指数及指数幂的运算
- 格式:doc
- 大小:749.50 KB
- 文档页数:13
掌握指数和幂的运算和规则在数学中,指数和幂是一种重要的数学运算和规则。
它们在各个领域都有广泛的应用,如科学、工程、金融等。
掌握指数和幂的运算和规则对于解决各种数学问题和实际应用非常重要。
本文将介绍指数和幂的运算和规则,并通过实例进行说明。
1. 指数的定义和运算指数是数学中的一种表示方式,用于表示一个数被乘以自身多少次。
比如,2的3次方表示2乘以2乘以2,即2³=8。
指数通常用上标的形式表示,如2³。
指数的运算有以下几种规则:(1)指数相加:当两个数的底数相同时,指数相加。
比如,2² × 2³ = 2^(2+3)= 2^5 = 32。
(2)指数相减:当两个数的底数相同时,指数相减。
比如,2⁵ ÷ 2³ = 2^(5-3)= 2² = 4。
(3)指数乘法:当两个数的指数相同时,底数相乘。
比如,2³ × 3³ = (2 × 3)³ = 6³。
(4)指数除法:当两个数的指数相同时,底数相除。
比如,2⁶ ÷ 3⁶ = (2 ÷3)⁶。
(5)指数的乘方:当一个数的指数是一个指数时,可以进行指数的乘方。
比如,(2³)² = 2^(3×2) = 2⁶ = 64。
2. 幂的定义和运算幂是指数的一种特殊形式,它表示一个数被乘以自身多次。
幂通常用底数和指数的形式表示,如2³。
幂的运算也有一些规则:(1)幂的乘法:当两个数的底数相同时,指数相加。
比如,2³ × 2⁴ = 2^(3+4) = 2⁷。
(2)幂的除法:当两个数的底数相同时,指数相减。
比如,2⁵ ÷ 2³ = 2^(5-3) = 2²。
(3)幂的乘方:当一个数的指数是一个幂时,可以进行幂的乘方。
比如,(2³)² = 2^(3×2) = 2⁶。
指数运算幂运算
(原创版)
目录
1.指数运算和幂运算的定义
2.指数运算和幂运算的例子
3.指数运算和幂运算的性质
4.指数运算和幂运算的应用
正文
指数运算和幂运算是数学中的基本概念,广泛应用于各种数学领域。
1.指数运算和幂运算的定义
指数运算是指在数学中,将一个数 (称为底数) 连乘若干次,得到另一个数 (称为指数) 的运算。
例如,2 的 3 次方 (2^3) 等于 2 乘以 2 乘以 2,即 8。
幂运算则是将一个数的指数设置为另一个数,例如,2 的
3 次幂 (2^3) 等于 8。
2.指数运算和幂运算的例子
例如,假设我们有两个数字,分别是 2 和 3,我们可以使用指数运
算来计算它们的幂。
具体来说,2 的 3 次方等于 2 乘以 2 乘以 2,即8,而 3 的 2 次方等于 3 乘以 3,即 9。
3.指数运算和幂运算的性质
指数运算和幂运算有一些基本的性质,例如,对于任意的数字 a 和 b,有 a^0=1 和 b^0=1,即任何数字的 0 次方都等于 1。
另外,对于任意
的数字 a 和 b,有 a^b = (a^(b/2))^2,即一个数的 b 次方可以表示
为该数的平方的 b/2 次方。
4.指数运算和幂运算的应用
指数运算和幂运算在数学和物理学等领域有广泛的应用。
例如,在计算机科学中,指数运算常常用于表示数据的增长或减小,而在物理学中,指数运算则可以用于描述物体的加速度或减速度。
指数运算和幂运算是数学中的基本概念,具有广泛的应用。
指数与指数幂的运算知识点总结本节知识点 (1)整数指数幂; (2)根式; (3)分数指数幂; (4)有理数指数幂; (5)无理数指数幂. 知识点一 整数指数幂1.正整数指数幂的定义:,其中N*.an na a a a 个⋅⋅=∈n 2.正整数指数幂的运算法则: (1)(N*);nm nmaa a +=⋅∈n m ,(2)(且N*);nm nma a a -=÷,,0n m a >≠∈n m ,(3)(N*);()mn nma a=∈n m ,(4)(N*);()mmmb a ab =∈m (5)(N*).m m mb a b a =⎪⎭⎫⎝⎛,0≠b ∈m 3.两个规定(1)任何不等于零的数的零次幂都等于1.即.()010≠=a a 零的零次幂没有意义.(2)任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数.即:n -n n . ()01≠=-a a a nn 零的负整指数幂没有意义. 知识点二 根式的概念及其性质 1.次方根n (1)定义 一般地,如果(且N*),那么叫做的次方根. a x n=1>n ∈n x a n (2)性质:①当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数,这时,的次n n n a n方根用表示;na ②当为偶数时,正数的次方根有两个,这两个数互为相反数,表示为.负数没有偶n n na ±次方根;③0的任何次方根都是0,记作.00=n2.根式的定义 形如(且N*)的式子叫做根式,其中叫做根指数,叫做被na 1>n ∈n n a 开方数.对根式的理解,要注意以下几点: na (1)且N*; 1>n ∈n (2)当为奇数时,R ; n ∈a (3)当为偶数时,≥0.n a 根式(且N*)的符号的确定:由的奇偶性和被开方数的符号共同确定. na 1>n ∈n n a (1)当为奇数时,的符号与的符号相同; n na a (2)当为偶数时,≥0,为非负数. n a na 3.根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn与的联系与区别:()nna nn a (1)对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意义()nna n ∈a n a nn a 的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制. n n (2)当为奇数时,.n ()=nna a a nn =知识点三 分数指数幂1. 规定正数的正分数指数幂的意义是(,N*,且)nm nm a a =0>a ∈n m ,1>n 于是在条件,N*,且下,根式都可以写成分数指数幂的形式.0>a ∈n m ,1>n2. 正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定(,N*,且)nmnm nm aaa11==-0>a ∈n m ,1>n 3. 0的正分数指数幂等于0,0的负分数指数幂没有意义. 对分数指数幂的理解:(1)分数指数幂不能理解为个相乘,它是根式的一种新的写法; nm a nma (2)分数指数不能随意约分. nm如,事实上,,式子是有意义的;而在()()214233-≠-()()424233-=-()3321-=-实数范围内是没有意义的.(3)在保证相应的根式有意义的前提下,负数也存在分数指数幂.如上面提到的,但没有意义.()()424233-=-()()434355-=-所以对于分数指数幂,当≤0时,有时有意义,有时无意义.因此,在规定分数指数幂的nm a a 意义时,要求. 0>a 知识点四 有理数指数幂规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于有理数指数幂同样适用: (1)(Q );sr sra a a +=⋅,0>a s r ,∈(2)(Q );()rs sra a=,0>a s r ,∈(3)(Q ).()rrrb a ab =0,0>>b a r ∈有理数指数幂的运算还有如下性质: (4)(Q );sr sraa a -=÷,0>a s r ,∈(5)(Q ).r r rb a b a =⎪⎭⎫⎝⎛0,0>>b a r ∈常用结论:(1)当时,; 0>a 0>ba (2)若则;,0≠a 10=a(3)若(,且),则; sr a a =0>a 1≠a s r =(4)乘法公式适用于分数指数幂.如().b a b a b a b a -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+221221212121210,0>>b a 知识点五 无理数指数幂一般地,无理数指数幂(,是无理数)是一个确定的实数.有理数指数幂的运算性αa 0>a α质同样适用于无理数指数幂.知识点六 运用公式进行指数幂的运算(条件求值) 常用公式:(1)平方差公式 .