九年级上册数学期末考试试题及答案人教版
- 格式:docx
- 大小:21.31 KB
- 文档页数:24
人教版数学九年级上册期末考试试题一、选择题(每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(a,b ),则点A'的坐标为()A .(-a,-b)B .(-a,-b-1)C .(-a,-b+1)D .(-a,-b+2)3.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是()A .淇淇说的对,且A ∠的另一个值是115°B .淇淇说的不对,A ∠就得65°C .嘉嘉求的结果不对,A ∠应得50°D .两人都不对,A ∠应有3个不同值4.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A .B .C .D .5.将二次函数y=x 2+2x ﹣1的图象沿x 轴向右平移2个单位长度,得到的函数表达式是()A .y=(x+3)2﹣2B .y=(x+3)2+2C .y=(x ﹣1)2+2D .y=(x ﹣1)2﹣26.已知222,220,220a m am n an ≥-+=-+=,则()()2211m n -+-的最小值是()。
A .6B .3C .-3D .07.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x =-的图像上,则123,,y y y 的大小关系为()A .123y y y >>B .231y y y >>C .132y y y >>D .321y y y >>8.定义:如果一元二次方程ax 2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax 2+bx+c=0(a≠0)满足a ﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程2x 2+mx+n=0既是“和谐”方程又是“美好”方程,则mn 值为()A .2B .0C .﹣2D .39.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是()A .18﹣9πB .18﹣3πC .9﹣D .18﹣3π10.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是()A .a <0B .a ﹣b+c <0C .﹣D .4ac ﹣b 2<﹣8a11.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于A .B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是()A .2≤k≤9B .2≤k≤8C .2≤k≤5D .5≤k≤812.已知函数y=ax 2﹣2ax ﹣1(a 是常数,a≠0),下列结论正确的是()A .当a=1时,函数图象过点(﹣1,1)B .当a=﹣2时,函数图象与x 轴没有交点C .若a >0,则当x≥1时,y 随x 的增大而减小D .若a <0,则当x≤1时,y 随x 的增大而增大二、填空题(本大题共6小题,每小题3分,共18分)13.把一元二次方程(x-3)2=4化为一般形式为___________,一次项系数为_________,常数项为_________.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.15.如图,在Rt △ABC 中,∠C=90°,CA=CB=2.分别以A .B 、C 为圆心,以AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是.(保留π)16.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD 的度数是.17.若12x m ﹣1y 2与3xy n+1是同类项,点P (m ,n )在双曲线上,则a 的值为.18.二次函数y=mx 2+(m+2)x+m+2的图象与x 轴只有一个交点,那么m 的值为三、解答题(本大题共8小题,共66分)19.(1)计算:2)+-(2)解方程:(3)260x x x -+-=20.有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .(1)写出k 为负数的概率;(2)求一次函数y=kx+b 的图象经过二、三、四象限的概率.(用树状图或列表法求解)21.在平面直角坐标系中,点A 的坐标是(0,3),点B 在x 轴上,将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F.(1)若点B 的坐标是()40- ,,请在图中画出△AEF ,并写出点E ,F 的坐标;(2)当点F 落在x 轴上方时,试写出一个符合条件的点B 的坐标.22.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克,若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)23.如图,已知BO ⊥PO ,AB 是⊙O 上弦,点C 是⊙O 上的动点,∠CBA=∠ACP .(1)求证:PC 与⊙O 相切;(2)若点A 是PO 的中点,⊙O 的半径是2,求四边形OACB 的面积.24.已知二次函数y=ax 2+bx+c (a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程x 2+4x ﹣5=0的两根.(1)若抛物线的顶点为D ,求S △ABC :S △ACD 的值;(2)若∠ADC=90°,求二次函数的解析式.25.如图,在平面直角坐标系中有Rt △ABC ,已知∠CAB=90°,AB=AC ,A (﹣2,0),B (0,1).(1)求点C 的坐标;(2)将△ABC 沿x 轴正方向平移,在第一象限内B ,C 两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y 1,点B′,C′所在的直线记为y 2,请直接写出在第一象限内当y 1<y 2时x 的取值范围.26.已知一次函数y=x+3的图象与x 轴、y 轴分别交于A .B 两点,以线段AB 为直角边在第二象限内作等腰直角三角形ABC ,∠BAC=90°,如图1所示:(1)填空:AB=,BC=;(2)将△ABC 绕点B 逆时针旋转,①当AC 与x 轴平行时,则点A 的坐标是.②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.③在②的条件,旋转过程中AC扫过的图形的面积是多少?(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.答案解析一、选择题1.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.解:A.不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不也是中心对称图形;D、不是轴对称图形,不是中心对称图形.故选:B.【点评】本题考查了中心对称图形及轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【考点】坐标与图形变化-旋转.【分析】设点A′的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.解:根据题意,点A.A′关于点C对称,设点A′的坐标是(x,y),则2xa+=0,2yb+=1,解得x=﹣a,y=﹣b+2,∴点A′的坐标是(﹣a,﹣b+2).故选:D.【点评】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A.A′关于点C成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方.3.【考点】三角形的外接圆,圆周角定理,圆内接四边形的性质【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.故选:A.