初中数学《锐角三角函数》单元教学设计以及思维导图
- 格式:docx
- 大小:12.81 KB
- 文档页数:9
北师大版数学九年级下册1.1《锐角三角函数》教学设计1一. 教材分析《锐角三角函数》是北师大版数学九年级下册第一章第一节的内容。
本节课的主要内容是引导学生通过锐角三角函数的定义,了解正弦、余弦、正切函数的概念,并会进行简单的计算。
这一节内容是初中数学的重要内容,也是高中数学的基础。
在教材中,通过大量的实例,让学生感受三角函数在实际问题中的应用,从而培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。
但是,对于三角函数的定义和应用,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实例,理解三角函数的概念,并能够运用三角函数解决实际问题。
三. 教学目标1.理解锐角三角函数的定义,掌握正弦、余弦、正切函数的概念。
2.能够运用三角函数解决实际问题。
3.培养学生的数学应用能力。
四. 教学重难点1.重点:锐角三角函数的定义,正弦、余弦、正切函数的概念。
2.难点:运用三角函数解决实际问题。
五. 教学方法1.实例教学:通过实际问题,引导学生理解三角函数的定义和应用。
2.小组讨论:让学生在小组内讨论,共同解决问题,培养学生的合作能力。
3.练习巩固:通过大量的练习,让学生巩固所学知识,提高解题能力。
六. 教学准备1.教材:北师大版数学九年级下册。
2.课件:相关的教学课件。
3.练习题:相关的练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入三角函数的概念。
例如,一个直角三角形,一个锐角为30度,斜边长为1,求这个三角形的两条直角边的长度。
让学生思考,如何解决这个问题。
2.呈现(10分钟)通过多媒体课件,呈现三角函数的定义和概念。
引导学生理解,三角函数是描述直角三角形中,角度和边长之间关系的一种数学工具。
讲解正弦、余弦、正切函数的定义,并通过动画演示,让学生直观地理解这三个函数的定义。
3.操练(10分钟)让学生进行一些相关的练习题,巩固所学的知识。
教师可以通过多媒体课件,展示解题过程,引导学生正确解题。
九上数学第二十三章 数据分析23.1 平均数与加权平均数一般地,我们把n个数的和与n的比,叫做这n个数的算术平均数=x ˉx +…+x n1(1n )已知n个数,,...,,若,,...,为一种正数,则把,叫做n个数,,...,的加权平均数x 1x 2x n w 1w 2w n w +w +...+w 12nx w +x w +...+x w 1122n nx 1x 2x n 23.2 中位数与众数一般地、将n个数据按大小顺序排列,如果n为奇数,那么位于中间位置的数据叫做这组数据的中位数;如果n为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数。
一般地、把一组数据中出现最多的那个数据叫做众数,一组数据的众数可能不止一个,也可能没有众数23.3 方差设n个数据,,...,的平均数为,各个数据与平均数偏差的平方分别是,,...,,偏差平方的平均数叫做这组数据的方差,用表示,即x 1x 2x n x ˉx −(1x ˉ)2x −(2x ˉ)2x −(n x ˉ)2s 2s =2x −+x −+...+x −n1[(1x ˉ)2(2x ˉ)2(n x ˉ)2]当数据分布比较分散时,方差较大;当数据分布比较集中时,方差较小。
因此,方差的大小反映了数据波动的大小23.4 用样品估计总体由于抽样的任意性,即使是相同的样本容量,不同样本的平均数一般也不相同;当样本容量较小时,差异可能还较大。
但是当样本容量增大时,样本的平均数的波动变小,逐渐趋于稳定,且与总体的平均数比较接近,因此,在实际中经常用样本的平均数估计总体的平均数。
同样的道理,我们也用样本的方差估计总体的方差第二十四章 一元二次方程24.1 一元二次方程关于未知数x的整式方程,且x的最高次数都为2,像这样,只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程一元二次方程的一般形式为(a不等于0)ax +2bx +c =0是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项ax 224.2 解一元二次方程配方法通过配方,把一元二次方程变形为一边含有未知数的一次式的平方,另一边为常数,当常数为非负数时,利用开平方,将一元二次方程转化为两个一元一次方程,从而求出原方程的根,这种解一元二次方程的方法叫做配方法公式法x =2a−b ±b −4ac2当时,方程有两个不相等的解b −24ac >0当时,方程有两个相等的解b −24ac =0当时,方程没有实数根b −24ac <0用求根公式求一元二次方程的方法,叫做公式法因式分解把一元二次方程的一边化为0,另一边分解成两个一次因式的乘积进而转化为两个一元一次方程,从而求出原方程的根,这种解一元二次方程的方法叫做因式分解十字相乘十字左边两个数相乘是二次项系数十字相乘右边的数相乘是常数项交叉相乘再相加是一次项系数得到结果后上面两个数依次是第一组数的未知数系数和常数项,下面两个数依次是第二组数据的未知数系数和常数项概要24.3 一元二次方程与系数的关系一元二次方程的两根分别是,ax +2bx +c =0x 1x 2x ⋅x =12ac x +1x =2−ab24.4 一元二次方程的应用要根据题目给的现实情况来排除答案第二十五章 图形的相似25.1 比例函数在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,我们就把这四条线段叫做成比例线段,简称比例线段。
锐角三角函数
习学生应该明确锐角三角函数的定义,会利用相关知识解直角三角形,灵活运用其解决实际问题。
主题单元规划思维导图
主题单元学习目标
知识与技能:
了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比。
掌握30°、45°、60°的正弦、余弦和正切的函数值,会由一个特殊角的三角函数值说出这个角。
会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角。
理解直角三角形中边于边的关系,角与角的关系和边角的关系,会用其解直角三角形。
会用解直角三角形有关知识解决简单的实际问题。
知识必备09锐角三角函数(公式、定理、结论图表)考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边. 锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.要点诠释: (1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、. (3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值 利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释: (1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角. (2)仔细研究表中数值的规律会发现: 、、、、的值依次为0、、、、1,而、、、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时, ①正弦、正切值随锐角度数的增大(或减小)而增大(或减小) ②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,; (2)平方关系:; (3)倒数关系:或; (4)商数关系:. 要点诠释: 锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h 为斜边上的高.要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤两直角边(a ,b)由求∠A ,∠B=90°-∠A ,两边斜边,一直角边(如c,a)由求∠A ,∠B=90°-∠A ,锐角、邻边(如∠A ,b)∠B=90°-∠A ,,一直角边和一锐角锐角、对边(如∠A ,a)∠B=90°-∠A ,,Rt △ABC一边一角斜边、锐角(如c ,∠A)∠B=90°-∠A ,,要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°. (4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释: 1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如: 3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 16 m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,,.(4)如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC面积,得ab=ch.(5)如图所示,若CD是直角三角形ABC中斜边上的中线,则①CD=AD=BD=AB;②点D是Rt△ABC的外心,外接圆半径R=AB.(6)如图所示,若r是直角三角形ABC的内切圆半径,则.直角三角形的面积:①如图所示,.(h为斜边上的高)②如图所示,.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为( )A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。
《锐角三角函数》教学设计方案(第一课时)一、教学目标1. 学生能够理解正弦、余弦、正切等锐角三角函数的概念。