()()b a b a b a -+=-22(2)完全平方公式 .()()2222222,2b ab a b a b ab a b a +-=-++=+(3)立方和公式 . ()()2233bab a b a b a +-+=+(4)立方差公式 .()()2233bab a b a b a ++-=-(5)完全立方和公式 .()3223333b ab b a a b a +++=+(6)完全立方差公式 .()3223333b ab b a a b a -+-=-常用公式变形:(1),.()ab b a b a 2222-+=+()ab b a b a 2222+-=+(2),.211222-⎪⎭⎫ ⎝⎛+=+x x x x 211222+⎪⎭⎫ ⎝⎛-=+x x x x 或者写成,.()22122-+=+--x x xx ()22122+-=+--x x x x (3);⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+b b a a b a b a b a 212121213213212323.⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-b b a a b a b a b a 212121213213212323例题讲解例1. 已知,求的值.32121=+-x x 32222323++++--x x x x 分析:采用整体思想方法,对所求式子进行合理变形,然后把条件整体代入求值.本题用到的公式和结论有:;()22122-+=+--x x x x . ()()1112121121213213212323-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+------x x x x x x x x x x xx 解:∵32121=+-xx ∴,∴. 92122121=++=⎪⎭⎫ ⎝⎛+--x x x x 71=+-x x ∴.()4727222122=-=-+=+--x x x x ()()181731121213213212323=-⨯=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+----x x x x x x xx ∴.52502034721832222323==++=++++--x x x x 例2. 已知,求下列各式的值:22121=+-a a (1); (2); (3).1-+a a 22-+a a 22--a a 分析:在求的值时,直接入手比较困难,我们可以先求出的值,然22--a a ()222--a a 后在进行开平方运算. 解:(1)∵22121=+-aa ∴,∴; 42122121=++=⎪⎭⎫ ⎝⎛+--a a a a 21=+-a a (2);()222222122=-=-+=+--a a a a (3)∵()()04242222222=-=-+=---a a a a ∴. 022=--a a例3. 已知,其中,求的值.41=+-x x 10<<x xx x x 122+--分析:要学会根式与分数指数幂的相互转化,在转化时要注意:根指数是分数指数的分母,被开方数(或式)的指数是分数指数的分子.解:∵41=+-x x ∴,∴,∴. 4222121=-⎪⎭⎫ ⎝⎛+-x x 622121=⎪⎭⎫ ⎝⎛+-x x 62121=+-x x()1424222122=-=-+=+--x x x x ∴()()19241442222222=-=-+=---x x x x ∵,∴,∴.10<<x 22-<x x 3819222-=-=--x x ∴. 24638121212222-=-=+-=+----x x x x x x x x 例4. (1)已知,求的值;42121=+-aa 21212323----aa a a (2)已知,且,求的值;9,12==+xy y x y x <21212121yx y x +-解:(1)∵42121=+-aa ∴,∴. 212212142=++=⎪⎭⎫ ⎝⎛+--a a a a 142161=-=+-a a ∴; ()15114111212112121212132132121212323=+=++=-++⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=----------a a a a a a a a a a a a aa a a (2)∵9,12==+xy y x ∴ ()()3192129212222221212212122121221212121=+-=++-+=++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+-xy y x xy y x xy y x xy y x y x y x y x y x∵,∴,∴y x <2121y x <021212121<+-yx y x ∴. 333121212121-=-=+-yx y x 例5. 已知,求的值.3232+=a 31311--++aa a a 分析:借助于分式的性质. 解:∵ 3232+=a ∴,.3232113232-=+==-a a()34732223234+=+=⎪⎭⎫⎝⎛=a a ∴()132323431313113131311++=⎪⎭⎫⎝⎛++=++-----a aa a a a a a a aa aa .()3333333333913232347=++=++=++-++=解法二:∵3232+=a ∴113232313132323131313133133131311-+=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++--------a a a a a a a a a a a a aa a a .313232132132113232=--++=-+++=-+=aa 例6. (1)当时,求的值;22,22-=+=y x ⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛----323132343132y y x x y x (2)若,求的值. 122-=xaxx xx aa a a --++33分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数. 本题中,,被开方数不是完全平方数,所以不能化简,当确有22+=x 22+x.()222222+=+=x 解:(1)∵22,22-=+=y x ∴12331332323132343132------=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛-y x y x y y x x y x ; ()22122222221222+=+-+=--+=(2)∵122-=x a ∴ ()()()()1122223333-+=++-+=++=++--------xx xx x x x x x x x x x x x x a a aa a a a a a a a a a a a a . 1121121122--+-=-+=xx a a 12211212-=-++-=另解:解例5的解法一.题型一 整数指数幂的运算例7. 已知(为常数,且Z ),求的值.a x x =+-22a ∈x x x -+88分析:因为,所以先由条()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+件求出的值.a x x =+-22x x 2222-+完全立方和公式 .()3223333b ab b a a b a +++=+解法一:∵a x x =+-22∴()2222222222-=-+=+--a x x x x ∴()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+.()()a a a a a a 3312322-=-=--=解法二:(完全立方和公式) ∵a x x =+-22∴,展开得:.