【点睛】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.4.【考点】列表法与树状图法.【分析】画出树状图,根据概率公式求解即可.,共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会==.故选A.【点评】本题考查的是列表法和树状法,熟记概率公式是解答此题的关键.5.【考点】二次函数图象与几何变换.【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.【点评】本题借助于一个特殊函数图象的平移来求解析式,着重考查了函数的图象平移的公式,属于基础题.6.【考点】根与系数的关系,二次函数的最值【分析】根据已知条件得到m,n是关于x的方程x2-2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(2-3,当a=2时,(m-1)2+(n-1)2有最小值,代入即可得到结论.解:∵m2-2am+2=0,n2-2an+2=0,∴m,n是关于x的一元二次方程x2-2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m-1)2+(n-1)2=m2-2m+1+n2-2n+1=(m+n)2-2mn-2(m+n)+2=4a2-4-4a+2=4(a2-3,∵a≥2,∴当a=2时,(m-1)2+(n-1)2有最小值,∴(m-1)2+(n-1)2的最小值=4(22-3=6,【点评】本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.7.【考点】反比例函数图象上点的坐标特征【分析】根据点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,可以求得123,,y y y 的值,从而可以比较出123,,y y y 的大小关系.解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,∴1661y =-=-,2632y =-=-,3623y =-=-,∵326--<<,∴132y y y >>,故选:C .【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.8.【考点】一元二次方程的解【分析】根据一元二次方程的定义,可判定“和谐”方程的一个根为1,“美好”方程的一个根为-1,则2+m+n=0,2-m+n=0,然后求出m 、n 的值后计算mn 的值.解:根据题意得“和谐”方程的一个根为1,“美好”方程的一个根为-1,所以一元二次方程2x 2+mx+n=0的根为1和-1,所以2+m+n=0,2-m+n=0,解得m=0,n=-2,所以mn=0.故选:B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.【考点】含30度角的直角三角形,勾股定理,菱形的性质,扇形面积的计算【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积﹣扇形DEFG 的面积,根据面积公式计算即可.解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°﹣60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD•sin60°=6×=3,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEFG的面积=6×3﹣=18﹣9π.故选:A.【点评】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10.【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【分析】由开口方向,可确定a>0;由当x=﹣1时,y=a﹣b+c>0,可确定B错误;由对称轴在y轴右侧且在直线x=1左侧,可确定x=﹣<1;由二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,可得最小值:<﹣2,即可确定D正确.解:A.∵开口向上,∴a>0,故本选项错误;B、∵当x=﹣1时,y=a﹣b+c>0,故本选项错误;C、∵对称轴在y轴右侧且在直线x=1左侧,∴x=﹣<1,故本选项错误;D、∵二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,∴最小值:<﹣2,∴4ac﹣b2<﹣8a.故本选项正确.故选D.【点评】此题考查了图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.11.【考点】反比例函数综合题.【分析】先求出点A.B的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=﹣x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.解:∵点C(1,2),BC∥y轴,AC∥x轴,∴当x=1时,y=﹣1+6=5,当y=2时,﹣x+6=2,解得x=4,∴点A.B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,∵1≤x≤4,∴当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2≤k≤9.故选:A.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件.12.【考点】抛物线与x轴的交点,二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.解:A.∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查了抛物线与x轴的交点、二次函数图象与系数的关系、二次函数图象上点的坐标特征以及二次函数的性质,逐一分析四个选项的正误是解题的关键.二、填空题13.【考点】一元二次方程的一般形式【分析】利用完全平方公式将一元二次方程化简为ax2+bx+c=0,再分别表示一次项的系数、常数项的系数.解:(x-3)2=4化为x2-6x+5=0,所以一次项系数为-6,常数项为5.【点睛】此题主要考察一元二次方程的形式.14.【考点】中心对称图形,概率公式【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率解:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是4 5 .【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA.=.绕某个点旋转180°后能与自身重合的图形叫中心对称图形.15.【考点】扇形面积的计算.【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积﹣三个小扇形的面积.解:2×2÷2﹣﹣=2﹣.【点评】本题的关键是理解阴影部分的面积=三角形的面积﹣三个小扇形的面积.16.【考点】旋转的性质.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故答案为:60°.【点评】该题主要考查了旋转变换的性质及其应用问题;牢固掌握旋转变换的性质是灵活运用、解题的关键.17.【考点】同类项,反比例函数图象上点的坐标特点【分析】先根据同类项的定义求出m、n的值,故可得出P点坐标,代入反比例函数的解析式即可得出结论.解:∵12x m﹣1y2与3xy n+1是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.故答案为:3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.【考点】抛物线与x 轴的交点;二次函数的定义.【分析】根据题意得出一元二次方程的判别式△=0,得出含m 的方程,解方程即可求出m 的值.