2. 掌握三角函数在直角三角形中的基本性质。
3. 了解三角函数在解决实际问题中的应用。
二、教学重难点1. 教学重点:理解三角函数的定义,掌握其在直角三角形中的性质。
2. 教学难点:将三角函数知识与实际问题相结合,用三角函数解决实际问题。
三、教学准备1. 准备教学用具:黑板、白板、三角板、直角三角形模型等。
2. 准备教学内容:设计一些实际问题的场景,帮助学生理解三角函数在解决实际问题中的应用。
3. 准备教学资料:提供相关练习题,帮助学生巩固三角函数知识。
4. 设计教学活动:组织学生进行小组讨论,探究三角函数的应用。
四、教学过程:(一)引入课题1. 回顾之前学习的三角函数概念。
2. 提出问题:如何在没有直尺和角度仪的情况下测量三角函数值?3. 引出锐角三角函数的课题,并简单介绍锐角三角函数的概念和意义。
(二)新课教学1. 介绍锐角三角函数的定义,以锐角A的正切函数tanA为例进行讲解。
2. 通过实物演示(如直角三角形)或多媒体展示(如动画模拟)锐角三角函数的计算过程。
3. 进行例题教学,让学生初步掌握锐角三角函数的计算方法。
4. 让学生动手操作,测量各种不同形状的直角三角形锐角三角函数值,加深理解。
5. 小组讨论,交流不同的测量方法和理解角度三角函数的方法。
6. 教师总结并强调锐角三角函数的意义和计算方法。
(三)课堂练习1. 给出一些锐角三角函数的计算题目,让学生进行练习。
2. 让学生自行出题,进行小组互测,提高学习效果。
(四)小结与作业1. 总结本课的主要内容,强调锐角三角函数的意义、计算方法及应用。
2. 布置一些与锐角三角函数有关的思考题和探究题,为第二课时做准备。
3. 要求学生搜集一些实际生活中应用锐角三角函数的例子,下一节课进行分享和讨论。
教学设计方案(第二课时)一、教学目标1. 学生能够理解正弦、余弦、正切的概念,并掌握其基本性质。
浙教版数学九年级下册1.1《锐角三角函数》教案一. 教材分析浙教版数学九年级下册1.1《锐角三角函数》是本册教材的第一课时,主要介绍锐角三角函数的定义及概念。
本节课内容是学生对初中数学中三角函数知识的初步接触,对于培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。
但是,对于锐角三角函数的定义和应用,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例讲解,让学生更好地理解和掌握锐角三角函数的知识。
三. 教学目标1.了解锐角三角函数的定义和概念;2.能够运用锐角三角函数解决实际问题;3.培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力。
四. 教学重难点1.教学重点:锐角三角函数的定义和概念;2.教学难点:如何运用锐角三角函数解决实际问题。
五. 教学方法采用问题驱动法、实例讲解法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学素养。
六. 教学准备1.准备相关的生活实例和图片;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如测量身高、角度等,引导学生思考如何利用数学知识解决这些问题。
从而引出锐角三角函数的概念。
2.呈现(10分钟)讲解锐角三角函数的定义和概念,让学生了解锐角三角函数的基本性质。
通过示例,让学生掌握如何运用锐角三角函数解决实际问题。
3.操练(10分钟)让学生分组讨论,选取一个生活实例,运用锐角三角函数进行解决。
教师巡回指导,为学生提供帮助。
4.巩固(5分钟)选取一些练习题,让学生独立完成,巩固所学知识。
教师及时批改,给予反馈。
5.拓展(5分钟)引导学生思考:除了生活中的实例,还有哪些领域会用到锐角三角函数?让学生了解锐角三角函数在实际应用中的广泛性。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重难点。
三角函数三角函数定义符号三角函数线正弦 余弦 正切余切正割余割角制与弧度制角制弧度制定义:平面内,一射线绕端点旋转分类表示方式旋转方向终边位置正角负角零角(不旋转)象限角轴线角第一/二/三/四象限角在(正/负)X 轴上在(正/负)Y 轴上定义:用弧长与半径之比度量对应圆心角角度的方式,用符号rad 表示,读作弧度互相转化弧度制与角制的相关性恒等变换基本关系式诱导公式和差倍角和差与积的转化解三角形平方关系商数关系倒数关系三角函数的恒等关系中的基本关系式含义:角a 与特殊角的三角函数关系口诀:奇变偶不变,符号看象限诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2k π+α)=sin α(k ∈Z)cos(2k π+α)=cos α(k ∈Z)tan(2k π+α)=tan α(k ∈Z)cot(2k π+α)=cot α(k ∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sin αcos(π+α)=-cos αtan(π+α)=tan αcot(π+α)=cot α公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sin αcos(-α)=cos αtan(-α)=-tan αcot(-α)=-cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sin αcos(π-α)=-cos αtan(π-α)=-tan αcot(π-α)=-cot α公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sin αcos(2π-α)=cos αtan(2π-α)=-tan αcot(2π-α)=-cot α公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cos αsin(π/2-α)=cos αcos(π/2+α)=-sin αcos(π/2-α)=sin αtan(π/2+α)=-cot αtan(π/2-α)=cot αcot(π/2+α)=-tan αcot(π/2-α)=tan α和差公式倍角公式辅助角公式两角和与差的三角函数公式sin(α+β)=sin αcos β+cos αsin βsin(α-β)=sin αcos β-cos αsin βcos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βtan(α+β)=(tan α+tan β)/(1-tan αtan β)tan(α-β)=(tan α-tan β)/(1+tan α·tan β)二倍角公式(升幂缩角公式)sin2α = 2sin αcos αcos2α = cos^2(α)-sin^2(α) = 2cos^2(α)-1 = 1-2sin^2(α)tan2α = 2tan α/[1-tan^2(α)]二倍角公式半角公式万能公式半角公式(降幂扩角公式)sin^2(α/2)=(1-cos α)/2cos^2(α/2)=(1+cos α)/2tan^2(α/2)=(1-cos α)/(1+cos α)另也有tan(α/2)=(1-cos α)/sin α=sin α/(1+cos α)万能公式sin α=2tan(α/2)/[1+tan^2(α/2)]cos α=[1-tan^2(α/2)]/[1+tan^2(α/2)]tan α=2tan(α/2)/[1-tan^2(α/2)]三倍角公式平方关系(sina)^2+(cosa)^2 = 11+(tana)^2 = (seca)^21+(cota)^2 = (csca)^2商数关系tana = sina/cosa cota = cosa/sina倒数关系:sina*csca = 1cosa*seca = 1tana*cota = 1三倍角公式sin3α=3sin α-4sin^3(α)cos3α=4cos^3(α)-3cos αtan3α=[3tan α-tan^3(α)]/[1-3tan^2(α)]三角函数的和差化积公式sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]正弦定理a/sinA=b/sinB=c/sinC=2R(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a :b :c=sinA :sinB :sinC 解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。
《锐角三角函数——正切》教学设计一、教材与学情分析◆教材分析:本节教材是初中数学九年级上册第一节内容,是初中数学的重要内容之一。
一方面,这是在学习了相似三角形、直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
◆学情分析:九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
前面已经掌握直角三角形中各边和各角的关系,通过这节课学习要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。
学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。
二、教学重难点:◆重点:理解锐角三角函数-正切的意义,会将某些实际问题转化为解直角三角形的问题。
◆难点:理解直角三角形中锐角与两直角边比值之间一一对应的关系,从而引入正切函数,并用符号tan A来表示.三、教学目标◆知识与技能:1.理解并掌握正切的含义,并能够举例说明;2.会在直角三角形中求出某个锐角的正切值;3.了解锐角的正切值随锐角的增大而增大.◆过程与方法:1. 经历正切的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力。