()3322a x x =+-()()()()3322322232232a x x x x x x =+⨯⨯+⨯⨯+---整理得:,∴. ()382238a x x x x =+++--3838a a x x =++-∴.a a x x 3883-=+-例8. 已知,则_________. 3101=+-x x =--22x x 解:∵ 3101=+-x x ∴ ()9822310222122=-⎪⎭⎫⎝⎛=-+=+--x x xx ∴ ()()816400498242222222=-⎪⎭⎫⎝⎛=-+=---x x x x ∴. 98081640022±=±=--x x 解法二分析:使用平方差公式得. ()()1122----+=-x x x x x x 解法二:∵ 3101=+-x x ∴ ()()9644310422121=-⎪⎭⎫⎝⎛=-+=---x x xx ∴. 389641±=±=--x x ∴. ()()980383101122±=⎪⎭⎫ ⎝⎛±⨯=-+=----x x x x x x 例9. 若,求的值. 31=+-x x 2323-+x x 解:∵(这里)31=+-x x 0>x ∴,∴. 3222121=-⎪⎭⎫ ⎝⎛+-x x 522121=⎪⎭⎫ ⎝⎛+-x x ∵,∴.02121>+-x x 52121=+-xx ∴ ()1212132132123231----+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+x x x x x x xx . ()52135=-⨯=解法二:∵31=+-x x ∴()723222122=-=-+=+--x x x x∴ ()()()202173122213322323=+-⨯=+-+=++=⎪⎭⎫ ⎝⎛+----x x x x x x x x ∴.52202323==+-xx 例10. 已知,则【 】41=+-x x =+-2121x x (A )2 (B )2或 2-(C )(D )或666-分析:题目的隐含条件为. 0>x 解:∵41=+-x x ∴,∴ 42221211=-⎪⎭⎫ ⎝⎛+=+--x x x x 622121=⎪⎭⎫ ⎝⎛+-x x ∵02121>+-x x ∴.选择【 C 】.62121=+-x x例11. 已知,则【 】212121++=⎪⎭⎫ ⎝⎛+--x x x x f ()=+1x f (A ) (B )42-x ()21+x (C )(D )()()2111-+++-x x 322-+x x 解:(换元法)设,则有t xx =+-2121∴222221211-=-⎪⎭⎫ ⎝⎛+=+--t x x x x ∴,∴. ()2222t t t f =+-=()2x x f =∴.选择【 B 】.()()211+=+x x f 解法二(凑整法):∵212121++=⎪⎭⎫ ⎝⎛+--x x x x f ∴,∴.2212122121212122⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+---x x x x x x f ()2x x f =∴.()()211+=+x x f题型二 根式的化简在进行根式的化简时,主要用到的是根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn注意 对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意()nna n ∈a n a nn a 义的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制.n n 例12. 化简下列各式: (1);()()222535-+-(2)(≥1).()()2231x x -+-x 解:(1)原式;125532535=-+-=-+-=(2).()()x x x x -+-=-+-313122∵≥1x ∴当1≤≤3时,原式; x 231=-+-=x x 当时,原式. 3>x 4231-=-+-=x x x 例13. 化简: (1); (2)(≤).()nnx π-62144+-a a a 21分析:对于(1),要对的奇偶性进行分类讨论. n 解:(1)当为奇数时,;n ()ππ-=-x x nn 当为偶数时,; n ()()()⎩⎨⎧<-≥-=-=-ππππππx x x x x x nn(2).()()()33162626221212112144a a a a a a -=-=-=-=+-注意:当底数为正数时,其分数指数可以约分.例14. 求下列各式的值: (1);223223-++(2).347246625-+--+分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数.根据此结论,可知,,均可以化为完全平方的形式. 625+246-347-解:(1)原式;()()221212*********2=-++=-++=-++=(2)原式()()()222322232-+--+=.22322232322232=-++-+=-+--+=总结 形如()的双重二次根式的化简,一般是将其化为n m 2±0,0>>n m 的形式,然后再化简.由得:()2ba ±()ab b a ba n m 222±+=±=± ⎩⎨⎧==+nab mb a 所以是一元二次方程的两个实数根.b a ,02=+-n mx x 例15. 化简. 32-解:. ()()226213213222132324322-=-=-=-=-=-例16. 计算:.()()4123323-+-解:原式.()[]()58323233443=+-=-+-=-+-=注意 在利用根式的性质进行的化简时,一定要注意当为偶数时,底数的符号.nna n a 例17. 化简下列各式: (1)();()()665544b a b a a -+++0<<b a (2)(). 1212----+x x x x 21<<x 解:(1)∵0<<b a ∴原式; ()a b a b b a a b a b a a -=-+++-=-+++=2(2)∵,∴ 21<<x 110<-<x ∴原式()()1111111122---+-=---+-=x x x x. ()1211111111-=-+-+-=---+-=x x x x x 例18. 求值_________. =-++335252解:令,则有y x =-=+3352,52,.4525233=-++=+y x 1-=xy ∴,∴()()422=+-+y xy x y x ()()[]432=-++xy y x y x 设,则,有t y x =+0>t ,∴,()432=+t t 0433=-+t t 01333=--+t t ∴()()0412=++-t t t ∵,∴,∴. 042>++t t 01=-t 1=t ∴. 1525233=-++解法二:设,则有=x 335252-++,∴()x x 3452523333-=-++=0432=-+x x∴, ()()03313=-+-x x ()()0412=++-x x x ∵,∴,∴ 042>++x x 01=-x 1=x ∴. 1525233=-++例19. 根据已知条件求值: (1)已知,求的值;32,21==y x yx y x yx y x +---+(2)已知是方程的两根,且,求的值.b a ,0462=+-x x 0>>b a ba b a +-解:(1)∵ 32,21==y x ∴原式()()()()()()yx yx yx yx yx yx -+--+-+=22yx xyy x y x xy y x --+--++=22; 383221322144-=-⨯⨯=-=yx xy(2)∵是方程的两根 b a ,0462=+-x x ∴4,6==+ab b a ∴()()204464222=⨯-=-+=-ab b a b a ∵,∴ 0>>b a 0>-b a ∴. 5220==-b a ∴. ()()()55515242622==-=--+=-+-=+-b a ab b a ba ba ba ba b a (2)解法二:∵是方程的两根,∴b a ,0462=+-x x 4,6==+ab b a ∴. ()()5110242642622222==+-=++-+=+-=⎪⎪⎭⎫⎝⎛+-abb a ab b a b a b a b a b a ∵,∴,∴0>>b a b a >0>+-ba b a ∴. 