解:根据题意得:y=0时,mx 2+(m+2)x+m+2=0,△=0,∴(m+2)2﹣4×m (m+2)=0,整理得:4﹣4m=0,解得:m=1.故答案为:1.【点评】本题考查了抛物线与x 轴的交点的性质、方程的解法;熟练掌握抛物线与x 轴只有一个交点时判别式=0是解决问题的关键.三、解答题19.【考点】解一元二次方程,二次根式的加减【分析】(1)根据二次根式的运算法则,合并同类二次根式计算即可得答案;(2)把原方程整理为一元二次方程的一般形式,再利用十字相乘法解方程即可.解:(1)原式=2+-2=(2)(3)260x x x -+-=x 2-x-6=0(x ﹣3)(x+2)=0解得:x 1=3,x 2=﹣2.【点睛】本题考查二次根式的运算及解一元二次方程,一元二次方程的常用解法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.20.【考点】列表法与树状图法;一次函数图象上点的坐标特征;概率公式.【分析】(1)利用概率的计算方法解答;(2)由图表解答.解:(1)∵共有3张牌,两张为负数,∴k 为负数的概率是;(2)画树状图共有6种情况,其中满足一次函数y=kx+b 经过第二、三、四象限,即k <0,b <0的情况有2种,所以一次函数y=kx+b 经过第二、三、四象限的概率为.【点评】一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.用到的知识点为:概率=所求情况数与总情况数之比.21.【考点】作图-旋转性质【分析】以A 为旋转中心,△AOB 绕点A 逆时针旋转90°得到△AEF ,如图所示,确定出E 与F 坐标即可.解:(1)如答图,△AEF 就是所求作的三角形;点E 的坐标是(3,3),点F 的坐标是()3,1- .(2)答案不唯一,如B ()20- ,.【点评】此题考查了作图-旋转性质,熟练掌握旋转的性质是解本题的关键.22.【考点】二次函数的应用【分析】(1)由去年这种水果批发销售总额为10万元,可得今年的批发销售总额为10(1+20%)=12万元,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为(x+1)元,可列出方程:,求得x 即可(2)根据总利润=(售价﹣成本)×数量列出方程,根据二次函数的单调性即可求最大值.解:(1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为(x+1)元今年的批发销售总额为10(1+20%)=12万元∴整理得x 2﹣19x ﹣120=0解得x=24或x=﹣5(不合题意,舍去)故这种水果今年每千克的平均批发价是24元.(2)设每千克的平均售价为m元,依题意由(1)知平均批发价为24元,则有w=(m﹣24)(×180+300)=﹣60m2+4200m﹣66240整理得w=﹣60(m﹣35)2+7260∵a=﹣60<0∴抛物线开口向下∴当m=35元时,w取最大值即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.【考点】三角形的内角和定理,切线的判定,等边三角形的判定和性质,勾股定理【分析】(1)先求得∠OAC=∠OCA,从而根据三角形内角和定理得出2∠OCA+∠AOC=180°,进而得出∠OCA+12∠AOC∠OCA+12∠AOC=90°,由∠CBA=∠ACP,∠CBA=12∠AOC∠CBA=12∠AOC,得出∠OCA+∠ACP=90°,即可证得结论;(2)根据已知求得三角形AOC是等边三角形,进而得出∠BOC=30°,作CD⊥OP,BE⊥OC,通过解直角三角形求得CD、BE,然后根据S四边形OACB =S△AOC+S△BOC即可求得.解:(1)∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OCA+∠AOC=180°,∴2∠OCA+∠AOC=180°,∴=90°,∵∠CBA=∠ACP,,∴∠OCA+∠ACP=90°,∴OC⊥PC,∴PC与⊙O相切;(2)∵∠PCO=90°,点A是PO的中点,∴AC=OC=PA,∵OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∵BO⊥PO,∴∠BOC=30°,作CD⊥OP,BE⊥OC,∴CD=OC=,BE=OB=1,=S△AOC+S△BOC=OA•CD+OC•BE=×2×+×2×1=+1.∴S四边形OACB【点评】本题考查了三角形的内角和定理,切线的判定,等边三角形的判定和性质,解直角三角形等,作出辅助线,求得三角形的高CD、BE是解题的关键.24.【考点】二次函数综合题.【分析】(1)首先解一元二次方程,求出点A.点B的坐标,得到含有字母a的抛物线的交点式;然后分别用含字母a的代数式表示出△ABC与△ACD的面积,最后得出结论;(2)在Rt△ACD中,利用勾股定理,列出一元二次方程,求出未知系数a,得出抛物线的解析式.解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,由于x1<x2,则有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).抛物线的解析式为:y=a(x+5)(x﹣1)(a>0),∴对称轴为直线x=2,顶点D的坐标为(﹣2,﹣9a),令x=0,得y=﹣5a,∴C点的坐标为(0,﹣5a).依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE﹣OC=4a.S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC=(DE+OA)•OE﹣DE•CE﹣OA•OC=(2+5)•9a﹣×2×4a﹣×5×5a=15a,而S△ABC=AB•OC=×6×5a=15a,∴S△ABC :S△ACD=15a:15a=1;(2)如解答图所示,在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,设对称轴x=2与x轴交于点F,则AF=3,在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.∵∠ADC=90°,∴△ACD为直角三角形,由勾股定理得:AD2+CD2=AC2,即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=,∵a>0,∴a=,∴抛物线的解析式为:y=(x+5)(x﹣1)=x2+x﹣.【点评】本题考查了二次函数的图象与性质、一元二次方程的解法、直角三角形与勾股定理、几何图形面积的计算等知识点,难度不是很大,但涉及的计算较多,需要仔细认真,避免出错.注意第(1)问中求△ACD面积的方法.25.【考点】反比例函数综合题.【分析】(1)作CN⊥x轴于点N,根据HL证明Rt△CAN≌Rt△AOB,求出NO的长度,进而求出d;(2)设△ABC沿x轴的正方向平移c个单位,用c表示出C′和B′,根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数和直线B′C′的解析式;(3)直接从图象上找出y1<y2时,x的取值范围.解:(1)作CN⊥x轴于点N,∵A(﹣2,0)B(0,1).∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(HL),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1)又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣6+2c=c,解得c=6,即反比例函数解析式为y1=,(3)此时C′(3,2),B′(6,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3;由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(6,1),∴若y1<y2时,则3<x<6.【点评】本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的知识,解决第(2)问关键求出c的值,此题难度不是很大.26.【考点】几何变换综合题.