.1D.12答案 D3.(2020届吉林白城通榆一中月考,2)已知扇形OAB 的圆心角为2 rad,其面积是8 cm 2,则该扇形的周长是( ) A.8 cm B.4 cm C.8√2 cm D.4√2 cm 答案 C4.(2020届宁夏银川一中月考,2)已知tan α=-3,α是第二象限角,则sin (π2+α)=( ) A.-√1010B.-3√1010C.√105D.2√55答案 A5.(2020届湖南长沙一中月考,8)如图,点A 为单位圆上一点,∠xOA=π3,点A 沿单位圆按逆时针方向旋转角α到点B (-√22,√22),则sinα=( )A.-√2+√64B.√2-√64C.√2+√64D.-√2+√64答案 C6.(2019湖南衡阳一中月考,5)已知α是第三象限角,且|cos α3|=-cos α3,则α3是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 答案 C7.(2018湖北襄阳四校3月联考,8)△ABC 为锐角三角形,若角θ的终边过点P(sin A-cos B,cos A-sin C),则sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|的值为( )A.1B.-1C.3D.-3 答案 B8.(2019广东珠海四校联考,3)设a=sin 5π7,b=cos 2π7,c=tan 2π7,则( ) A.a<b<c B.a<c<b C.b<c<a D.b<a<c 答案 D9.(2019北京师范大学附中期中,6)在平面直角坐标系中,角α的顶点在原点,始边在x 轴的正半轴上,角α的终边经过点M (-cos π8,sin π8),且0<α<2π,则α=( ) A.π8 B.3π8 C.5π8 D.7π8答案 D10.(2018江西南昌一模,3)已知角α的终边经过点P(sin 47°,cos 47°),则sin(α-13°)=( ) A.12B.√32C.-12D.-√32答案 A二、多项选择题(每题5分,共10分)11.(改编题)已知α是三角形的内角,且sin α+cos α=15,则有( ) A.sin α=45,cos α=-35B.sin α=-35,cos α=-45 C.tan α=-43D.tan α=43答案 AC12.(改编题)已知α为锐角且有2tan(π-α)-3cos (π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则有( ) A.tan α=3 B.sin β=13C.sin α=3√1010D.tan β=√24答案 ABC三、填空题(每题5分,共15分)13.(2019豫北六校精英对抗赛,13)若f(x)=cos (π2x +α)+1,且f(8)=2,则f(2 018)= . 答案 014.(2018广东佛山教学质量检测(二),14)若sin (α-π4)=7√210,α∈(0,π),则tan α= .答案 -43或-3415.(2019江西金太阳联考卷(六),15)已知sin α和cos α是方程4x 2+2√6x+m=0的两个实数根,则sin 3α-cos 3α= . 答案 ±5√28四、解答题(共15分)16.(2019山东夏津一中月考,19)已知tan (π4+α)=2. (1)求tan α的值; (2)求2sin 2α+sin2α1+tanα的值.解析 (1)∵tan (π4+α)=tan π4+tanα1-tan π4·tanα=1+tanα1-tanα=2,∴tan α=13. (2)2sin 2α+sin2α1+tanα=2sin 2α+2sinαcosα1+tanα=2sin 2α+2sinαcosα(1+tanα)(sin 2α+cos 2α)=2tan 2α+2tanα(1+tanα)(tan 2α+1),由(1)知tan α=13,∴原式=2×(13)2+2×13(1+13)×[(13)2+1]=35.。
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=k π,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cos α=x r 、tan α=y x分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α.公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α.诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根, θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质y =sin x y =cos x y =tan x定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 2.函数y =tan )4(x -π的定义域为( ). A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ). A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域. (2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ). A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φω错误!错误!错误!ωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定. 一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π. (1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角 Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c 的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题————求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