5551==+-ba b a 例20. 已知,N*,求的值.⎪⎭⎫ ⎝⎛-=-nn x 115521∈n ()n x x 21++解:∵⎪⎭⎫ ⎝⎛-=-n nx 115521∴.n n n n n n x 222221125215525411552111---++=⎪⎭⎫ ⎝⎛+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+2115541⎪⎭⎫ ⎝⎛+=-n n∴⎪⎭⎫ ⎝⎛+=+-n nx 11255211∴.()55552155211111112=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=++--nn n nn n n nx x例21. 已知函数,.()53131--=x x x f ()53131-+=x x x g (1)证明:在上是增函数(已知在R 上是增函数);()x f ()+∞,031x y =(2)分别计算和的值,由此概括出函数和()()()2254g f f -()()()3359g f f -()x f 对所有不等于0的实数都成立的一个等式,并加以证明.()x g x (1)证明:任取,且()+∞∈,0,21x x 21x x <∴ ()()55531131231231131231231131121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---=-----x x x x x x x x x f x f ∵,且,在R 上是增函数 ()+∞∈,0,21x x 21x x <31x y =∴312311312311,--><x x x x ∴,∴ ()()021<-x f x f ()()21x f x f <∴在上是增函数; ()x f ()+∞,0(2)解:()()()2254g f f -.0522522552222554432323232313131313131=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----同样求得. ()()()03359=-g f f 猜想:. ()()()052=-x g x f x f 证明:()()()x g x f x f 52-.055555532323232313131313232=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----x x x x x x x x xx 例22. 当,且时,求的值.0,0>>y x ()()y x y y x x 53+⋅=+yxy x y xy x -+++32解:∵,且0,0>>y x ()()y x y y x x53+⋅=+∴, y xy xy x 153+=+0152=--y xy x ∴()()053=-+y x yx ∴,. 05=-y x y x y x 25,5==∴.22958525355032==-+++=-+++yyy y y y y y yxy x y xy x 题型三 根式与分数指数幂的互化在进行根式与分数指数幂的互化时要注意两个对应: (1)根指数对应分数指数的分母;(2)被开方数(或式)的指数对应分数指数的分子. 当出现多重根号时,应从里向外化简.例23. 用根式或分数指数幂表示下列各式:,,,;.51a ()043>a a 36a ()013>a a()0>a a a 解:;551a a =;()43430a a a =>;23636a a a ==;()23233101-==>a aa a.()4323210a a a a a a a ==⋅=>例24. 将根式化为分数指数幂是【 】 53-a (A ) (B )(C )(D )53-a 53a 53a -35a -解:选择【 A 】. 例25. 化简:_________.(用分数指数幂表示)()()=⋅÷⋅109532a a a a 解:由题意可知:.0>a ∴原式.561012101451310921532a a a a a a a a ==÷=⎪⎭⎫⎝⎛⋅÷⎪⎭⎫ ⎝⎛⋅=例26. 设,化简:.0>a 434334aa a a -解:∵0>a ∴.611616653163254343234434334---===⋅⋅=aaa aa a a aa aa aa例27. 下列根式与分数指数幂的互化中,正确的是【 】 (A )(B )()()0414>-=-x x x )0551≠-=-x x x(C ) (D )()0,4343≠⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-y x x y y x 4182y y =解:(A ),故(A )错;()0414>-=-x x x (B ),故(B )错; ()0155151≠==--x xx x(D ),故(D )错. 选择【 C 】. 4182y y =例28. 下列各式正确的是【 】 (A );(B )35531aa=-2332x x =(C )(D )⎪⎭⎫ ⎝⎛-⨯-=814121814121aaa a x x x x 412212323131-=⎪⎭⎫ ⎝⎛---解:(A ),故(A )错;53535311aaa ==-(B ),故(B )错; 3232x x =(C ),故(C )错. 选择【 D 】.85814121814121a aaa a ==⎪⎭⎫ ⎝⎛-+-题型四 根式和分数指数幂有意义的条件1.对于次根式,当为奇数时,R ;当为偶数时,≥0. n na n ∈a n a 2.0的0次幂和负实数幂都没有意义.例29. 若有意义,则的取值范围是__________.()4321--x x解:∵()()()43434321121121x x x -=-=--∴,解之得:. 021>-x 21<x 即的取值范围是.x ⎪⎭⎫ ⎝⎛∞-21,例30. 函数的定义域是【 】()()2125--+-=x x y (A ) (B ){}2,5≠≠x x x {}2>x x (C ) (D ){}5>x x {}552><<x x x 或解:∵()()()()()215215250210210-+-=-+-=-+-=-x x x x x x y ∴,解之得:且.⎩⎨⎧>-≠-0205x x 2>x 5≠x ∴该函数的定义域为.选择【 D 】.()()+∞,55,2 题型五 幂的运算目前,当底数大于0时,指数已经由整数指数推广到了实数指数,整数指数幂的运算性质适用于实数指数幂的运算.运算的结果可以化成根式形式或者保留分数指数幂的形式,但不能既有根式又有分数指数幂,也不能同时含有分母和负指数幂.(1)(R ); s r s r a a a +=⋅∈>s r a ,,0(2)(R );()rs sr a a =∈>s r a ,,0(3)(R ).()r r rb a ab =∈>>r b a ,0,0例31. 计算下列各式(式中的字母均为正数): (1);()()()c b a b a b a 24132124-----÷-⋅(2). ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+----------212121211122b a b a b a b a 解:(1)原式;()ca ac cb a b a 33112412423-=-=÷-=-----(2)原式 ()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+---=--------21212121112121b a b a b a b a ()()()bb b a b a b a ba b a b a221111111111111==+-+=----+=-------------例32. 