【分析】(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A.B两点的坐标,利用勾股定理即可解答;(2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB﹣BO=5﹣3=2,所以A(0,﹣2);②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答.③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案;(3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积.解:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A.B两点,∴A(﹣4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90°,∴BC=;故答案为:5;.(2)①如图1,∵B(0,3),∴OB=3,∵AB=5,∴AO=AB﹣BO=5﹣3=2,∴A(0,﹣2).当在x轴上方时,点A的坐标为(0,8),故答案为:(0,﹣2),(0,8).②如图2,过点C作CF⊥OA与点F,∵△ABC为等腰直角三角形,∴∠BAC=90°,AB=AC,∴∠BAO+∠CAF=90°,∵∠OBA+∠BAO=90°,∴∠CAF=∠OBA,在△AOB和△CFA中,,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(﹣7,4)∵A(﹣4,0)设直线AC解析式为y=kx+b,将A与C坐标代入得:,解得:,则直线AC解析式为y=,∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE,∴∠ABD=90°,∵∠CAB=90°,∴∠ABD=∠CAB=90°,∴AC∥BD,∴设直线BD的解析式为y=x+b1,把B(0,3)代入解析式的:b1=3,∴直线BD的解析式为y=x+3;③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积,所以可得:S=;(3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3:将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为,平行四边CAA′C′的面积为(7+)×4=,三角形ABC 的面积为×5×5=△ABC 扫过的面积为:+=.【点评】此题属于一次函数综合题,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键。
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
人教版九年级上册数学期末考试试题一、单选题1.下列图形,可以看作中心对称图形的是()A .B .C .D .2.已知点P (-3,2)是反比例函数图象上的一点,则该反比例函数的表达式为()A .3y x=B .5y x=-C .6y x=D .6y x=-3.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .12B .13C .310D .154.抛物线y =(x -2)2+1的顶点坐标是()A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)5.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于()A .30°B .40°C .50°D .60°6.在平面直角坐标系xOy 中,A 为双曲线6y x=上一点,点B 的坐标为(4,0).若 AOB 的面积为6,则点A 的坐标为()A .(﹣4,32)B .(4,32-)C .(﹣2,3)或(2,﹣3)D .(﹣3,2)或(3,﹣2)7.如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若4OP =,30P ∠=︒,则弦AB 的长为().A 5B .23C .25D .28.已知二次函数()20y ax bx c a =++≠的图像如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b >;⑤()()1a b m am b m +>+≠,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,二次函数y =ax 2+bx+c 与反比例函数y =kx的图象相交于点A(﹣1,y 1)、B(1,y 2)、C(3,y 3)三个点,则不等式ax 2+bx+c >kx的解集是()A .﹣1<x <0或1<x <3B .x <﹣1或1<x <3C .﹣1<x <0或x >3D .﹣1<x <0或0<x <110.如图,直角三角形的直角顶点在坐标原点,∠OAB =30°,若点A 在反比例函数6(0)y x x =>的图象上,则经过点B 的反比例函数ky x=中k 的值是()A .﹣2B .﹣4C .﹣3D .﹣1二、填空题11.若点(),1a 与()2b -,关于原点对称,则b a =_______.12.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.13.正比例函数11y k x =和反比例函数22y k x=交于A 、B 两点.若A 点的坐标为(1,2)则B 点的坐标为_______________.14.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数________.15.如图, ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是___.16.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.17.如图所示,在平面直角坐标系中,A (4,0),B (0,2),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是_____.三、解答题18.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?19.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC(1)求反比例函数的解析式;(2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.20.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x元.(1)商店若想获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(2)用含x的代数式表示商店获得的利润W元,并计算商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少元?22.如图,一次函数y=﹣x+4的图象与反比例kyx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.23.如图,抛物线L:y=12x2﹣54x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D ,求PD+35AD 的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线L :y =12x 2﹣54x ﹣3向右平移得到抛物线L′,直线AB 与抛物线L′交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L′的解析式.24.如图,在Rt ABC 中,∠ABC =90°,P 是斜边AC 上一个动点,以BP 为直径作⊙O 交BC 于点D ,与AC 的另一个交点E ,连接DE 、DP .点F 为线段CP 上一点,连接DF ,∠FDP =∠DEP .