考点13 三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为 。
【答案】180135,k k Z ⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈, 角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是 。
A .2k π与()2k k Z ππ+∈ B .3±k ππ与()3k k Z π∈ C .()21+k π与 ()()41k k Z π±∈ D .6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍, 所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,则3±k ππ与()3k k Z π∈的终边不一定相同; 对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=-,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与 ()()41k k Z π±∈的终边相同; 对于D 选项,显然,,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是 。
A . B .C .D .【答案】B【解析】令0k =,则ππ42α≤≤,故B 选项符合.故选:B 4.集合M={|,24k x x k ππ=+∈Z},N={|,4k x x k π=∈Z},则 。
A .M ⊆N B .N ⊆MC .M N=ϕD .M N=R【答案】A【解析】∵k ∈Z ;∴k =2n 或2n+1,n ∈Z ; ∴{|}224n n N x x x n Z πππ===+∈或,;又{|}24k M x x k Z ππ==+∈,; ∴M ⊆N .故选A .考点二:三角函数定义1.角α的终边经过点(2,﹣1),则2sinα+3cosα的值为 。
455【解析】由角α的终边经过点(2,-1),可得()225sin 521α==-+-,()2225 cos 521α==+-, 所以525452323sin cos αα⎛+=⨯+= ⎝⎭.2.已知角θ的终边经过点P (4,m ),且sinθ=35,则m 等于 。
【答案】3 【解析】23sin 516m m θ==+,解得3m =. 3.若点(),P x y 是330角终边上异于原点的任意一点,则y x的值是 。
【答案】33-【解析】由三角函数的定义可得()3tan 330tan 36030tan 303y x ==-=-=-. 4.在平面直角坐标系中,点()1,2A 是角α终边上的一点,点()1,1B -是角β终边上的一点,则()cos αβ-的值是 。
【答案】1010【解析】因为22125r OA ==+=,所以21sin ,cos 55y x r r αα====,同理可得, 11sin ,cos 22ββ==-,所以()112110cos cos cos sin sin 105252αβαβαβ⎛⎫-=+=⨯-+⨯= ⎪⎝⎭. 5.如图,在平面直角坐标系xOy 中,第一象限内的点11(,)A x y 和第二象限内的点22(,)B x y 都在单位圆O 上,AOx α∠=,3AOB π∠=.若21213y =,则1x 的值为 。
1235-【解析】由三角函数的定义有1cos x α=,212sin ()313y k πα⎛⎫=+=∈ ⎪⎝⎭Z , 因为B 点在第二象限内,所以5cos 313πα⎛⎫+=- ⎪⎝⎭, 所以1cos cos cos cos sin sin 333333x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦5112513213226=-⨯+⨯=, 6.0,t <设点2,12t P t ⎛⎫+ ⎪⎝⎭是角α终边上一点,当OP 最小时,cos α的值是 。
【答案】【解析】2t OP ⎛==≥=当且仅当2244t t=时取等号,∵0,2t t <∴=-,因为OP 最小值为所以此时,点()2,1P -,cosα==7.已知β为锐角,角α的终边过点(3,4),sin (α+β,则cosβ= 。
【解析】β为锐角,角α的终边过点(3,4),∴sinα45=,cosα35=,sin (α+β)=sinα,∴α+β为钝角,∴cos (α+β)2==-,则cosβ=cos[(α+β)﹣α]=cos (α+β) cosα+sin (α+β) sinα=35+•45=考点三:三角函数值的正负(或象限)判断1.若sin tan 0θθ⋅>,则θ所在的象限是( )A .二、四B .一、二C .一、四D .二、三【答案】C 【解析】sin tan 0θθ⋅>,sin 0tan 0θθ>⎧∴⎨>⎩或sin 0tan 0θθ<⎧⎨<⎩. 若sin 0θ>且tan 0θ>,则角θ为第一象限角; 若sin 0θ<且tan 0θ<,则角θ为第四象限角. 综上所述,角θ为第一或第四象限角.故选:C.2.若α是第二象限角,则点()sin ,cos P αα在 ( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】因为α是第二象限角,所以sin 0,cos 0αα><, 所以点()sin ,cos P αα在第四象限,故选D 3.