化简下列各式: (1);212121211111aaa a a++------(2).111113131313132---+++++-x xx x x x x x 解:(1)原式; ()()011112121212121211=-=+⎪⎭⎫ ⎝⎛+---=-----a a a a a a a a a (2)原式 11111131323131333131323331-⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛=x x x x x x x x 31323132313131313131313231313231323111111111111xx x x x x x x x x x x x x x x x x --+-+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=.31x -=例33. 化简:. ()()()()()1421443333211--------++-++-+aa a a a a a a a a a a解:原式 ()()()()()()1221442212212111---------+-+-++++-+-+=a a a a a a a a a a a a a aa a ()[]()[]()()1214412222111--------++++++-+=aa a a a a a a a a a a()()aa a a a aa a a a a a a 21111144144=-++=-++++++=------例34. 化简下列各式:(1);(2).436532yx xy⋅1111212331++-+++a a a a a 解:(1)原式;1212143653231--==yx yx y x (2)原式 111111111121212131313231213321313331++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛=a a a a a a a a a a a a a a21313221313211aa a a a a +-=-++-=例35. 【 】 ()=-⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛--21212001.04122532(A )(B ) (C )(D )0151630173658-解:. ()21212001.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛--1516101324111001491411=-⨯+=-⨯+=选择【 A 】.例36. 化简:_________.=⎪⎪⎭⎫⎝⎛÷⋅⋅----321132132a b b a bab a 解:原式.656161673223236167322121131212132--------=÷=⎪⎭⎫⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=b a ab b a b a b a b a ba b a b a 例37._________. =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---442102324953121解:原式. 22322322232491112=-++=-++-+=例38. 已知,则的值是_________. 3,2==n m 32432332⎪⎪⎭⎫⎝⎛÷⋅----m n nm m n n m 解:∵3,2==n m ∴原式 32325343322534312322332⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=--------mn n m n m n m n m mn n m n m . 27232333131=⨯==⎪⎭⎫⎝⎛=---mn n m 例39. 已知函数,则_________.()()⎪⎩⎪⎨⎧≥--<=1,351,312x x x x x f =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--4321353f f 解: ⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛---4343213533353f f f f . 33939335353331243=+-=+⎪⎭⎫⎝⎛-+-⨯=-题型六 解含幂的方程例40. 解下列方程:(1);(2).2291381+⎪⎭⎫ ⎝⎛=⨯x x0123222=-⨯++x x 解:(1),()2224333+-=⨯x x 424233--+=x x ∴,解之得:;4242--=+x x 2-=x (2),设,则()0123242=-⨯+⨯x x t x =20>t ∴, 01342=-+t t ()()0114=+-t t 解之得:(舍去). 1,241221-===-t t ∴,∴.222-=x 2-=x 结论 若(,且),则sra a =0>a 1≠a s r =题型七 指数幂等式的证明 设参数法例41. 设都是正数,且,求证:. c b a ,,c b a 643==ba c 122+=证明:设,则有. t cba===643cbat t t 12116,2,3===∵ 236⨯=∴,∴ba bacttt t 2112111+=⋅=ba c 2111+=等式两边同时乘以2得:. b a c 122+=例42. 设,且,则_________.m b a ==52211=+ba =m 分析:这是指数幂的连等式,参数已经给出. 解:∵,∴. m ba==52bam m 115,2==∵211=+ba ∴,∴,.2111152m m m m ba ba==⋅=⨯102=m 10±=m ∵,∴. 0>m 10=m 例43. 已知,且. 333cz by ax ==1111=++zy x 求证:.()31313131222c b a czby ax ++=++证明:设,则. t cz by ax ===333zt cz y t by x t ax ===222,,∴.⎪⎭⎫⎝⎛++=++z y x t cz by ax 111222∵,∴ 1111=++z y x t z y x t =⎪⎭⎫⎝⎛++111∴,t cz by ax =++222()3131222t czby ax =++∵3131313313313313131111t z y x t z t y t x t c b a =⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++∴.()31313131222c b a czby ax ++=++例44. 对于正整数(≤≤)和非零实数,若c b a ,,a b c ω,,,z y x ,ω70===z y x c b a ,求的值. zy x 1111++=ωc b a ,,解:设,则有.k c b a zyx====ω70ω111170,,,k k c k b k a zyx====∴zy x k abc 111=∵,∴. zy x 1111++=ω70=abc ∵为正整数,且≤≤ c b a ,,a b c ∴ 752107170⨯⨯=⨯⨯==abc ∴或10,7,1===c b a 7,5,2===c b a 当时,,不符合题意,舍去. 10,7,1===c b a 0===ωz y ∴.7,5,2===c b a 本节易错题例45. 计算_________.()()=-++44332121分析 对于对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn解:原式.2212212121=-++=-++=例46. 化简_________. ()()=-⋅-43111a a 分析:题目的隐含条件为. 1>a 解:原式.()()()()()()()414343431111111--=-⋅--=-⋅-=-⋅-=---a a a a a a a 例47. 已知,N*,化简.1,0><<n b a ∈n ()()nn nnb a b a ++-解:当为奇数时,原式; n a b a b a 2=++-=当为偶数时,原式.n b a b a ++-=∵,∴原式. 0<<b a a b a a b 2-=---=其它例48. 