(1)求证:DF 是⊙O 的切线;(2)当 DP EP =时,求证AB =AP ;(3)当AB =15,BC =20时,是否存在点P ,使得 BDE 是以BD 为腰的等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由.25.解方程:2320x x --=.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.参考答案1.B 2.D 3.A 4.A 5.C 6.C 7.C 8.A 9.A 10.A 11.1212.22()1y x =-+13.(1,2)--14.30°或150°15.16.120°17.y =2x ﹣818.(1)见解析;(2)球回到乙脚下的概率大【详解】(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=28=14;传到乙脚下的概率=38,所以球回到乙脚下的概率大.【点睛】考点:列表法与树状图法.19.(1)8y x=;(2)(2)()1,8P 或()1,8P --.【分析】(1).首先求出点A 的坐标,然后将点A 的坐标代入反比例函数解析式求出解析式;(2).首先求出△ABC 的面积,然后根据面积相等求出点P 的坐标.【详解】解(1).将x=2代入y=2x 中,得y=4.∴点A 坐标为(2,4)∵点A 在反比例函数y=kx的图象上,∴k=2×4=8∴反比例函数的解析式为y=8x (2).()2,4,A B 关于原点对称,()2,4,B ∴--()()114228,22ABC A B S AC x x ∴=-=⨯⨯+= 设8,,P x x ⎛⎫⎪⎝⎭188,2OPC P S OC y x∴=== 1,x ∴=±经检验:1x =±是原方程的解且符合题意,∴P(1,8)或P(-1,-8)20.(1)证明详见解析;(2)163.【分析】(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.【详解】(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=13-5=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.【点睛】题目主要考查切线的判定、圆周角定理、角平分线的性质定理,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.21.(1)每个定价为70元,应进货200个;(2)W =﹣10(x ﹣15)2+6250,每个定价为65元时获得最大利润,可获得的最大利润是6250元【分析】(1)总利润=每个的利润×销售量,销售量为(400﹣10x )个,列方程求解,根据题意取舍;(2)利用函数的性质求最值.【详解】解:(1)根据题意得:(50﹣40+x )(400﹣10x )=6000,解得:x 1=10,x 2=20,当x =10时,400﹣10x =400﹣100=300,当x =20时,400﹣10x =400﹣200=200,要使进货量较少,则每个定价为50+20=70元,应进货200个.答:每个定价为70元,应进货200个.(2)根据题意得:W =(50﹣40+x )(400﹣10x )=﹣10x 2+300x+4000=﹣10(x ﹣15)2+6250,当x =15时,y 有最大值为6250.所以每个定价为65元时获得最大利润,可获得的最大利润是6250元.【点睛】一元二次方程和二次函数在实际生活中的应用是本题的考点,根据每个小家电利润×销售的个数=总利润列出方程是解题的关键.22.(1)3y x=,B(3,1);(2)①P(52,0);②M(4,0)【分析】(1)利用待定系数法即可解决问题;(2)作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小;(3)直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,求得x 的值,即可求得M 的坐标.【详解】解:(1)把点A (1,a )代入一次函数y =﹣x+4,得a =3,∴A (1,3),把点A (1,3)代入反比例y =kx,得k =3,∴反比例函数的表达式y =3x,联立43y x y x =-+⎧⎪⎨=⎪⎩,解得:13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,故B (3,1).(2)①作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小∴D (3,﹣1)设直线AD 的解析式为y =mx+n ,则331m n m n +=⎧⎨+=-⎩,解得25m n =-⎧⎨=⎩,∴直线AD 的解析式为y =﹣2x+5,令y =0,则x =52,∴P 点坐标为(52,0);②直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,则x =4,∴M 点的坐标为(4,0).【点睛】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题.23.(1)AB 解析式为y=34x-3,抛物线顶点坐标为125)2(413-,;(2)点P 的坐标为125)2(413-,,PD+35AD 的最大值为12132;(3)21133242y x x =-+.【分析】(1)先求出点A ,点B 坐标,利用待定系数法可求解析式,通过配方法可求顶点坐标;(2)CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,即可求解;(3)设点M (x 1,y 1),点N (x 2,y 2),则x 1+x 2=2(m+34),而点A 是MN 的中点,故x 1+x 2=8,进而求解.【详解】解:(1)∵抛物线L :y =12x 2﹣54x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B ,令0y =,则21530,24x x --=解得:123,4,2x x =-=令0,x =则3,y =-∴点A (4,0),点B (0,-3),设直线AB 解析式为:y=kx-3,∴0=4k-3,∴k=34,∴直线AB 解析式为:y=34x-3①,∵y =12x 2﹣54x ﹣3=2152412132x --)(,∴抛物线顶点坐标为125)2(413-;(2)∵点A (4,0),点B (0,-3),∴OA=4,OB=3,∴5==,则sin ∠BAO=35OBAB =,则CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,当点P 为抛物线顶点时,PC 最大,故点P 的坐标为125)2(413-,则PD+35AD 的最大值=PC 为最大,最大值为12132;(3)设平移后的抛物线L'解析式为21121()232y x m =--②,联立①②并整理得:223252()0416x m x m -++-=,设点M (x 1,y 1),点N (x 2,y 2),∵直线AB 与抛物线L'交于M ,N 两点,∴x 1,x 2是方程223252(0416x m x m -++-=的两根,∴x 1+x 2=2(3)4m +,∵点A 是MN 的中点,∴x 1+x 2=8,∴32()84m +=,∴m=134,∴平移后的抛物线L'解析式为221131211133()2432242y x x =--=-+.24.(1)见解析(2)见解析(3)存在,252或10【分析】(1)利用圆周角定理证明∠FDP=∠DBP ,∠DBP+∠OPD=90°,再证明OD ⊥DF ,即可证明结论;(2)先证明∠CBP=∠EBP ,易证∠C=∠ABE ,由∠APB=∠CBP+∠C ,∠ABP=∠EBP+∠ABE ,得出∠APB=∠ABP ,即可得出结论;(3)先证明△DCP ∽△BCA ,利用相似三角形的性质得到CP =54CD ,再分当BD =BE ,BD =ED 两种情况讨论,即可求解.