2. 逐步学习利用数形结合的思想分析问题和解决问题。
◆情感态度与价值观:1. 使学生在学习数学的过程中体会数学与生活的密切联系,激发学生学习数学的兴趣。
2 . 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯。
四、教学方法:利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式,渗透函数、数形结合、转化等数学思想方法。
探究教学法:提出问题,让学生通过自主探究,解决问题,掌握新知。
沪科版数学九年级上册《一般锐角的三角函数》教学设计1一. 教材分析《一般锐角的三角函数》是沪科版数学九年级上册的一章内容。
本章主要介绍了锐角的正弦、余弦和正切函数的定义、性质及其应用。
学生通过本章的学习,应能理解三角函数的概念,掌握三角函数的性质,并能运用三角函数解决一些实际问题。
二. 学情分析九年级的学生已经学习了初中阶段的数学知识,包括代数、几何等。
他们对函数的概念有一定的了解,但可能对三角函数的理解还存在一定的困难。
因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步过渡到三角函数的学习。
三. 教学目标1.理解三角函数的概念,掌握锐角的正弦、余弦和正切函数的定义。
2.掌握三角函数的性质,能够运用三角函数解决一些实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.三角函数的概念和性质。
2.运用三角函数解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生主动探究三角函数的定义和性质。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的合作意识。
3.案例教学法:通过分析具体的案例,让学生理解三角函数的应用。
六. 教学准备1.教学课件:制作课件,展示三角函数的定义和性质。
2.案例材料:收集一些实际问题,用于教学过程中的拓展环节。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过设置一个实际问题,如测量一个角的度数,引导学生思考如何利用三角函数解决此类问题。
从而引出本节课的主题——三角函数。
2.呈现(15分钟)教师利用课件呈现三角函数的定义和性质,引导学生直观地理解三角函数的概念。
同时,通过讲解一些典型的例子,让学生掌握三角函数的运用方法。
3.操练(15分钟)教师提出一些练习题,让学生独立完成。
题目包括求解三角函数值、判断三角函数的性质等。
教师在过程中给予学生必要的指导,并强调答题技巧。
4.巩固(10分钟)教师学生进行小组讨论,共同解决问题。
第28章锐角三角函数【思维导图】28.1锐角三角函数【知识点】1.Rt△ABC中,∠C=90°.(1)∠A的对边与斜边比,叫做∠A的正弦,记为sinA,即sinA=∠A的对边斜边=aa(2)∠A的邻边与斜边比,叫做∠A的余弦,记为cosA,即cosA=∠A的邻边斜边=aa(3)∠A的对边与邻边比,叫做∠A的正切,记为tanA,即tanA=∠A的对边∠A的邻边=aa∠A的正弦、余弦、正切统称为∠A的锐角三角函数.提示:sin A 不是sin与A的乘积,而是一个整体,cosA和tanA同理;锐角三角函数的三种表示方法:sin A,sin 56°,sin∠DEF.2.一个锐角的三角函数值是一个比值,它与三角形的大小无关,它没有单位.在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的锐角三角函数值为定值.锐角三角函数锐角α30°45°60°sin α12√22√32cos α√32√2212tan α√331√3(1)正弦值、正切值随角度的增大而增大,余弦值随角度的增大而减小.(2)sin α=cos(90°-α)cos α=sin(90°-α)tan α·tan(90°-α)=1(3)锐角A 的正弦、余弦的取值范围分别为:0<sin A<1,0<cos A<1, (4)cos 2A+sin 2A=1 sin 2A+sin 2(90°-α)=1(5)tan A=sin A cos A4.锐角三角函数值是个常数值,它只与角的度数有关,将来离开了直角三角形也存在.5.若α=45°,则sin α=cos α; 若α<45°,则sin α<cos α; 若α>45°,则sin α>cos α;28.2解直角三角形及其应用 28.2.1 解直角三角形【知识点】1.在直角三角形中,由已知元素求出其余未知元素的过程就是解直角三角形.2.在直角三角形中,三边之间的关系是a 2+b 2=c 2(勾股定理); 两锐角之间的关系是∠A+∠B=90° 边角之间的关系有sinA=∠A 的对边斜边,cosA=∠A 的邻边斜边,tanA=∠A 的对边∠A 的邻边3.在直角三角形的六个元素中,除直角外的五个元素只要知道其中的两个元素,就可以求出其余三个元素,其中至少有一个是边.4.在Rt △ABC 中,∠C=90°,若已知∠A=α,AB=c ,较简便的方法是用正弦求出BC ,用余弦求出AC ,也可用勾股定理求出AC ,根据直角三角形的两锐角互余求出∠B.单元练习一、选择题1.已知∠α为锐角,且sin a=12,则∠α=( )A.30°B.45°C.60°D.90°2.sin 60°的相反数是( )A.-12B.−√33C.−√32D.−√223.如图,在∠ABC中,∠B=90°,BC=2AB,则cosA的值为( )A.52B.12C.255D.554.如图,在4×5 的正方形网格中,每个小正方形的边长都是1,∠ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB 的值为( )A.3√55B.√175C. 35D. 455.在∠ABC中,∠A,∠B均为锐角,且|2sin A-1|与(cos a-√22)2互为相反数,则∠C的度数是( )A.45°B.75°C.105°D.120°6.如图,在∠ABC中,∠C=90°,AB=15,sinB=35,则AC的长为( )A.3 B.9 C.4 D.127.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪的高A D为1.5米,则铁塔的高BC为( )A.(1.5+150tanα)米a.(1.5+150tan a)米C.(1.5+150sinα)米a.(1.5+150sin a)米8.在Rt∠ABC 中,∠C=90°,AB=2BC,则cos A 的值为 ( ) A.√32 B .12 C .√33 D .√229.如图,在∠ABC 中,CA =CB =4,cosC =14 ,则sinB 的值为( )A.102 B .153 C .64 D .10410.如图,电线杆CD 的高度为h ,两根拉线 AC 与BC 相互垂直,∠CAB=α,则拉线 BC 的长度为(点 A,D,B 在同一条直线上)( ) a .asin a a .acos a a .atan a D. h·cosα11.定义一种运算:cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β.例如:当α=60°,β=45°时,cos(60°-45°)=12×√22+√32×√22=√2+√64,则cos 75°的值为 ( )A.√6+√24 B .√6-√24C.√6-√22 D .√6+√2212.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos∠ADC 的值为( )A .21313B .31313C .23D .53 二、填空题,则cos B=_______.13.在∠ABC中, aa=90°,tan a=√3314.已知α为锐角,当无意义时,cos α的值是_______.√3tan a-115.如图,在Rt∠ABC中,∠ACB=90°,CD∠AB,垂足为D,若AC= 5 ,BC =2,则sin∠ACD的值为_________.16.某物体沿着坡比为4:3的坡面上升了8米,那么在坡面上移动了_______米.17.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点,正方形ABCD的边长为8,则BH的长为_______.H,tan∠ABG=1218.如图,在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是_________.三、解答题19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50 cm,∠AB C=47°.(1)求车位锁的底盒BC的长;(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位? (参考数据:aaa47°≈0.73,aaa47°≈0.68,aaa47°≈1.07)20.某景区为给游客提供更好的游览体验,拟在如图∠所示的景区内修建观光索道.其设计示意图如图∠所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC,BC长为50 m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A、B两处的水平距离AE为576 m,DF∠AF,垂足为点F.(图∠中所有点都在同一平面内,点A、E、F 在同一水平线上)(1)求索道AB的长(结果精确到1 m);(2)求AF的长(结果精确到1 m).(参考数据:sin 15°≈0.25,cos 15°≈0.96,tan 15°≈0.26,√2≈1.41)21.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上,求菜园与果园之间的距离.(结果保留整数.参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)。
三角函数的思维导图一:概述三角函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义域为整个实数域。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
下面是通过思维导图的方式,将这些内部规律和联系表现出现,方便学习者掌握三角函数。
图一为学习三角函数的主要分支。
我们从下列分支,一个一个分支开始学习。
图一二:角度与弧度制2.1我们知道,常见的度量方法有角度制与弧度制两种。
什么是角度制?所谓角度制,就是将圆周 360 等分,其中 1 份所对应的圆心角定义为 1 度,记作1°。
并将 1度的 1/60 定义为 1 分,记作 1';将 1 分的 1/60 定义为 1 秒,记作 1"。
换言之,1°=60',1'=60"。
图二是角度制的示意图。
2.2而弧度制则是根据圆心角、弧长、半径之间的数量关系而引入的。
当弧长等于半径时,弧所对应的圆心角为 1 弧度,记作 1rad。
正角度弧度数是一个正数,负角度弧度数是一个负数,零角度弧度数。
半径为r的圆的圆心角α所对的弧度长为l,那么角α的弧度数的绝对值是 | α | = l / r。
图二2.3角度制与弧度制的换算,数字表达式和图示表示如下所示。
2.4图四为角制和弧度制的思维导图。
图四角度制与弧度制数字表达式: 360 o = 2π rad 180 o = π rad1 o =(π / 180)rad ≈ 0.01745 rad 1 rad =(180 /π)o ≈ 57.30 o α 度的角 = α ·(π / 180)rad角度制与弧度制图示表示:三:三角函数基本属性3.1 三角函数的定义。
鲁教版数学九年级上册2.1《锐角三角函数》(第2课时)教学设计一. 教材分析鲁教版数学九年级上册2.1《锐角三角函数》(第2课时)的内容主要包括正弦、余弦和正切函数的定义,以及它们的性质。
这一部分内容是整个初中数学的重要部分,也是学生对高中数学学习的重要基础。
通过本节课的学习,学生应该能够理解锐角三角函数的概念,掌握它们的定义和性质,并能够运用它们解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数的概念和性质可能已经有所了解。
但是,他们对这些知识的深入理解和灵活运用能力还不够强。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出锐角三角函数的概念,并通过大量的练习来巩固和提高他们的运用能力。
三. 教学目标1.理解锐角三角函数的概念,掌握正弦、余弦和正切函数的定义和性质。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的抽象思维能力和逻辑推理能力。
四. 教学重难点1.重点:锐角三角函数的概念和性质。
2.难点:锐角三角函数的灵活运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出锐角三角函数的概念。
2.通过大量的练习,巩固和提高学生对锐角三角函数的理解和运用能力。
3.采用小组合作的学习方式,培养学生的团队合作意识和交流能力。
六. 教学准备1.教学课件和教案。
2.练习题和学习资料。
3.计算器和三角板。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入锐角三角函数的概念。
例如,一个建筑物的的高度是30米,建筑物与观测点的距离是40米,求观测点与地面之间的角度。
2.呈现(15分钟)讲解锐角三角函数的定义和性质,通过示例来说明它们的运用。
正弦函数、余弦函数和正切函数的定义和性质。
3.操练(10分钟)让学生进行一些相关的练习题,巩固对锐角三角函数的理解。
例如,计算一个锐角的正弦值、余弦值和正切值,并解释其含义。
4.巩固(10分钟)让学生进行一些综合性的练习题,提高他们对锐角三角函数的运用能力。
锐角三角函数
习学生应该明确锐角三角函数的定义,会利用相关知识解直角三角 形,灵活运用其解决实际问题。
主题单元规划思维导图
主题单元学习目标
知识与技能: 了解锐角三角函数的概念,能够正确应用 sinA 、cosA 、tanA 表示直 角三角形中两边的比。
掌握 30°、 45°、 60°的正弦、余弦和正切的函数值,会由一个特 殊角的三角函数值说出这个角。
会使用计算器由已知锐角求它的三角函数值, 由已知三角函数值会求 它的对应的锐角。
理解直角三角形中边于边的关系, 角与角的关系和边角的关系, 会用 其解直角三角形。
会用解直角三角形有关知识解决简单的实际问题。
第一课时锐角三角函数(正弦)活动一:情境导入。
第二课时锐角三角函数(余弦、正。