已知函数,则_________. ()⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛>=0,210,21x x x x f x ()=-)4(f f 解:∵ ()1621121444=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=--f ∴.()()4161616)4(21====-f f f 例49. 已知集合,,且,则_______.{}4,,2a a A -=⎭⎬⎫⎩⎨⎧-=b a aa B 2,,33B A ==+b a 解:{}{}4,,4,,2a a a a A -=-=根据集合元素的互异性,,∴a a -≠0>a ∴{}b b a a aa B 2,1,2,,33-=⎭⎬⎫⎩⎨⎧-=∴,解之得:.⎩⎨⎧==421b a ⎩⎨⎧==21b a ∴ 3.=+b a 例50. 设,若,则()244+=x xx f 10<<x _________. =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f 解:∵()244+=x x x f ∴()()=+++=+++=+++=-+--2422444444244244244111x x x x x x x x x x x x f x f 12424=++x x ∴ ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f.500111100150110015001001100010011=++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= f f f f。
指数运算幂运算(实用版)目录1.指数运算与幂运算的定义与概念2.指数运算与幂运算的性质与规律3.指数运算与幂运算的应用实例4.指数运算与幂运算的差异与联系正文一、指数运算与幂运算的定义与概念指数运算,是一种数学运算方式,表示一个数的某个次方。
在代数学中,指数运算通常用一个上标表示,例如:a^n,其中 a 是底数,n 是指数。
幂运算,是代数学的一个重要分支,研究的是幂函数和幂级数。
在幂运算中,一个数的 n 次方表示为 n 个该数相乘,例如:a^n = a × a ×a ×...× a (共 n 个 a 相乘)。
二、指数运算与幂运算的性质与规律1.指数运算的性质:(1)任何非零数的零次方都等于 1,即 a^0 = 1(a ≠ 0);(2)任何非零数的正整数次方都是正数,即 a^n > 0(a ≠ 0,n 为正整数);(3)任何非零数的负整数次方都等于其倒数的正整数次方,即 a^(-n) = 1/(a^n)(a ≠ 0,n 为正整数);(4)指数运算满足结合律,即 (a^m)^n = a^(m×n)。
2.幂运算的性质:(1)幂运算满足交换律,即 a^n = n^a;(2)幂运算满足分配律,即 (a^m)^n = a^(m×n);(3)幂运算的运算结果与底数的大小有关,底数越大,结果越大。
三、指数运算与幂运算的应用实例1.指数运算应用:(1)计算利息:本金 a,年利率 b,存款年限 n,计算利息 I = a ×(1 + b)^n - a;(2)计算等比数列的第 n 项:a,r,n,第 n 项 an = a × (r^(n-1))。
2.幂运算应用:(1)计算多项式函数的值:给定多项式函数 f(x) = a_nx^n +a_(n-1)x^(n-1) +...+ a_1x + a_0,当 x = a 时,函数值 f(a) = a_n×a^n + a_(n-1)×a^(n-1) +...+ a_1×a + a_0;(2)计算幂级数的收敛性:给定幂级数∑[a_n×(x-a)^n](n 从 0 到+∞),当|x-a| < 1 时,级数收敛,即幂级数各项绝对值之和小于 1。
数字的幂和指数在数学中,我们经常会遇到数字的幂和指数。
幂是指一个数字自乘多次的运算,而指数则表示幂运算中的次数。
本文将介绍幂和指数的定义、性质以及它们在数学中的应用。
一、幂的定义和性质在数学中,幂的定义如下:对于一个实数a和自然数n,a的n次幂表示 a × a × a × ... × a(共乘n次),用an表示。
幂具有以下几个性质:1. 幂的相乘规则:对于实数a和b,以及自然数m和n,满足am ×an = am+n。
2. 幂的乘方规则:对于实数a和自然数m和n,以及整数k,满足(am)n = amn。
3. 幂的除法规则:对于实数a和b(b≠0),以及自然数m和n,满足am ÷ an = am-n。
二、指数的定义和性质指数是幂运算中的次数,用小字写在幂的右上角。
指数具有以下几个性质:1. 指数为0时:对于任何实数a(a≠0),a的0次幂等于1,即a⁰= 1。
2. 指数为1时:对于任何实数a,a的1次幂等于它本身,即a¹= a。
3. 指数为负数时:对于任何实数a(a≠0),a的负n次幂等于它的倒数的n次幂,即a⁻ⁿ = 1/aⁿ。
4. 指数为分数时:对于任何实数a(a≥0),a的m/n次幂等于它的m次幂开n次方,即aᵐ⁄ⁿ = (aᵐ)¹⁄ⁿ。
三、幂和指数的应用幂和指数在数学中有广泛的应用,下面简要介绍其中几个重要的应用领域:1. 科学计数法:科学计数法是一种表示较大或较小数值的方法,它用幂和指数来表示。
例如,1.23×10⁴表示1.23乘以10的4次幂。
2. 几何学:在几何学中,幂和指数被广泛用于表示面积和体积。
例如,正方形的面积可以表示为边长的二次幂,立方体的体积可以表示为边长的三次幂。
3. 概率和统计学:概率和统计学中的指数分布是一种常见的概率分布函数,它以指数函数的形式描述事件发生的概率。
4. 金融学:在金融学中,幂和指数被广泛用于计算复利。
指数与幂的运算一、引言指数与幂是数学中常见的运算方式,广泛应用于各个领域中。
本文将从基本概念、运算规则、应用举例等方面探讨指数与幂的运算。
二、基本概念1. 指数:指数是表示幂运算中乘方的次数。
通常用于表示以某个数为底数的幂。
2. 幂:幂是指底数进行多次乘法运算得到的结果。
底数与指数的关系可以表示为底数的指数次幂。
三、运算规则1. 同底数相乘:当同一个底数的指数相加时,可以将同底数的乘法转换为指数相加。
例如,a^m * a^n = a^(m+n)。
2. 同底数相除:当同一个底数的指数相减时,可以将同底数的除法转换为指数相减。
例如,a^m / a^n = a^(m-n)。
3. 幂的乘方:对幂进行乘方运算时,可以将幂的乘方转换为指数相乘。
例如,(a^m)^n = a^(m*n)。
4. 幂的乘法:当幂相乘时,可以将幂的乘法转换为指数相乘。
例如,(a^m) * (b^m) = (a*b)^m。
四、应用举例1. 科学计数法:科学计数法是一种使用指数和幂的方式来表示极大或极小的数值。
例如,10^3可以表示为1,000,而10^(-2)可以表示为0.01。
2. 函数运算:在函数中,指数与幂的运算经常用于描述函数的增长和衰减规律。
例如,指数函数y = a^x表示自变量x的指数增长,而幂函数y = x^a表示自变量x的幂函数关系。
3. 概率计算:概率计算中,指数与幂的运算常用于计算复杂事件的概率。
例如,在组合问题中,可以将不同事件的概率乘积转换为指数相加的形式,简化计算过程。
五、总结指数与幂是数学中常见的运算方式,通过指数和幂的运算规则,可以简化复杂的计算过程。
指数与幂的应用广泛,包括科学计数法、函数运算和概率计算等领域。
熟练掌握指数与幂的运算规则,有助于提高数学运算的效率和准确性。
六、参考文献[待补充]注:本文中的示例仅为说明目的,并非具体的数学定理或应用。
如需了解更详细的内容,请参考相关数学教材或专业文献。
幂的运算与指数运算的关系幂的运算与指数运算是数学中非常重要的概念,两者之间有着密切的关系。
在本文中,我们将探讨幂的运算与指数运算的关系,并详细解释它们之间的相互作用。
首先,让我们来了解一下幂的运算。
在数学中,幂是指将一个数(称为底数)自乘若干次来得到的结果。
幂数(或指数)表示了底数自乘的次数。
例如,3的2次幂(记作3^2)表示3自乘两次,即3^2 = 3 × 3 = 9。
同样地,4的3次幂(记作4^3)表示4自乘三次,即4^3 = 4 × 4 × 4 = 64。
我们可以看到,幂数告诉我们底数需要自乘的次数。
而指数运算是指利用指数的规则对幂进行运算的过程。
指数运算可以进行加法、减法、乘法和除法。
以下是一些指数运算的规则:1. 幂的乘法规则:a的m次幂乘以a的n次幂等于a的m+n次幂。
即a^m × a^n = a^(m+n)。
例如,2的3次幂乘以2的4次幂等于2的7次幂,即2^3 × 2^4 = 2^7。
2. 幂的除法规则:a的m次幂除以a的n次幂等于a的m-n次幂。
即a^m ÷ a^n = a^(m-n)。
例如,5的6次幂除以5的3次幂等于5的3次幂,即5^6 ÷ 5^3 = 5^3。
3. 幂的幂规则:将a的m次幂的幂作为底数,幂数为n,等于a的m×n次幂。
即(a^m)^n = a^(m×n)。
例如,(3^2)^3等于3的2×3次幂,即(3^2)^3 = 3^(2×3)。
通过这些规则,我们可以在幂的运算中使用指数运算来简化计算过程。
指数运算的规则为我们提供了更方便、快捷的方法来处理幂。
此外,幂的运算与指数运算在实际问题中也有重要的应用。
在科学和工程领域中,我们经常需要对数据进行指数运算和幂运算。
通过运用指数和幂的概念,我们可以更好地理解和分析实际问题,并找到解决问题的方法。
总而言之,幂的运算与指数运算是数学中不可或缺的概念。
《指数与指数幂的运算》从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。
进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。
【知识与能力目标】1、掌握n次方根及根式的概念,正确运用根式的运算性质进行根式的运算;2、了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化;3、理解有理数指数幂和无理数指数幂的含义及其运算性质。
【过程与方法目标】具体习题,灵活运用根式运算。
由整数指数幂的运算性质理解有理数指数幂的运算性质。
【情感态度价值观目标】1、通过学习n次方根的概念及根式的运算,提高学生的运算能力和逻辑思维。
2、通过分数指数幂的学习,让学生体会严谨的求学态度。
【教学重点】根式与分数指数幂之间的互相转化。
【教学难点】根式运算与有理数指数幂的运算。
通过本节导学案的使用,引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础。
(一)创设情景,揭示课题1、以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性。
2、由实例引入,了解指数概念提出的背景,体会引入指数的必要性;(1)据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%。
那么在2010年, 我国的GDP 可望为2000年的多少倍?(2)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的系573012tp⎛⎫= ⎪⎝⎭,那么当生物体死亡了1万年后,它体内碳14的含量为多少?(3)对1.07310,10000573012p⎛⎫= ⎪⎝⎭这两个数的意义如何?怎样运算?3、初中根式的概念思考1:4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个?思考2:-27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个?思考3:一般地,实常数a的平方根、立方根是什么概念?思考4:如果x4=a,x5=a,x6=a,参照上面的说法,这里的x分别叫什么名称?思考5:推广到一般情形,a的n次方根是一个什么概念?试给出其定义。
指数与指数幂的运算【学习目标】1.理解分数指数的概念,掌握有理指数幂的运算性质(1)理解n 次方根,n 次根式的概念及其性质,能根据性质进行相应的根式计算;(2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化;(3)能利用有理指数运算性质简化根式运算.2.掌握无理指数幂的概念,将指数的取值围推广到实数集;3.通过指数围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力;4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质. 【要点梳理】要点一、整数指数幂的概念及运算性质 1.整数指数幂的概念()()),0(1010*Z*n a aa a a Z n a a a a n n an n ∈≠=≠=∈⋅⋅⋅=-个2.运算法则 (1)nm nma a a +=⋅;(2)()mn nma a =;(3)()0≠>=-a n m a aa nm n m ,;(4)()mm mb a ab =.要点二、根式的概念和运算法则 1.n 次方根的定义:若x n =y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根.n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,0=. 2.两个等式(1)当1n >且*n N ∈时,na =;(2)⎩⎨⎧=)(||)(,为偶数为奇数n a n a a n n要点诠释:①要注意上述等式在形式上的联系与区别;②计算根式的结果关键取决于根指数的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.要点三、分数指数幂的概念和运算法则 为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1na =m m na ==-1m nm naa=要点四、有理数指数幂的运算 1.有理数指数幂的运算性质()Q b a ∈>>βα,00,,(1);a a aαβαβ+⋅=(2)();a a αβαβ=(3)();ab a b ααα=当a>0,p 为无理数时,a p是一个确定的实数,上述有理数指数幂的运算性质仍适用. 要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-.2.指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a 2-b 2=(a -b )(a +b ),(a ±b )2=a 2±2ab +b 2,(a ±b )3=a 3±3a 2b +3ab 2±b 3,a 3-b 3=(a -b )(a 2+ab +b 2),a 3+b 3=(a +b )(a 2-ab +b 2)的运用,能够简化运算.【典型例题】类型一、根式例1.求下列各式的值:(1【答案】-33π-;0a b b a -⎧⎪⎨⎪-⎩ (a>b ) (a=b ) (a<b )【解析】熟练掌握基本根式的运算,特别注意运算结果的符号. (13=-; (2=(3|3|3ππ=-=-;(4||0a b a b b a -⎧⎪=-=⎨⎪-⎩ (a>b ) (a=b ) (a<b )【总结升华】(1)求偶次方根应注意,正数的偶次方根有两个,例如,4的平方根是2±,2=±. (2)根式运算中,经常会遇到开方与乘方两种运算并存的情况,应注意两者运算顺序是否可换,何时可换.举一反三:【变式1】计算下列各式的值:(12;(3;(4. 【答案】(1)-2;(2)3;(3)4π-;(4)2(2)2(2)a a a a -≥⎧⎨-<⎩.例2.计算:(1; (2.【答案】【解析】 对于(1)需把各项被开方数变为完全平方形式,然后再利用根式运算性质求解.对于(2),则应分子、分母同乘以分母的有理化因式.(1==22=+2-(2(211=【总结升华】对于多重根式的化简,一般是设法将被开方数化成完全n次方,再解答,或者用整体思想来解题.化简分母含有根式的式子时,将分子、分母同乘以分母的有理化因式即可,如本例(2)的分子、分母中同乘以1).举一反三:【变式1】化简:(1(2|3) x<【答案】(11;(2)22(31),4(13).x xx---<<⎧⎨-≤<⎩类型二、指数运算、化简、求值例3.用分数指数幂形式表示下列各式(式中a>0):(1)2a(2)3a(3(4【答案】52a;113a;34a;54y【解析】先将根式写成分数指数幂的形式,再利用幂的运算性质化简即可.(1)115222222;a a a a a+=⋅==(2)2211333333a a a a a+=⋅==;(31131322224 ()()a a a a=⋅==;(4)解法一:从里向外化为分数指数幂==11222yxyx⎛⎫⋅⎪⎝⎭=5 4 y解法二:从外向里化为分数指数幂.12)=11222[)]yx=1112363223{[()]}y x yx y x=111 23624123y x yx y x⎛⎫⎛⎫⎛⎫⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=5 4 y【总结升华】此类问题应熟练应用*0,,,1)mna a m n N=>∈>且n.当所求根式含有多重根号时,要搞清被开方数,由里向外或由外向里,用分数指数幂写出,然后再用性质进行化简.举一反三:■高清课程:指数与指数运算例1【变式1】把下列根式用指数形式表示出来,并化简(1)52aa⋅【答案】(1)1310102a;(2)23x-.【变式2】把下列根式化成分数指数幂:(1(20)a>;(3)3b;(4.【答案】7122;34a;113b;35x-【解析】(1177621222⎛⎫==⎪⎝⎭;(2313224()a a====;(3)211 3333b b b b=⋅=;(4=3591353511()xx x-===.例4.计算:(1)1111200.253473(0.0081)3()81(3)88-----⎡⎤⎡⎤-⨯⋅+⎢⎥⎢⎥⎣⎦⎣⎦;(2)433333391624337+--+【答案】3;0;2【解析】(1)原式=331310)3231(31)3.0(211=-=+---;(2)原式=033236373333=+--;(3)原式=-5+6+4-π-(3-π)=2;注意:(1)运算顺序(能否应用公式);(2)指数为负先化正;(3)根式化为分数指数幂.举一反三:【变式1】计算下列各式:(1)63425.031)32(28)67()81(⨯+⨯+-⨯-;(2)33323323134)21(428aabbababaa⨯-÷++-. 【答案】112;a.【解析】(1)原式=62163141413)31)(1()3()2(2)2(18⨯+⨯+⨯--1123222324143=⨯++=+;(2)原式313131312313131231312)2(2)()8(abaabbaabaa⨯-⨯++-=ababaa=--=++331331313131)2()()8(.【变式2】计算下列各式:■高清课程:指数与指数运算例33312)26()03.1(2323)661()41(-⋅--+++--【答案】【解析】原式+34.例5.化简下列各式.(1)2132111136251546x yx y x y---⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭;(2)111222m mm m--+++;(3)10.5233277(0.027)21259-⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭.【答案】1624y;1122m m-+;0.09【解析】(1)即合并同类项的想法,常数与常数进行运算,同一字母的化为该字母的指数运算;(2)对字母运算的理解要求较高,即能够认出分数指数的完全平方关系;(3)具体数字的运算,学会如何简化运算.(1)2132111136251546x yx y x y---⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭21111()(1)()3322665(4)5x y-------⎛⎫=⨯-⨯-⎪⎝⎭11066 2424x y y ==(2)2112211 122 111122222m mm mm m m m m m-----⎛⎫+⎪++⎝⎭==+ ++(3)10.5233277(0.027)21259-⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭255=0.0933++-举一反三:【变式1】化简:.【答案】57 66 x y【解析】原式=1157 11332323366 2222[()]()xy x y xy x y x y⋅=⋅⋅=.注意:当n(0) ||(0)a aaa a≥⎧==⎨-<⎩.【变式2】化简222222223333 x y x y x y x y --------+--+-【答案】-【解析】应注意到223x x--与之间的关系,对分子使用乘法公式进行因式分解,原式22223333333322223333()()()()x y x y xyxy--------+-=-+-22222222222233333333()()[()()]x xyy x x yy --------=-⋅+-++232()xy -=-=-【总结升华】根式的化简结果应写为最简根式.(1)被开方数的指数与根指数互质;(2)被开方数分母为1,且不含非正整数指数幂;(3)被开方数的每个因数的指数小于根指数.【变式3】化简下列式子:【答案】2x(x 1)2(x 1)≥-⎧⎨-<-⎩【解析】(1)原式===26+===(2)22244(18+=+0===>=(3)33x 3x x 1-==-x 1(x 1)|x 1|x 1(x 1)+≥-⎧=+=⎨--<-⎩ 2x(x 1)2(x 1)≥-⎧=⎨-<-⎩. ■高清课程:指数与指数运算 例4 例6.已知32121=+-x x ,求23222323-+-+--x x x x 的值.【答案】13【解析】 从已知条件中解出x 的值,然后代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件32121=+-xx 的联系,进而整体代入求值.32121=+-x x ,∴129x x -++=,∴17x x -+= ∴22249x x -++=,∴2245x x -+=∴23222323-+-+--x x x x =11122()(1)3472x x x x --+-+-- =3(71)315145453⨯--==【总结升华】对于“条件求值”问题一定要弄清已知与未知的联系,然后采用“整体代换”或“化简后代换”方法求值.本题的关键是先求3322x x -+及22x x -+的值,然后整体代入.举一反三: 【变式1】求值: (1)已知11225x x-+=,求21x x+的值;(2)已知a>0, b>0, 且a b=b a, b=9a ,求a 的值. 【答案】 23【解析】熟练掌握幂的运算是关键问题. (1)由11225x x-+=,两边同时平方得x+2+x -1=25,整理得:x+x -1=23,则有2123x x+=;(2)a>0, b>0, 又∵ a b=b a, ∴1119()()(9)a b a b b b a b a b a a =⇒=⇒=∴81829993a a a =⇒=⇒=巩固练习 一、选择题 1.若13x <) A.31x - B.13x - C. 2(13)x - D. 非以上答案2.若a =b =a b +=( ) A.1B.5 C. -1D. 25π- 3.计算132-⋅ )A.32B.16C. 64D.1284.化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A.11321122--⎛⎫- ⎪⎝⎭ B.113212--⎛⎫- ⎪⎝⎭ C.13212-- D.1321122-⎛⎫- ⎪⎝⎭5.44等于( ) A.16a B.8a C.4a D.2a6.若1,0a b ><,且bba a-+=b b a a --的值等于( )A.6B.2±C.2-D.2二、填空题 7.计算(33=.8.2)b <<=.9.22133(2)(2)---⎛-+- ⎝=.10.若3,2a b <= . 三、解答题 11.计算:(1)11221233112534316-⎡⎤⎛⎫⎢⎥++ ⎪⎢⎥⎝⎭⎣⎦;(2)12323410.027500.00164-⎡⎤⎛⎫+⨯⎢⎥⎪⎢⎥⎝⎭⎣⎦.12.计算下列各式:(1)011430.753237(0.064)(2)16|0.01|8---⎛⎫⎡⎤--+-++- ⎪⎣⎦⎝⎭;(2)1122111122222a b a b a b a ba b-+-⋅-+-。