(1)证明:连接OD ,∵ DPDP =,∴∠DBP =∠DEP ,∵∠FDP =∠DEP ,∴∠FDP=∠DBP ,∵BP 是⊙O 的直径,∴∠BDP=90°,∴∠DBP+∠OPD=90°,∵OD=OP ,∴∠OPD=∠ODP ,∴∠FDP+∠ODP=90°,∴OD ⊥DF ,∴DF是⊙O的切线;(2)证明:连接BE,如图所示:∵DP EP=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(3)解:由AB=15,BC=20,由勾股定理得:AC25,∵12AB•BC=12AC•BE,即12×15×20=12×25×BE,∴BE=12,∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴CPAC=CDBC,∴CP=AC CDBC⋅=2520CD=54CD,△BDE是等腰三角形,分两种情况:①当BD =BE 时,BD =BE =12,∴CD =BC ﹣BD =20﹣12=8,∴CP =54CD =54×8=10;②当BD =ED 时,可知点D 是Rt △CBE 斜边的中线,∴CD =12BC =10,∴CP =54CD =54×10=252;综上所述,△BDE 是等腰三角形,符合条件的CP 的长为252或10.25.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.26.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S = 120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD ∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AOD OAD S S ππ⨯-== 扇形.。
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.一元二次方程3x 2-6x =1化为-般形式ax 2+bx +c =0(a≠0)后,a ,b ,c 的值分别是A .a =3,b =6,c =1B .a =3,b =-6,c =1C .a =-3,b =-6,c =1D .a =3,b =-6,c =-13.下列事件中属于必然事件的是()A .正数大于负数B .下周二,温州的天气是阴天C .在一个只装有白球的袋子中摸出一个红球D .在一张纸上任意画两条线段,这两条线段相交4.已知x =﹣1是一元二次方程x 2﹣x ﹣m =0的解,则m 的值为()A .1B .﹣1C .2D .﹣25.如图,O 是ABC ∆的外接圆,40OCB ∠=︒,则A ∠的度数是()A .40︒B .80︒C .50︒D .45︒6.抛物线y =-2x 2+1的对称轴是()A .直线12x =B .直线12x =-C .y 轴D .直线x =27.如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A .6B .8C .10D .128.将抛物线y =2x 2向左平移1个单位长度,再向上平移3个单位长度,所得到新的抛物线的表达式为()A .22(1)3y x =+-B .22(3)1y x =+-C .22(3)1y x =++D .2y 2(x 1)3=++9.一个不透明的布袋里装有12个白球,3个红球,6个黄球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A .57B .47C .27D .1710.二次函数y =ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①a <0;②2a ﹣b =0;③4ac ﹣b 2>0;④a+b+c <0,其中正确结论的个数是()A .4个B .3个C .2个D .1个二、填空题11.抛物线y =3(x+5)2+8的顶点坐标是_____.12.若圆锥的底面半径为3cm ,侧面展开图是一个半径为6cm 的扇形,该圆锥的侧面积是_____cm 2.13.如图,△ABC 中,点DE 分别在边BA ,CA 的延长线上;且DE ∥BC ,若AE =2,AC =4,AD =3,则BD =_____.14.如图,在△ABC 中,AB=4,BC=7,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为__________.15.如图,矩形ABCD 中,AB =3,BC =4,点E 在边BC 上,点F 在边CD 上,∠AEF =90°,设BE =x ,CF =y ,当0<x <4时,y 关于x 的函数解析式是______.16.如图,PA PB 、切O 于点AB 、,10PA cm =,CD 切O 于点E ,交PA PB 、于点CD 、,则PCD 的周长是________.17.如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①0abc <;②0a b +=;③244ac b a -=;④0a b c ++<.其中正确的有______个.三、解答题18.一个袋中装有三个只有颜色不同的小球,其中1个白色,2个红色.(1)从袋中随机摸出1个球;则摸到的是红色小球的概率是;(2)从袋中随机摸出1个球,不放回,摇匀后再摸一个球,求两个球都是红色小球的概率.(请用列表法或画树状图说明)19.如图,AB平分∠CAD,AC=9,AB=6,AD=4.求证∠C=∠ABD.20.如图,在⊙O中, AB= AC,∠BOC=120°.求证:△ABC是等边三角形.21.某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有64个人被感染.(1)求每轮感染中平均一个人会感染几个人;(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过500人.22.如图,AB是⊙O的直径,点C是圆上异于A,B的点,连接线段AC和BC,点D在AB的延长线上,且∠BCD=∠BAC,过点A作AE⊥CD于点E.(1)求证CD是⊙O的切线;(2)若23OBOD ,AE=4,求BD的长.23.抛物线y=ax2+4(a≠0)与x轴交于A,B两点(A点在B点的左侧),AB=4,点P(2,1)位于第一象限.(1)求抛物线的解析式;(2)若点M 在抛物线上,且使∠MAP =45°,求点M 的坐标;(3)将(1)中的抛物线平移,使它的顶点在直线y =x+4上移动,当平移后的抛物线与线段AP 只有一个公共点时,求抛物线顶点横坐标t 的取值范围.24.如图,在△ABC 中,∠C =90°,BC =8,AC =6,点P ,Q 同时从点B 出发,点P 以每秒5个单位长度的速度沿折线BA ﹣AC 运动,点Q 以每秒3个单位长度的速度沿折线BC ﹣CA 运动,当点P ,Q 相遇时,两点同时停止运动,设点P 运动的时间为t 秒,△PBQ 的面积为S .(1)当P ,Q 两点相遇时,t =秒;(2)求S 关于t 的函数关系式,并直接写出t 的取值范围.25.如图,已知二次函数2142y x x c =-++的图象经过A (2,0).(1)求c 的值.(2)若二次函数于y 轴相交于的B 点,且该二次函数的对称轴与x 轴交于点C ,连结BA BC 、,求ABC 的面积.26.如图1,在△ABC中,点E在△ABC内部,连接线段EB和EC,使∠ECB=∠ABC,∠EBC=∠ABE+∠ACE.(1)求证∠ACB=2∠EBC;(2)点D是BC边上一点,连接DE,当BD=AC时,探究线段AB,CE,DE之间的数量关系并证明;(3)如图2,在(2)的条件下,若∠A=90°,延长DE交AB于点K,当AC=32CD时,直接写出BKAK的值为_____.参考答案1.D【分析】轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形是要寻找对称中心,旋转180度后与原图重合;根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:A 、即不是中心对称图形,也不是轴对称图形,故选项不符合题意;B 、是轴对称图形,但不是中心对称图形,故选项不符合题意;C 、是中心对称图形,但不是轴对称图形,故选项不符合题意;D 、既是中心对称图形,也是轴对称图形,故选项符合题意.故选D .2.D【分析】先化成一元二次方程的一般形式,再求出a 、b 、c 的值即可.【详解】解:2361x x -= ,23610x x ∴--=,3a ∴=,6b =-,1c =-,故选:D .3.A【分析】根据必然事件、随机事件、不可能事件的定义逐项判断即可得.【详解】解:A 、“正数大于负数”是必然事件,此项符合题意;B 、“下周二,温州的天气是阴天”是随机事件,此项不符题意;C 、“在一个只装有白球的袋子中摸出一个红球”是不可能事件,此项不符题意;D 、“在一张纸上任意画两条线段,这两条线段相交”是随机事件,此项不符题意;故选:A .【点睛】本题考查了必然事件、随机事件、不可能事件,熟练掌握各定义是解题关键.4.C【分析】把x =﹣1代入一元二次方程x 2﹣x ﹣m =0,再求解即可.【详解】解:∵x =﹣1是一元二次方程x 2﹣x ﹣m =0的解,∴110,m +-=解得:2,m =故选C【点睛】本题考查的是一元二次方程的解的含义,掌握“方程的解使方程的左右两边相等”是解本题的关键.5.C【分析】在等腰三角形OCB 中,求得两个底角∠OBC 、∠OCB 的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A 的度数并作出选择.【详解】解:在OCB ∆中,OB OC =,OBC OCB ∴∠=∠;40OCB ∠=︒ ,180COB OBC OCB ∠=︒-∠-∠,100COB ∴∠=︒;又12A COB ∠=∠ ,50A ∴∠=︒,故选:C .【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.6.C【分析】二次函数的顶点式为y=a(x-h)2+k ,其对称轴为x=h ,根据此知识点即可解此题.【详解】解:已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴:∵抛物线y =-2x 2+1的顶点坐标为(0,1),∴对称轴是直线x =0(y 轴).故选C .7.B【分析】根据垂径定理得AB=2BC ,∠OCB=90°,利用勾股定理求出BC 即可得到答案.【详解】解:∵C 是弦AB 的中点,∴AB=2BC ,∠OCB=90°,∵OC 2+BC 2=OB 2,∴4BC ===,∴AB=8,故选:B .8.D【分析】根据抛物线的平移规律:“上加下减,左加右减”解答即可.【详解】解:将抛物线y =2x 2向左平移1个单位长度,再向上平移3个单位长度,所得到新的抛物线的表达式为2y 2(x 1)3=++,故选:D .9.B 【详解】解:搅匀后任意摸出一个球,是白球的概率为:12123476=++.故选:B .10.B【分析】由图可知,二次函数开口向下,a <0,与x 轴两个交点Δ>0,对称轴x=-1,2a-b=0,当x=1时,y <0,从而得出结论.【详解】解:∵抛物线开口向下,∴a <0,故①符合题意;∵对称轴为12b x a=-=-,∴b=2a ,即2a-b=0,故②符合题意;∵抛物线与x 轴有两个交点,∴Δ=b 2-4ac >0,即4ac-b 2<0,故③不符合题意;由图象可知,当x=1时,y <0,即a+b+c <0,故④符合题意.∴正确的个数有3个,故选:B .11.()5,8-【详解】解:由()2358y x =++,根据顶点式的坐标特点知,顶点坐标为()5,8-.故答案为:()5,8-.()2y a x h k =-+中,顶点坐标为(),h k ,对称轴为x h =.12.18π【分析】侧面展开图的半径即为圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】解:圆锥的侧面积为:236218ππ⨯⨯÷=(cm 2).故答案为:18π.13.9【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入先求解AB ,从而可得答案.【详解】解:∵∥DE BC ,∴AEADAC AB =,∵AE=2,AC=4,AD=3,∴234AB =,解得:AB=6,经检验符合题意;∴BD=AD+AB=6+3=9,故答案为:9.14.3【详解】由旋转的性质可得:AD=AB ,60B ∠=︒ ,∴△ABD 是等边三角形,∴BD=AB ,∵AB=4,BC=7,∴CD=BC−BD=7−4=3.故答案为:3.15.21433y x x=-+【分析】证明△ABE ∽△ECF ,由相似三角形的性质得出ABBECE CF =,则可得出答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠C =90°,∴∠BAE+∠AEB =90°,∵∠AEF =90°,∴∠AEB+∠FEC =90°,∴∠BAE =∠FEC ,∴△ABE ∽△ECF ,∴ABBECE CF =,∵AB =3,BC =4,BE =x ,CF =y ,∴34xx y =-,∴214(04)33y x x x =-+<<.故答案为:21433y x x =-+.16.20【详解】由切线长定理得:10,,PA PB CA CE DB DE====所以PCD ∆的周长为101020PC PD CD PC AC DB PD PA PB ++=+++=+=+=17.3【分析】①根据抛物线开口向下可得出a <0,由抛物线对称轴为122b x a =-=可得出b =−a >0,结合抛物线图象可知c >0,进而可得出abc <0,①正确;②由b =−a 可得出a +b =0,②正确;③根据抛物线顶点坐标为(2b a -,244ac b a -),由此可得出2414ac b a-=,去分母后即可得出4ac−b2=4a ,③正确;④根据抛物线的对称性可得出x =1与x =0时y 值相等,由此可得出a +b +c =c >0,④错误.综上即可得出结论.【详解】①由抛物线开口向下,得0a <;由抛物线对称轴为122b x a =-=,得,0b a b =-∴>;抛物线与y 轴交点在y 轴正半轴,故0c >,0abc ∴>正确②,0b a a b =-∴+= 正确③由抛物线的顶点坐标为1(,1)2,得2414ac b a -=,244ac b a ∴-=正确④由①得0c >,由②得0a b +=,0a b c ∴++>,故④错误正确为:①②③故答案为:3.18.(1)摸到的是红色小球的概率是23(2)两个球都是红色小球的概率是13.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.(1)解:∵袋中装有三个只有颜色不同的小球,其中1个白色,2个红色,∴从袋中随机摸出1个球,则摸到的是红色小球的概率是23;故答案为:23;(2)根据题意画图如下:共有6中等可能的情况数,其中两个球都是红色小球的有2种,则两个球都是红色小球的概率是21=63.19.【详解】解:∵AB平分∠CAD,∴∠CAB=∠DAB,∵AC=9,AB=6,AD=4,∴32 AC ABAB AD==,∴△ACB∽△ABD,∴∠C=∠ABD.20.【详解】证明:∵ AB= AC,∴AB=AC,∵∠BOC=120°.∴1602BAC BOC∠=∠=︒,∴△ABC是等边三角形.21.(1)每轮感染中平均一个人会感染7个人.(2)若病毒得不到有效控制,3轮感染后,被感染的人会超过500人.【分析】(1)设每轮感染中平均一个人会感染x个人,根据一个人被感染经过两轮感染后就会有64个人被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据3轮感染后被感染的人数=2轮感染后被感染的人数×(1+7),即可求出3轮感染后被感染的人数,再将其与500进行比较后即可得出结论.(1)解:设每轮感染中平均一个人会感染x个人,依题意,得:1+x+x (1+x )=64,解得:x 1=7,x 2=-9(不合题意,舍去).答:每轮感染中平均一个人会感染7个人.(2)64×(1+7)=512(人),512>500.答:若病毒得不到有效控制,3轮感染后,被感染的人会超过500人.22.(1)见解析;(2)65BD =【分析】(1)连接OC ,由AB 是直径,得90ACB ∠=︒,从而得出90DCB OCB ∠+∠=︒,即90OCD ∠=︒,即可证明结论;(2)设2OA OB OC x ===,3OD x =,再根据ΔΔOCD AED ∽,可求出125OC =,从而求出BD 的长.