若cos 0θ<且tan 0θ<,则2θ终边在( ) A .第一象限 B .第二象限C .第一或第三象限D .第三或第四象限【答案】C 【解析】cos 0θ<.∴32222k k πππθπ+<<+,k Z ∈∴3424k k πθπππ+<<+,k Z ∈即3|,424A x k k k Z πθπππ⎧⎫=+<<+∈⎨⎬⎩⎭, tan 0θ<.∴2k k ππθππ+<<+,k Z ∈∴24222k k ππθππ+<<+,k Z ∈ 即tan 0θ<的解集为|,24222k k B x k Z ππθππ⎧⎫=+<<+∈⎨⎬⎩⎭, 则3|,|,|,24222424422k k AB x k Z x k k k Z x k k k Z ππθπππθππθπππππ⎧⎫⎧⎫⎧⎫=+<<+∈+<<+∈=+<<+∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭可得2θ终边在第一或第三象限.故选:C .4.若α是第三象限角,则y =sin2sin2αα+cos2cos 2αα的值为( )A .0B .2C .-2D .2或-2【答案】A【解析】∵α是第三象限角,∴2α是第二或第四象限角.当2α为第二象限角时,y =1+(-1)=0;当2α为第四象限角时,y =-1+1=0.∴y =0. 5.如果sinα<0,tanα>0,那么角2α的终边在( ) A .第一或第三象限 B .第二或第四象限 C .第一或第二象限 D .第三或第四象限 【答案】B【解析】由sinα<0,则角α的终边在第三、四象限或y 轴的非正半轴上, 由tanα>0,则角α的终边在第一、三象限,所以角α的终边在第三象限, 即322,2k k k αππ+π<<π+∈Z ,所以3,224k k k Z παπππ+<<+∈ 当k 为偶数时,2α的终边落在第二象限,当k 为奇数时,2α的终边落在第四象限, 所以2α的终边落在第二或第四象限.故选:B 6.如果θ是第二象限角,且cos sin 1sin 22θθθ-=-,那么2θ所在象限为第几象限A .一B .二C .三D .四【答案】C【解析】221sin sin 2sincoscos cossin222222θθθθθθθ-=-+=-,因为是第二象限角,故,则,,2θ在一、三象限,又因为,所以2θ在第三象限,故选C .考点四:三角函数线1.若MP 和OM 分别是角76π的正弦线和余弦线,则( ) A .0MP OM << B .0OM MP >>C .0OM MP <<D .0MP OM >>【答案】C【解析】在单位圆中画出角76π的正弦线MP 和余弦线OM ,如图所示,则0OM MP <<. 故选:C.2.在()0,2π内,使sin cos x x >成立的x 的取值范围为( ) A .(,)4ππB .5(,)44ππC .5(,)424ππππ⎛⎫⋃ ⎪⎝⎭, D .53(,)444ππππ⎛⎫⋃ ⎪⎝⎭, 【答案】B【解析】在()0,2π内,画出sin x 与cos x 对应的三角函数线是MT ,OM ,如图:满足在()0,2π内,使sin cos x x >的即MT OM >,所以所求x 的范围是:5(,)44ππ,故选:B.3.若点(),P sin cos tan ααα-在第一象限, 则在[0,2)π内α的取值范围是( ).A .5,,424ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .35,,244ππππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭C .353,,2442ππππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭D .33,,244ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭【答案】A【解析】点(),P sin cos tan ααα-在第一象限,sin cos 0,tan 0.ααα->⎧⇒⎨>⎩sin cos ,tan 0.ααα>⎧⇒⎨>⎩,如下图所示:在[)0,2π内α的取值范围是5,,424ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭,本题选A. 4.比较大小,正确的是( ). A .sin(5)sin3sin5-<< B .sin(5)sin3sin5->> C .sin3sin(5)sin5<-< D .sin3sin(5)>sin5>-【答案】B 【解析】因为3π52π2<<,所以sin50<. 而sin(5)sin(2π5)-=-,sin3sin(π3)=-, 由π0π32π52<-<-<,所以,sin(2π5)sin(π3)0->->. 综上,sin(5)sin(3)sin 5->>,故选B . 5.函数tan 1y x =-____________.【答案】2,2,42k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭【解析】要使tan 1y x =-,则有sin 0x >且tan 1x >由sin 0x >得(),2,2k x k k Z πππ∈∈+ 由tan 1x >得,,42x k k k Z ππππ⎡⎫∈∈⎪⎢⎣⎭++因为(),2,2,2,42422k k k k k k k Z πππππππππππ⎡⎫⋂=⎪⎢⎣⎭⎡⎫+++++∈⎪⎢⎣⎭ 所以原函数的定义域为2,2,42k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭故答案为:2,2,42k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭。