食品工程原理知识点
- 格式:doc
- 大小:1.08 MB
- 文档页数:11
食品工程原理知识点总结食品工程是一门将工程原理和技术应用于食品制造的学科,其目的是利用工程学原理,将食品原料经过种种工艺处理,生产出合格、安全、美味的食品。
食品工程学的研究内容与食品加工技术、食品成分、物性、生产设备、生产系统、过程控制、新产业技术、环境与能源等相关。
食品工程的起源可以追溯到上个世纪初。
食品加工工艺一直在不断改进,新的技术和理念也在不断涌现。
从第一台模拟风扇式冷凝机的出现,到现在的超声波处理技术、高温短时间消毒技术、低温乳化技术等,食品工程已逐渐发展成为一个非常重要的学科。
二、食品原料的基本性质1. 水分含量:食品的水分含量是其重要的品质指标之一。
食品中水分多则易受微生物污染并变质,少则易变得干燥,影响食品的口感和风味。
2. 营养成分:食品中的营养成分是指食品中的营养物质,如蛋白质、脂肪、糖类、维生素、矿物质等。
这些物质对人体的生长和健康有着重要的作用。
3. 构造成分:构造成分是指食品中的主要构成物质,如淀粉、蛋白质、脂肪、糖类等。
构造成分对于食品的可加工性、口感和品质有着重要的影响。
4. 食品的物理性质:食品的物理性质包括食品的形态、结构、大小、形状等。
这些物理性质对于食品的加工和加工过程中的传热、传质、变形过程有着重要的影响。
5. 食品的化学性质:食品的化学性质包括食品中的化学成分、化学反应、酸碱度等。
这些化学性质对于食品的加工、储藏期间的变质、变味等有着重要的影响。
三、食品工程中的基本工艺1. 加工:加工是指将食品从原料状态转化为最终食品的过程。
包括初加工和深加工。
初加工是将原料进行初步的加工处理,使之成为半成品。
深加工是在初加工的基础上,对半成品进行各种深度加工,生产出成品食品。
2. 杀菌:杀菌是指通过一定的工艺手段,将食品中的微生物全部杀灭,以延长食品的保质期。
常用的杀菌工艺包括煮沸、高温短时间杀菌、紫外线辐射、臭氧杀菌等。
3. 色泽处理:对食品的颜色进行处理,既可以使食品颜色更加诱人,也可以延长食品的品质保持期。
食品工程原理第4章颗粒与流体之间的相对流动球形颗粒的表示方法:用直径d全面表示。
非球形颗粒的表示方法:1)体积等效直径2)表面积等效直径3)比表面积等效直径颗粒群的特性:任何颗粒群都具有某种粒度分布。
颗粒粒度的测量方法:筛分法、显微镜法、沉降法、电阻变化法、光散射与衍射法、比表面积法。
固体流态化的概念和状态:概念:流体通过固定床层向上流动时的流速增加而且超过某一限度时,床层浮起的现象称为固体流态化。
状态:流体经过固体颗粒床层的三种状态:当流体自下而上通过固体颗粒床层时,根据颗粒特性和流体速度的不同,存在三种状态: 固定床阶段、流化床阶段、气力输送阶段过滤常数包括:1)滤饼常数2)过滤常数:与滤浆物性和过滤操作压差有关。
只有在恒压过滤是才能成为常数。
第5章液体搅拌调匀度:指一种或几种组分的浓度或其他物理量和温度等在搅拌体系内的均匀性。
混合的均匀度的表示:分隔尺度:混合物各个局部小区域体积的平均值。
可以反映混合物的混合程度。
分隔尺度愈大,表示物料分散情况愈差。
分隔强度:混合物各个局部小区域的浓度与整个混合物的平均浓度的偏差的平均值。
可以反映混合物的混合程度。
分隔强度愈大,表示物料混合愈不充分。
混合的原理:1)对流混合;2)扩散混合;3)剪力混合混合速率:指混合过程中物料的实际状态与其中组分达到完全随机分配状态之间差异消失的速率。
乳化:将两种通常不互溶的液体进行密切混合的一种特殊的液体混合操作,包含混合和均质化。
它是一种液体以微小球滴或固型微粒子(称分散相)均匀分散在另一种液体(称连续相)之中的现象。
乳化机理:由于乳化剂具有表面活性,它向分散相-连续相的界面吸附,使界面能降低,防止两相恢复原状。
此外,因乳化剂分子膜将液滴包住,可防止碰撞的液滴彼此又合并。
同时由于形成表面双电层,使液滴在相互接近时,因电的相斥作用防止凝聚。
乳化剂的这种作用使原热力学不稳定体系的乳液可以保持为稳定体系。
第6章粉碎和筛分粒度:颗粒的大小称为粒度。
食品工程知识点总结1. 食品成分及其作用食品成分是食品的主要组成部分,包括水分、蛋白质、脂肪、碳水化合物、维生素、矿物质等。
不同的食品成分在食品中起着不同的作用,如蛋白质是构成食品结构的主要成分,脂肪可以增加食品的口感和香味,碳水化合物是食品的主要能量来源,维生素和矿物质对身体健康起着重要的作用。
2. 食品加工技术食品加工技术是指将原料经过一系列加工工艺和操作,达到改善食品品质、保持食品新鲜、提高食品营养价值等目的的过程。
常见的食品加工技术包括蒸煮、炒炸、腌制、烘干、冷冻、真空包装等。
3. 食品安全与卫生食品安全与卫生是食品工程中至关重要的知识点。
食品安全问题直接关系到公共健康,因此食品工程师需要了解食品微生物学、食品毒理学、食品卫生学等知识,掌握食品安全检测与监测技术,合理控制食品生产加工的环境卫生与食品卫生质量。
4. 食品质量控制食品质量控制是指通过一系列的质量控制措施,保证食品在生产加工过程中达到一定的品质标准。
控制食品质量需要从原料采购、生产加工过程中的卫生控制、环境监测等方面进行严格控制。
5. 食品营养与功能食品营养与功能是指食品对身体健康和功能的影响。
食品工程师需要了解食品中的营养成分含量以及其在加工过程中的变化,开发新型的功能性食品,如富含蛋白质、纤维素等的功能性食品。
6. 食品包装与储藏食品包装与储藏是食品工程中的重要环节,合理的包装可以延长食品的保质期,提高食品的卫生安全性,降低食品的损耗。
食品工程师需要了解各种包装材料的特性和应用,掌握食品储藏的技术和方法。
7. 食品工程原理与设备食品工程原理是食品工程师需要掌握的基本理论知识,包括食品加工原理、热力学原理、传热传质原理、流体力学原理等。
在食品加工中,需要使用各种设备,食品工程师需要了解不同设备的原理和使用方法,如榨油机、杀菌设备、冷冻设备等。
8. 食品工程的新技术随着科学技术的不断发展,食品工程领域也出现了许多新技术,如高压灭菌技术、膜分离技术、特种膨化技术、生物发酵技术等。
食品工程原理知识点总结一、食品工程的概念与发展食品工程是指利用科学技术对食品进行加工、生产和保鲜的过程。
它涉及了食品生产的各个环节,包括原料采购、生产加工、包装储存、销售和配送等。
食品工程的发展历史悠久,随着科学技术的不断进步,食品工程也在不断发展和创新。
食品工程的发展受到了食品安全、食品营养和科技创新等多方面因素的影响。
在当前社会中,人们对于食品的质量和安全要求越来越高,因此食品工程的发展也变得越来越重要。
同时,随着科学技术的不断进步,食品工程也在不断进行创新,以满足人们对于食品的需求。
二、食品工程的基本原理1. 热力学原理热力学是食品工程中非常重要的基本原理之一,它主要研究物质的热力学性质,比如热量、温度和压力等。
热力学原理可以辅助工程师更好地理解食品加工的过程,比如加热、冷却、干燥等过程。
通过热力学原理的应用,可以更好地控制食品加工的质量和生产效率。
2. 流体力学原理流体力学原理是研究流体运动和压力变化规律的学科,它在食品工程中也起着非常重要的作用。
比如,液体在管道中的流动、气体在食品加工过程中的传递等,都需要运用流体力学原理来进行分析和控制。
通过研究流体力学原理,工程师可以更好地控制食品加工过程中的液体和气体流动,从而保证生产效率和质量。
3. 物质传递原理物质传递原理是研究物质在不同介质中传递规律的学科,比如热量传递、质量传递等。
在食品工程中,物质传递原理也是相当重要的,它可以帮助工程师更好地控制食品加工过程中的传热、传质等过程。
通过研究物质传递原理,可以更好地优化食品加工过程,提高生产效率和质量。
4. 生物化学原理食品工程中,生物化学原理也是非常重要的,它主要研究食品中的组成、代谢和变化规律。
通过研究生物化学原理,可以更好地理解食品的特性和变化规律,从而更好地控制食品加工过程中的生物化学变化。
同时,生物化学原理也可以帮助工程师更好地利用微生物等生物技术手段来增强食品的品质和营养。
5. 工程原理食品工程中的工程原理主要包括机械、电气、控制等方面的技术原理,比如食品加工设备的设计、安装和调试等。
食品工程原理复习第一章 流体力学基础1.单元操作与三传理论的概念及关系。
不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉碎、乳化萃取、吸附、干燥 等。
这些基本的物理过程称为 单元操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。
凡是遵循流体流动基本规律的单元操作,均可用动量传递的理论去研究。
热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。
凡是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。
质量传递 : 两相间物质的传递过程即为质量传递。
凡是遵循传质基本规律的单元操作,均可用质量传递的理论去研究。
单元操作与三传的关系“三传理论”是单元操作的理论基础,单元操作是“三传理论”的具体应用。
同时,“三传理论”和单元操作也是食品工程技术的理论和实践基础2.粘度的概念及牛顿内摩擦(粘性)定律。
牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。
μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈大。
所以称为粘滞系数或动力粘度,简称为粘度3.理想流体的概念及意义。
理想流体的粘度为零,不存在内摩擦力。
理想流体的假设,为工程研究带来方便。
4.热力体系:指某一由周围边界所限定的空间内的所有物质。
边界可以是真实的,也可以是虚拟的。
边界所限定空间的外部称为外界。
5.稳定流动:各截面上流体的有关参数(如流速、物性、压强)仅随位置而变化,不随时间而变。
6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。
7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。
8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。
1、传热的基本方式热传导:物体各部分之间不发生相对位移对流:流体各部分之间发生相对位移,热对流仅发生在流体中自然对流:流体各处的温度不同而引起强制对流:外力所导致的对流,在同一流体中有也许同时发生自然对流和强制对流。
辐射:因热的因素而产生的电磁波在空间的传递,称为热辐射。
不需要任何介质。
绝对零度以上都能发射辐射能2、稳态传热:传热系统中,温度分布不随时间而改变。
3、热流量(热流率):传过一个传热面的热量Q与传热时间之比。
定义式:热流密度(热通量):热流量与传热面积A之比。
4、热互换:两个温度不同的物体由于传热,进行热量的互换,称为热互换,简称换热a.无相变,b.相变,5、温度场:某一瞬间空间中各点的温度分布,称为温度场6、一维温度场:若温度场中温度只沿着一个坐标方向变化。
7、稳定温度场:若温度不随时间而改变。
8、等温面:温度场中同一时刻相同温度各点组成的面。
等温面的特点:(1)等温面不能相交;(2)沿等温面无热量传递。
沿等温面将无热量传递,而沿和等温面相交的任何方向,因温度发生变化则有热量的传递。
温度梯度是向量,其方向垂直于等温面,并以温度增长的方向为正。
9、傅立叶定律:单位时间内传导的热量与温度梯度及垂直于热流方向的截面积成正比,即导热系数表征物质导热能力的大小,是物质的物理性质之一10、金属的导热率最大,固体非金属次之,液体较小,气体最小。
物质的热导率均随温度变化而变化11、圆筒壁与平壁不同点是其等温面随半径而变化。
圆筒的长度为L,则半径为r处的传热面积为A=2πrL。
12、对于圆筒壁的稳定热传导,通过各层的热传导的热流量都是相同的,但是热通量(热流密度)却不相等。
13、热量的传递重要研究冷热流体通过管路器壁传递的过程。
14、不同区域的传热特性:1. 湍流主体对流传热温度分布均匀2. 层流底层热传导温度梯度大3. 壁面热传导有温度梯度传热的热阻即重要集中在层流层中。
15、α代替λ/δtα反映对流传热的快慢,其越大,表达对流传热速率越快。
精彩章节展示0 绪论0.1 食品工业生产过程及单元操作概念0.1.1 食品工业生产过程食品工业提供的产品种类繁多,如糖、烟、酒、油、盐、面粉、茶、奶粉、牛奶、火腿肠、饼干、面包、纯净水、脱水蔬菜,等等。
食品工业生产过程是对食品原料进行物理、生物、化学、生物化学等的加工或操作,以获取食品成品或中间产品的过程。
有些食品工业生产过程通过一个或多个纯物理过程即可得到成品或中间产品,此类生产过程被划分成一个或多个物理操作步骤或称操作单元。
另有一些食品工业生产过程,涉及生物、化学、生物化学等加工或以这些加工为主,过程的核心应当是生物、化学等反应和反应器。
为了过程能经济有效地进行,反应器中应保持某些优化操作条件,如适宜的压强、温度、浓度、界面积等,食品原料必须经过一系列的预处理,以除去杂质,达到必要的纯度、温度、压强、接触面积等,这些过程可称为前处理。
反应物同样需要经过各种后处理过程加以精制,以获得最终成品或中间产品。
反应前后的处理过程涉及的操作仍是物理操作,且占过程总操作的比例较大,所耗设备费和操作费在总费用中所占比例也就较大。
以啤酒生产过程为例,从原料到产品经历下述过程:原料麦芽、大米粉碎→混合预浸→糊化、糖化→过滤→ 麦汁煮沸定浓→酒花分离→麦汁冷却→发酵→啤酒过滤→灌装→杀菌→成品啤酒,糖化、发酵过程是典型的具有化学、生物特征的过程,其余前后处理的操作步骤或操作单元则以物理操作为主要特征,为糖化和发酵提供优化条件以及用于得到成品,在啤酒生产过程中所占比例较大,消耗了啤酒生产企业较多的设备投资和操作费用。
对整个食品工业生产过程而言,物理操作步骤或操作单元非常重要。
0.1.2 单元操作食品工业生产过程和类似的其他工业生产过程如化工、石油、制药、生物工程、材料等生产过程可统称为化工类型生产过程。
化工类型生产过程中都包含有各类物理操作步骤,这些物理操作步骤称为单元操作(unit operation),如流体输送、粉碎、均质、乳化、搅拌、过滤、沉降、离心分离、加热、冷却、蒸发、结晶、冷冻、吸附、脱气、萃取、浸提、蒸馏、干燥、膜分离等。
1、三传理论、五个基本衡算关系2、密度、压强相关概念3、压差的测量4、流体流动能量损失的影响因素及测量5、流体流动能量衡算关系6、流体输送设备基本结构、特性、调节方法7、离心泵的非正常工作状态产生的原因及解决办法8、离心泵特性参数概念及测量9、重力沉降与离心沉降的关系10、重力沉降速度基本计算方法11、恒压过滤操作、板框压滤机基本结构12、传热基本方式、多层平面壁传热及相关计算13、导热、对流传热相关概念14、圆筒壁面传热与平面壁传热的差异15、并流、逆流传热;传热平均温差16、蒸发基本概念、温度差损失、蒸发量、蒸汽消耗量、生产能力、生产强度17、多效蒸发与单效蒸发18、传质过程的双膜理论基本要点19、相平衡关系、非平衡体系变化趋势20、蒸馏的基本原理、操作分类、操作过程、传质过程特点21、干燥的过程;湿空气、湿物料等在干燥过程中的变化22、湿空气的特性23、物料中的水份存在形式、在干燥中的特点四、问答题1、流体粘度的意义是什么?流体粘度对流体流动有什么影响?流体流动时产生上述内摩擦力的性质称为粘性,而表示粘性大小的物理量(液体内部分子之间发生相对运动时产生摩擦阻力的大小)称为粘度。
流体的粘度越大,则表示流体的流动性越差。
例如油的粘度比水大,油流动性比水差;蜂蜜沾度很大,很难流动,蜂蜜可以选用螺杆泵类产品,流体具有粘度的这种性质,对于研究流体的流动以及流体的传热、传质等过程具有重要意义。
粘度的物理意义是促使流体产生单位速度梯度(l/s)时,流体在单值面积上由于流体粘性所产生的内摩擦力大小。
因此.流体的粘度只有在运动时才显示出来。
流体的粘度越大,在相同速度下流动时内摩擦力越大,或者说,在相同的流动情况下,流体的粘度越大,则流体的阻力也越大,流体的压头损失也越大。
因此,为了减小压头损失,粘度人的流体应选用较小的流速。
4、在用离心泵输送流体操作过程中,试比较常见的两种不同的调节流量的方法的优缺点。
5、离心泵的扬程和升扬高度有什么不同?6、现想测定某一离心泵的性能曲线,将此泵装在不同的管路上进行测试时,所得性能曲线是否一样?为什么?7、试分析提高过滤速率的因素?8、影响重力沉降速度的主要因素是什么?为了增大沉降速度以提高除尘器的生产能力,你认为可以采取什么措施?9、传导传热,对流传热和辐射传热,三者之间有何不同?10、在以下热交换器中, 管内为热气体,套管用冷水冷却,请在下图标明逆流和并流时,冷热流体的流向。
食品工程原理总复习食品工程原理总复习第0章引论1.什么是单元操作?2.食品工程原理是以哪三大传递为理论基础的?简述三大传递基本原理。
3.物料衡算所依据的基本定律是什么?解质量衡算问题采取的方法步骤。
4.能量衡算所依据的基本定律是什么?要会进行物料、能量衡算。
第一章流体流动1.流体的密度和压力定义。
气体密度的标准状态表示方法?2.气体混合物和液体混合物的平均密度如何确定?3.绝对压力Pab、表压Pg和真空度Pvm的定义。
4.液体静力学的基本方程,其适用条件是什么?5.什么是静压能,静压头?位压能和位压头?6.压力测量过程中使用的U型管压差计和微差压差计的原理。
7.食品工厂中如何利用流体静力学基本方程检测贮罐中液体存量和确定液封高度?8.流体的流量和流速的定义。
如何估算管道内径?9.什么是稳定流动和不稳定流动?流体流动的连续性方程及其含义。
10.柏努利方程及其含义。
位能、静压能和动能的表示方式。
11.实际流体的柏努利方程,以及有效功率和实际功率的定义。
12.计算管道中流体的流量以及输送设备的功率。
13.什么是牛顿粘性定律?动力黏度和运动黏度的定义。
14.什么是牛顿流体?非牛顿流体?举例说明在食品工业中的牛顿流体和非牛顿流体。
15.雷诺实验和雷诺数是表示流体的何种现象?16.流体在圆管内层流流动时的速度分布及平均速度表述,泊稷叶方程。
17.湍流的速度分布的近似表达式。
18.计算直管阻力的公式—范宁公式。
19.层流和湍流时的摩擦因数如何确定?20.管路系统中局部阻力的计算方法有哪两种?具体如何计算?21.管路计算问题(重点是简单管路,复杂管路)22.流体的流量测定的流量计有哪些?简述其原理。
第二章流体输送1.简述离心泵的工作原理。
什么是“气缚”现象?2.离心泵主要部件有哪些?有何特点?3.离心泵的主要性能参数有哪些?4.离心泵的特性曲线是指那三条关系曲线?5.影响离心泵特性曲线的因素有哪些?6.离心泵在安装时应考虑那些因素?什么是“气蚀”现象?7.如何确定离心泵的工作点?结合工作点试述流量调节方法。
单元操作:包含在不同食品加工工艺中的同一类基本工序称为单元操作。
静压强:单位流体面积上所受的垂直压力,称为流体的静压强。
流量:单位时间内流过管道任一截面的流体量称为流量。
过滤:过滤是使流体通过过滤介质分离固体颗粒的一种单元操作。
沉降分离:在外力场作用下,利用非均相物系分散相和连续相的密度差,使两相发生相对运动而实现混合物分离的操作称为沉降分离。
传热:是指两个物体之间或同一物体的两个不同部位之间由于温度不同而引起的热量移动。
蒸馏:蒸馏是利用组分挥发度的不同将液体混合物分离成较纯组分的单元操作。
理论板:理论板是指离开塔板的蒸气和液体呈平衡的塔板。
恒摩尔:是指易挥发组分与难挥发组分的摩尔气化潜热相等,其他热效应则可忽略不计或相互抵消,这样液体汽化和气体冷凝所需的热量刚好相互补偿,使得流经每一块塔板的气液两相摩尔流率保持不变。
吸收:用适当的液体和混合气体接触,使混合气体中的一个或几个组分溶解于液体,从而实现混合气体组分的分离,这种利用各组分溶解度不同而分离气体混合物的操作称为吸收。
分子蒸馏:是一种在高真空状态下进行分离操作的非平衡蒸馏过程。
反应型催化精馏:是以反应为主、精馏为辅的过程。
冷冻浓缩:是利用冰与水溶液之间的固液相平衡原理来实现分离的方法。
电渗析:电渗析是指在直流电场作用下,溶液中的荷电离子选择性的定向迁移,透过离子交换膜并得以去除的一种膜分离技术。
课程的研究方法:实验研究方法(经验法)、数学模型法(半经验半理论法)。
离心泵的优点:结构简单,操作容易,便于调节和自控;流量均匀,效率较高;流量和压头的实用范围较广;适用于输送腐蚀性或含有悬浮物的液体。
基本部件:旋转的叶轮和固定的泵壳。
过滤的程序:过滤阶段,采用恒速、恒压或先恒速后恒压方式;滤饼洗涤,除去或回收滤液;滤饼干燥,去除颗粒中的液体;卸除滤饼,可以间歇操作,也可连续操作。
提高流化质量的措施:分布板应有足够阻力;在流化床的不同高度上设置若干层水平挡板、挡钢或垂直管束等内部构件;采用小粒径、宽度分布的颗粒。
食品工程原理知识点总结食品工程原理是指通过科学的方法和技术,对食品的原料、加工、制造、包装、储存和运输等过程进行研究和控制,以提高食品的质量、安全和营养价值。
下面是食品工程原理的一些重要知识点的总结。
1. 食品成分分析:食品的成分是指食品所含有的蛋白质、碳水化合物、脂肪、维生素、矿物质等营养物质的含量。
通过成分分析可以了解食品的营养价值和特性,为食品加工和控制提供依据。
2. 食品物理性质:食品的物理性质包括颜色、质地、口感、溶解性等。
了解食品的物理性质可以帮助选择合适的加工方法和工艺,以及改善食品的口感和品质。
3. 食品微生物学:食品中存在着各种微生物,包括细菌、霉菌、酵母等。
了解食品微生物的生长规律和影响因素,可以有效控制食品的微生物污染和变质,确保食品的安全性。
4. 食品加工工艺:食品加工工艺是指将原料通过一系列物理、化学和生物变化的过程转化为具有一定质量和特性的食品产品的过程。
了解不同食品的加工工艺,可以掌握食品加工的基本原理和技术,提高食品的生产效率和品质。
5. 食品包装技术:食品包装是保护食品免受外界环境的影响,延长食品的保鲜期和货架期限,同时提供方便的使用和销售。
了解食品包装技术可以选择合适的包装材料和方法,确保食品的质量和安全。
6. 食品质量控制:食品质量控制是通过对原料、加工过程和成品进行监测和检验,确保食品符合规定的质量标准和安全要求。
了解食品质量控制的原理和方法,可以提高食品的一致性和稳定性,降低质量问题和风险。
7. 食品安全管理:食品安全管理是指制定和执行一系列规范和措施,确保食品不会对消费者的健康造成危害。
了解食品安全管理的原理和要求,可以帮助企业建立健全的食品安全管理体系,提高食品的安全性和可追溯性。
8. 食品营养学:食品营养学是研究食物中所含的各种营养成分对人体健康的影响和作用的科学。
了解食品营养学的原理和知识,可以为制定合理的膳食指导和食品配方提供依据,提高食品的营养价值和功能性。
食品工程原理重点
食品工程原理是指食品生产过程中应用的一系列科学原理和技术方法。
它涉及食品的加工、保存、包装、质量控制等方面,旨在提高食品的安全性、稳定性、营养性和口感。
食品工程原理的主要内容包括以下几个方面:
1. 食品加工原理:食品加工是将原料经过一系列的加工步骤,转化为成品食品的过程。
食品加工原理涉及食品成分的改变、物理、化学和生物反应的控制等。
其中,物理原理包括热传导、传质和传热等;化学原理包括酶促反应、酸碱反应和氧化反应等;生物原理则涉及微生物的作用和发酵等。
2. 食品保存原理:食品保存是为了延长食品的保质期和避免食品的变质。
食品保存原理主要包括抑菌、杀菌、防腐、降解成分等方法。
这些原理可以通过高温处理、低温储存、添加防腐剂等手段来实现。
3. 食品包装原理:食品包装是保护食品安全和品质的关键环节。
食品包装原理涉及包装材料的选择和设计,以及食品与包装材料之间的相互作用。
包装材料的选择应考虑到食品性质、保存期限和防止污染等因素。
4. 食品质量控制原理:食品质量控制是确保食品满足食品安全标准和消费者需求的重要环节。
食品质量控制原理包括原料选择、加工工艺控制、卫生管理和检测方法等。
通过严格的质量控制,可以防止食品的感官品质下降和营养成分丢失,确保食
品的安全性和稳定性。
综上所述,食品工程原理是食品加工过程中应用的一系列科学原理和技术方法的总称。
通过理解和应用这些原理,可以提高食品的品质和安全性,满足消费者对食品的需求。
1、传热的基本方式:热传导、热对流、热辐射2、对流传热是指流体指点发生相对位移而引起的热量传递过程或是流体微团改变空间位置而引起的流体和固壁面之间的传递过程。
分为自然对流和强制对流。
3、热交换的基本原则是能量守恒定律4、热边界层(温度边界层):因流体与壁面间的传热,在流体主体与壁面间,也会形成一个具有温度低度的薄层。
在热边界层中,最大温度梯度发生在层流地层中。
5、影响对流传热的因素:流体的状态、流体的性质、流体的流动状况、传热壁面的形状、位置、大小。
6、换热器分为:直接接触式换热器和非直接接触式换热器7、非直接接触式换热器:间壁式换热器(分为管式、和板式和拓展表面试)、蓄热式换热器8、冷热流体的留道基本形式:并流、串流、混流9、波长0.4~0.8um为可见光、0。
8~40um为红外线10、蒸发浓缩的特点:热敏性、腐蚀性、泡沫性、粘稠性、结垢性、挥发性11、蒸发过程的两个必要组成部分:加热料液使溶剂水沸腾汽化和不断除去汽化产生的水蒸气。
一般前一部分在蒸发器进行,后一部分在冷凝器完成。
12、蒸发操作可以在常压、加压、减压条件下进行。
13、真空蒸发的基本目的:降低料液的沸点。
其操作压力取决于冷凝器中水的冷凝温度和真空泵的性能。
14、常用的热泵有蒸汽喷射热泵和机械压缩式热泵。
15、蒸发操作可分为连续操作和间歇式操作。
间歇式操作方法有:3一次进料,一次出料;连续进料,一次出料。
为间歇蒸发为非稳态操作。
连续蒸发稳定操作。
16、蒸发按原操作的主要设备:蒸发器、冷凝器、真空泵、疏水器、捕沫器。
17、按照溶液在蒸发器的流动情况分为循环型和非循环型。
18、非循环型蒸发器:长管式、刮板膜式、板式19、产生雾沫夹带原因:泡沫、蒸汽高速流动、溶液急剧蒸发20、捕沫器分为:惯性型、离心型、表面型21、引起温差损失的原因:由于料液中溶质的存在产生的沸点升高而引起;由于液层静压效应而引起的;由于蒸汽流动的阻力和热损失而引起的22、单效蒸发的工程设计计算项目:蒸发量、加热蒸汽消耗量和加热室的换热面积23、多效蒸发的流程操作:顺流、逆流、平流24、制冷方法:机械制冷、热电制冷、磁制冷。
食工原理复习资料单元操作:不同食品的生产过程使用各种物理加工过程,根据物理加工过程的各种操纵原理,可以归结为数个广泛的基本过程,这些基本过程称为单元操作。
特点:若干个单元操作串联起来组成的一个工艺过程称为物理性操作。
同一食品生产过程中可能会包含多个相同的单元操作。
单元操作用于不同的生产过程其基本原理相同,进行该操作的设备也可通用。
三传理论:单元操作按其理论基础可分为三类:流体流动过程,传热过程,传质过程,以上三个过程包含三个理论,称为三传理论。
(动量传递,热量传递,质量传递)。
物料衡算:根据质量守恒定律,以生产过程中或生产单元为研究对象,对其进出口处进行定量计算,称为物料衡算。
第一章 流体流动与输送设备流体:具有流动性的物体。
如气体,液体。
特征:具有流动性;抗剪和抗张能力很小;无固定形状,随容器形状而变化;在外力作用下其内部发生相对运动。
密度:单位体积流体的质量,称为流体的密度。
),(T p f =ρ压力:流体垂直作用于单位面积上的力,称为流体的静压强,又称为压力。
在静止流体中,作用于任意点不同方向上的压力在数值上均相同。
压力的单位:(1) 按压力的定义,其单位为N/m 2,或Pa ;(2) 以流体柱高度表示,如用米水柱或毫米汞柱等。
标准大气压的换算关系:1atm = 1.013×105Pa =760mmHg =10.33m H 2O压力的表示方法:表压 = 绝对压力 - 大气压力;真空度 = 大气压力 - 绝对压力 静力学基本方程:压力形式 )(2112z z g p p -+=ρ 能量形式 g z p g z p 2211+=+ρρ适用条件:在重力场中静止、连续的同种不可压缩流体。
(1)在重力场中,静止流体内部任一点的静压力与该点所在的垂直位置及流体的密度有关,而与该点所在的水平位置及容器的形状无关。
(2)在静止的、连续的同种液体内,处于同一水平面上各点的压力处处相等。
液面上方压力变化时,液体内部各点的压力也将发生相应的变化。
食品工程原理
食品工程原理是研究食品加工过程中的物理、化学和生物学原理的学科。
食品工程原理主要涉及食品的成分、结构、质量和安全等方面的知识。
食品工程原理中的物理原理主要包括传热、传质和流变学。
例如,在食品加工过程中,食品与热源之间会发生传热,导致食品温度的变化。
传质则是指食品中各种物质之间的传递,如水分、溶质和气体等的传递。
流变学研究的是食品的流动性质,如粘度、流变应力和流动行为等。
化学原理在食品工程中也起着重要作用。
化学原理涉及食品的原料成分、化学反应、反应速率和反应平衡等方面。
例如,食品加工过程中的褐变反应就是一种化学反应,其产生的色素会改变食品的外观和品质。
另外,食品中的营养成分也是化学原理研究的重点,如蛋白质、碳水化合物和脂肪等的化学性质和变化规律。
生物学原理主要应用在食品工程中的微生物学和酶学研究中。
微生物学研究食品中的微生物种类、生长条件和控制方法,以及微生物对食品质量和安全性的影响。
酶学研究食品中的酶的性质和功能,以及酶在食品加工过程中的应用。
例如,酵母菌在面包发酵过程中产生的二氧化碳是由酶催化反应引起的。
食品工程原理的研究对于食品加工工艺的优化和食品质量的控制具有重要意义。
通过深入了解食品工程原理,可以有效地改善食品的加工过程,提高食品的品质和安全性。
食品工程原理的基本原理食品工程原理是研究食品加工过程中涉及的物理、化学、生物和工程学原理的学科。
它涉及到食品加工中的材料选择、处理、加工、保存和包装等方面。
以下是食品工程原理的基本原理:1. 营养成分:食品工程原理研究食物中的营养成分,包括蛋白质、碳水化合物、脂肪、维生素、矿物质和水等。
了解食物中的营养成分,有助于制定合理的食品处理和加工程序,以保留或改善食物的营养价值。
2. 食品稳定性:食品工程原理研究食品在加工、贮藏和运输过程中的稳定性。
食品在不适宜的处理条件下可能发生质量变化,如氧化、变质、腐败等。
研究食品稳定性有助于制定适当的工艺和保存方式,延长食品的保质期。
3. 热传导:食品工程原理研究食品加热和冷却过程中的热传导现象。
知道食品的热传导性质,可以选择合适的加热或冷却工艺,确保食品在一定温度范围内达到安全和美观的状态。
4. 微生物学:食品工程原理研究食品中微生物的生长和影响。
食品中的细菌、酵母菌和霉菌等微生物能够导致食品变质或引起食物中毒。
了解微生物的生长规律和抑制机制,有助于控制食品加工过程中微生物的污染和生长。
5. 质量控制:食品工程原理研究食品加工过程中的质量控制方法。
通过控制食品加工过程中的各个环节,如原料的选择、加工方法的控制、加热和冷却的时间和温度等,可以保证食品的质量和安全。
6. 食品包装:食品工程原理研究食品包装的原理和方法。
食品包装具有保护食品和延长食品保质期的作用。
正确选择和使用食品包装材料,可以防止食品受到外界环境的污染,从而保证食品的安全性和品质。
7. 工程设计:食品工程原理考虑到了工程设计的原则。
食品工程师需要根据食品加工过程的需求设计相关的设备和工艺流程,以提高效率和降低生产成本。
综上所述,食品工程原理涵盖了多个学科的知识,包括材料科学、化学、生物、物理和工程学等。
了解食品工程原理的基本原理,有助于指导食品加工过程中的操作和技术改进,为生产安全、高质量和可持续的食品提供支持。
食品工程原理复习第一章 流体力学基础1.单元操作与三传理论的概念及关系。
不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉碎、乳化萃取、吸附、干燥等。
这些基本的物理过程称为单元操作动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。
凡是遵循流体流动基本规律的单元操作,均可用动量传递的理论去研究。
热量传递 : 物体被加热或冷却的过程也称为物体的传热过程.凡是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。
质量传递 : 两相间物质的传递过程即为质量传递。
凡是遵循传质基本规律的单元操作,均可用质量传递的理论去研究.单元操作与三传的关系“三传理论”是单元操作的理论基础,单元操作是“三传理论”的具体应用。
同时,“三传理论"和单元操作也是食品工程技术的理论和实践基础2。
粘度的概念及牛顿内摩擦(粘性)定律。
牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。
μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈大.所以称为粘滞系数或动力粘度,简称为粘度3。
理想流体的概念及意义。
理想流体的粘度为零,不存在内摩擦力。
理想流体的假设,为工程研究带来方便。
4.热力体系:指某一由周围边界所限定的空间内的所有物质。
边界可以是真实的,也可以是虚拟的。
边界所限定空间的外部称为外界。
5。
稳定流动:各截面上流体的有关参数(如流速、物性、压强)仅随位置而变化,不随时间而变.6.流体在两截面间的管道内流动时,其流动方向是从总能量大的截面流向总能量小的截面。
7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。
8。
实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项.柏努利方程的三种表达式 p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/29。
第八章液体吸附与离子交换液体吸附与离子交换的应用1、吸附主要用在脱臭、脱色、沉淀、澄清和除杂等工艺操作中。
2、离子交换常用于水的软化、纯化、产品提纯精制,制品的浓缩分离等。
液体吸附吸附操作是指流体与某种固体相接触时,固体能够有选择地将流体中的某些组分凝聚在其表面上,从而达到分离的目的。
这些有吸附作用的固体称为吸附剂,在固体表面上被吸附的物质称为吸附质或吸附物。
在吸附过程,气体或液体中的分子、原子或离子传递到吸附剂固体的内外表面,依靠键或微弱的分流动相(气体和液体)与多孔固体颗粒相接触,流动子间力吸着于固体上。
解吸是吸附的逆过程。
☆吸附单元操作相中一种或多种组份被吸附于固体颗粒上,这种利用各组分吸附力不同,从而使流动相中组份得以分离或纯化的单元操作。
多孔固体颗粒——吸附剂被吸附组份——吸附质吸附原理吸附剂固体之所以能够吸附流体分子,是因为固体表面上的质点处于力场不平衡状态, 固体表面具有过剩的能即表面能,当固体与流体分子接触时,被吸附物质与固体之间由于某种吸附力的作用使固体与流体混合物中的某些组分产生吸附,从而降低了表面能。
吸附过程所放出的热量,称为该物质在固体表面的吸附热。
按吸附剂与吸附质之间作用力的不同,可将吸附过程分为物理吸附和化学吸附两类。
常见的吸附类型及其主要特点物理吸附化学吸附吸附作用力分子间引力化学键合力选择性较差较高所需活化能低高吸附层单层或多层单层达到平衡所需时间快慢食品工业常用吸附剂活性炭、活性白土、膨润土(天然)分子筛、硅胶、吸附树脂活性炭活性炭具有非极性表面,为疏水和亲有机物的吸附剂。
它具有性能稳定、抗腐蚀、吸附容量大和解吸容易等优点。
经过多次循环操作,仍可保持原有的吸附性能。
活性炭用于于溶剂回收、烃类气体的分馏、各种油品和糖液的脱色、水的净化等各个方面,也常用作催化剂的载体。
活性炭是一种由含炭材料制成的外观呈黑色,内部孔隙结构发达、比表面积大、吸附能力强的一类微晶质碳素材料。
活性炭材料中有大量肉眼看不见的微孔。
活性炭有一个共同的特性,那就是“吸附性”。
活性炭产生吸附性的原因就是因为它有发达的孔隙结构,就象我们所见到的海绵一样,在同等重量的条件下,海绵比其他物体能吸收更多的水,原因也是因为它具有发达的孔隙结构。
但活性炭的这种孔隙结构是肉眼无法看见的,因为他们只有1×10-12mm—10-5mm之间,比一个分子大不了多少。
活性炭孔隙发达的程度是难以想象的,若取1克活性炭,将里面所有的孔壁都展开成一个平面,这个面积将达到1000平方米(既比表面积为1000g/m2)!影响活性炭吸附性的主要因素就取决于内部孔隙结构的发达程度。
活性碳主要用途﹕用于液相吸附类活性碳•自来水,工业用水,电镀废水,纯净水,饮料,食品,医药用水净化及电子超纯水制备。
•蔗糖、木糖、味精、药品、化工产品、食品添加剂的脱色、精制和去杂质纯化过滤•油脂、油品、汽油、柴油的脱色、除杂、除味、酒类及饮料的净化、除臭、除杂•精细化工、医药化工、生物制药过程产品提纯、精制、脱色、过滤。
•环保工程废水、生活废水净化、脱色、脱臭、降COD离子交换基本概念在吸附操作中,极性吸附,如果被吸附离子与吸附剂中的离子进行交换,则称离子交换过程。
离子交换过程实际上是特殊吸附过程。
与吸附不同的是,离子交换是化学过程。
离子交换剂吸附剂——离子交换剂。
○阳离子交换剂——提供阳离子○阴离子交换剂——提供阴离子❖分类(1)阳离子交换剂和阴离子交换剂(强、弱)(2)无机交换剂——沸石为代表有机交换剂——碳质——磺化煤合成—离子交换树脂★离子交换树脂是一种带活性集团的不溶性高分子化合物,由两部分组成。
离子交换本体和活性基团①离子交换本体(R) 由高分子化合物和交联剂组成共聚体。
交联剂使高分子化合物形成不溶网状结构。
②活性基团是网状结构上的官能团,其上带有可游离的离子,称“反离子”。
如:R-SO3H →H+,(反离子)→R-SO-3 (大分子带电基团)(1)阳离子交换树脂此类活性基团一般呈酸性,反离子为阳离子。
可与液相中阳离子发生交换。
分强酸型和弱酸型。
①强酸型:磺酸基-SO3H,为代表,特点,性能稳定,在酸碱和中性介质中工作R-SO3H②弱酸型:以羧酸基–COOH,或酚基-◇-OH为代表。
特点,在水中电解力较低,交换速度慢,适应中性碱性。
优点是官能团多,交换容量大。
(2)阴离子交换树脂此类活性基团一般呈碱性,反离子为阴离子。
可与液相中阴离子发生交换。
①强碱型:以季胺基–N(CH3)3,为代表。
特点,性能稳定,在酸碱和中性介质中工作。
②弱碱型:以带伯胺–NH2、仲胺=NH,为代表。
特点,优点是官能团多,交换容量大。
在水中电解力较低,交换速度慢,。
适应中性和酸性介质工作。
离子交换树脂分类根据官能团分:阳离子交换树脂阴离子交换树脂根据物理结构分:凝胶类大孔类第九章浸出和萃取固—液称浸出或浸取;液—液称萃取;○浸出体系是由三种组分组成,即溶质A,溶剂S和惰性固体B。
○三角形相图一般用等腰直角三角形相图表示三种组分组成。
三顶点分别表示三种纯组分,三角形边上任一点表示一个二元混合物,三角形内某一点则代表一个三元混合物。
读图法:例M点,做三边平行线FG、HI与JK。
BF(或SG)代表A的组成,AH(或BI )代表S的组成,AJ (或SK)代表B的组成,三元混合物组成;xA= BF=0.30;xB= AJ=0.40;xS=AH=0.30 3种组分之和等于1,xA + xB + xS= 1.00○影响浸出速率的因素①固液接触表面积固液接触表面积与浸出速率成正比。
(切片压碎)②溶质浓度差固体表层与外层溶液之间的溶质浓度差,也与浸出速度呈正比。
逆流法较并流法浸出效率高。
③温度较高温度可提高溶质的扩散速度,也能降低溶液的粘度,对浸出有利。
④溶剂流速流速大而且呈湍流流动状态时,其浸出速率较大。
⑤溶剂的条件浸出的目的是溶离,因此溶剂的选择对浸出有很大影响,应考虑;⑥安全性及化学稳定性:无毒,不易分解,不发生化学反应。
溶解选择性:溶剂对所选溶质应有高溶解度。
溶剂的物理性质:如密度、表面张力、其他等。
⑦溶剂回收的难易:一般回收溶剂要用蒸馏法,其过程消耗操作费用最多。
⑧经济指标:1.3 浸出操作的流程(单级、多级、逆流多级图)常采用三种基本流程即:简单接触法、多级接触法和连续微分逆流接触法。
(1)简单接触法指分批式单级接触法,使溶剂添加到装有物料的浸取器中,经过搅拌浸出,使浸出液与浸剩物加以分离后,重复另一次同样操作。
(2)多级接触法数组简单接触法浸出装置依序排列,工作时每组称为一级,其效率大于同量溶液一次浸出的原理。
(3)逆流多级接触法将数个浸出装置串联,物料F由第一级进入,浸剩物作为第二级的物料L1,依次类推。
溶剂则从第n级进入,第n级所获浸出液作为第n-1级的溶剂,依次逆向而上,其物料与溶剂互为逆向。
(4)连续微分逆流接触法指在浸出装置内,物料与溶剂互成逆向连续接触的浸出操作。
萃取:也称溶剂萃取,常指“液-液”萃取,是分离液体混合物的一种重要单元操作。
在液体混合物中加入与其不完全混溶的液体溶剂,形成液-液两相,利用各组分在所选溶剂中溶解度的差异而达到分离目的。
应用:直接用于食品工业较少,主要用于提取与其他物质混杂在一起的少量挥发性较小的物质。
萃取可在低温下进行,故特别适用于热敏性物料的提取,如维生素、生物碱或色素的提取,油脂的精炼等。
○萃取操作过程通常由三部分组成:①萃取的液体混合物与溶剂充分混合,溶质溶于溶剂中。
②萃取结束后,将过程中形成的萃取相和萃余相借助分离器将其分开。
③萃取相经溶剂回收器,以回收溶剂,使之循环使用。
液—液相平衡关系“液-液”萃取,被萃取的物质从一相转移到另一相中,属于传质过程,有表示;萃取剂即是溶剂,用S表示。
溶质即提取物,用A表示。
原溶剂即是原液体混合物中的溶剂,用B 表示。
萃取相用E表示。
萃余相用R表示。
料液物用F表示液-液相平衡关系在三角形相图上的表示○组分三元物系即溶质A、原溶剂B、萃取剂S。
分为以下三种情况:☆A可完全溶解于B和S中,但B与S完全不互溶;☆A可完全溶解于B和S中,但B与S则部分互溶;☆A、B可完全互溶,但B,S和A,S为两对部分互溶的组分。
第一种情况少见,第三种情况麻烦,应当避免,第二种情况广泛,讨论之。
溶解度曲线和联结线○溶解度曲线萃取三角形三元物系,在LGJH‘D’L围成的范围内称两相区,其内任意点反映两个不同组成相。
曲线LC‘D’F‘G’。
H‘J称溶解度曲线。
溶解度曲线通过实验测定,可查○联结线在两相区内任意点M是混合物,是两个互不相溶的液相,其组成分别为R和E,连接RME 直线称联结线。
溶解度曲线的建立在实验条件下,在实验瓶内,一定量的B中逐渐滴加S,不断摇震使其溶解,因B与S部分互溶,故滴加到一定数量后,混合液开始发生混浊,既出现了溶剂相。
即S在B中的饱和溶解度。
在图中记L点。
类似方法记J点。
在实验瓶内,加入恰当的B与S,使代表混合物的点如“C”等,位于LJ之间,经过一段时间后,溶质A溶出,逐渐加入A成为三元物系,故组成点沿AC线变化。
若加入A的量恰好使混合液由两相变为均一相,相应点记为C’。
C’为混溶点。
如此改变B,S组成,得一系列点,连接点成曲线,即为该三元物溶解度曲线。
三角形内分两个区域,两相区(曲线以内)和单相区(曲线以外)。
当平衡时,如三元物系的组成点在两相区内时,该物系就存在两个液相。
联结线两点通常称称共轭相,其组成的两点位于溶解度曲线上,如连RE点为一对共轭相,萃取操作只能在两相区内。
同一物系联结线倾斜方向相同。
混合物的和点和差点E和R的量,可从三角形相图中求取:设△内任一点M表示混合液的总组成,M称和点,而E 和R则称差点。
E、M、R在一条直线上,E和R的质量比:超临界流体萃取○超临界流体萃取是以超临界状态下的流体作为溶剂,利用该状态下的流体所具有的高渗透能力和高溶解能力萃取分离混合物的过程。
○应用超临界二氧化碳萃取咖啡因,啤酒呈味剂,香料中精油等。
我国现引进十余套超临界流体萃取设备。
如宁夏的“银广夏”等。
超临界流体萃取的原理和特性3.1.1 超临界流体的基本性质○超临界流体概念(表9-2) 物质都有临界状态,在此状态下,气液界面消失,体系性质均一,不再分为气体和液体,对应此时称临界温度(TC)和临界压力(PC),在状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液态性质,同时还保留气体性能,这种状态称为超临界流体。
○超临界流体基本性质通常为低分子化合物。
如烷、烯、醇等密度、粘度和扩散系数是超临界流体的基本性质,超临界流体的。
☆密度接近于液体;☆粘度接近于气体;☆扩散系数介于气体和液体之间,比液体大100倍左右。
○超临界流体优点超临界流体具有与液体溶剂相近的溶解能力;超临界流体的传质速率将远大于其处于液态下的溶剂速率且能够很快的达到萃取平衡。