(1)证明:连接OC ,OC OA = ,OCA OAC ∴∠=∠,DCB BAC ∠=∠ ,DCB OCA ∴∠=∠,AB Q 是直径,90ACB ∴∠=︒,90OCA OCB ∴∠+∠=︒,90DCB OCB ∴∠+∠=︒,即90OCD ∠=︒,OC CD ∴⊥,OC 是半径,CD ∴是O 的切线;(2)解: 23OB OD =,OA OB OC ==,设2OA OB OC x ===,3OD x =,235AD x x x ∴=+=,∴35OD AD =,AE DE ⊥ ,90E OCD ∴∠=∠=︒,OC AE∴∥ΔΔOCD AED ∴∽,∴35OC OD AE AD ==,4AE = ,125OC ∴=,65x ∴=,6325BD OD OB x x x ∴=-=-==.23.【分析】(1)根据抛物线24y ax =+关于y 轴对称,4AB =,得(2,0)A -,(2,0)B ,用待定系数法即得抛物线的解析式是24y x =-+;(2)当AM 在AP 上方时,过P 作PH AP ⊥交直线AM 于H ,作直线BP ,过H 作HD BP ⊥于D ,根据45∠=︒MAP ,PH AP ⊥,可推得ΔΔ()ABP PDH AAS ≅,得到(1,5)H ,设直线AH 为y kx b =+,待定系数法得直线AH 为51033y x =+,从而解得1(3M ,35)9;当AM 在AP 下方时,过P 作⊥PE AP 交直线AM 于E ,过P 作KG//x 轴,过A 作AK KG ⊥于K ,过E 作EG KG ⊥于G ,同理可得13(5M ,69)25-;(3)由平移后顶点在直线4y x =+上,设平移后的抛物线为2()4y x t t =--++,把(2,0)A -代入得:20(2)4t t =---++,解得0=t 或3t =-,结合函数图象可得30t -< ,把(2,1)P 代入得:21(2)4t t =--++,解得52t =或t =,结合函数图象可得:t <(1)解: 抛物线24y ax =+关于y 轴对称,4AB =,(2,0)A ∴-,(2,0)B ,把(2,0)A -代入24y ax =+得:044a =+,1a ∴=-,∴抛物线的解析式是24y x =-+;(2)当AM 在AP 上方时,过P 作PH AP ⊥交直线AM 于H ,作直线BP ,过H 作HD BP ⊥于D ,如图:45MAP ∠=︒ ,PH AP ⊥,ΔAPH ∴是等腰直角三角形,AP HP ∴=,90APB HPD PHD ∠=︒-∠=∠,(2,0)B ,(2,1)P ,90ABP HDP ∴∠=︒=∠,ΔΔ()ABP PDH AAS ∴≅,AB PD ∴=,PB DH =,(2,0)A - ,(2,0)B ,(2,1)P ,4PD AB ∴==,1DH BP ==,(1,5)H ∴,设直线AH 为y kx b =+,∴5{02k b k b=+=-+,解得53{103k b ==,∴直线AH 为51033y x =+,由2510433x x +=-+得:12x =-(点A 横坐标,舍去),213x =,当13x =时,221354()439y x =-+=-+=,1(3M ∴,35)9;当AM 在AP 下方时,过P 作⊥PE AP 交直线AM 于E ,过P 作//KG x 轴,过A 作AK KG ⊥于K ,过E 作EG KG ⊥于G,如图:同理可得ΔΔAKP PGE ≅,1PG AK ∴==,4GE KP ==,(3,3)E ∴-,设直线AE 为y k x b ''=+,将(2,0)A -,(3,3)E -代入得:20{33k b k b '''-+'+==-,解得35{65k b ''=-=-,∴直线AE 为3655y x =--,由236455x x --==-+得2x =-(舍去)或135x =,13(5M ∴,6925-;综上所述,点M 的坐标为1(3,359或13(5,69)25-;(3) 平移后顶点在直线4y x =+上,∴设平移后的抛物线顶点为(),4t t +,则平移后的抛物线为2()4y x t t =--++,把(2,0)A -代入得:20(2)4t t =---++,解得0=t 或3t =-,如图:结合函数图象可得30t -<,把(2,1)P 代入得:21(2)4t t =--++,解得t =t =,如图:结合函数图象可得:5522t +< ,综上所述,抛物线顶点横坐标t 的取值范围为30t -< 或5522t +< .24.【分析】(1)首先求出10AB =,再根据两个点的路程和为24得到方程可得相遇时间;(2)分三种情况:当02t < 时,当823t < 时,利用三角形相似和三角形的面积公式可得S 与t 的关系式.(1)90C ∠=︒ ,8BC =,6AC =,10AB ∴==,5324t t ∴+=,解得3t =.∴当P ,Q 两点相遇时,3t =秒,故答案为:3;(2)当02t < 时,当823t < 时,在ABC ∆中,过点P 作PH BC ⊥于点H ,90PHB C ∴∠=∠=︒,B B ∠∠= ,ΔΔABC PBH ∴∽,∴PHBPAC AB =,5BP t = ,6AC =,10AB =,3PH t ∴=,3BQ t = ,2193322S t t t ∴=⨯⨯=;当823t < 时,如图,165PC t =-,211153(165)24222S PQ PC t t t t =⨯=⨯⨯-=-+;如图,248PQ t =-,118(248)329622S PQ BC t t =⨯=⨯-=-+.25.(1)-6;(2)6.【分析】(1)将已知点的坐标代入到二次函数的解析式即可求得c 值;(2)首先求得对称轴,然后求得点C 的坐标,从而求得线段AC 的长,最后求得三角形ABC 的面积即可.【详解】解:(1)把(2,0)A 代入214,2y x x c =-++得6c =-(2)由(1)得B 的坐标为(0,-6)∴6OB = 抛物线对称轴为:44122x =-=⎛⎫⨯- ⎪⎝⎭∴C 点坐标为(4,0)422AC OC OA ∴=-=-=∴ABC 的面积为:1126622AC OB ⨯⨯=⨯⨯=26.(1)证明见解析(2)AB CE DE =+,理由见解析(3)15【分析】(1)设ABE α∠=,ACE β∠=,则EBC ABE ACE αβ∠=∠+∠=+,再证22ACB ECB ACE αβ∠=∠+∠=+,即可得出结论;(2)过C 作CM 平分ACB ∠交AB 于M ,证ΔΔ()EBC MCB ASA ≅,得BE CM =,CE BM =,再证ΔΔ()ACM DBE SAS ≅,得AM DE =,即可得出结论;(3)设CD a =,则32BD AC a ==,得52BC BD CD a =+=,由勾股定理得2AB a =,再证ΔΔKBD CBA ∽,得BK BDBC BA =,则158BK a =,18AK a =,即可得出答案.(1)证明:设ABE α∠=,ACE β∠=,EBC ABE ACE αβ∴∠=∠+∠=+,2ECB ABC αβ∴∠=∠=+,22ACB ECB ACE αβ∴∠=∠+∠=+,2ACB EBC ∴∠=∠;(2)解:AB CE DE =+,理由如下:过C 作CM 平分ACB ∠交AB 于M ,如图1所示:则ACM BCM ∠=∠,2ACB EBC ∠=∠ ,BCM EBC ∴∠=∠,BC CB = ,ECB ABC =∠∠,ΔΔ()EBC MCB ASA ∴≅,BE CM ∴=,CE BM =,又AC BD = ,ACM DBE ∠=∠,ΔΔ()ACM DBE SAS ∴≅,AM DE ∴=,AB BM AM CE DE ∴=+=+;(3)解:过C 作CM 平分ACB ∠交AB 于M ,如图2所示:21设CD a =,则32BD AC a ==,52BC BD CD a ∴=+=,90A ∠=︒,2AB a ∴==,由(2)可知,ΔΔACM DBE ≅,A BDE ∴∠=∠,KBD CBA ∠=∠ ,ΔΔKBD CBA ∴∽,∴BKBDBC BA =,即32522a BK a a =,解得:158BK a =,151288AK AB BK a a a ∴=-=-=,∴1581518a BK AK a==.故答案为:15。
人教版数学九年级上册期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x2+2x D.2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°3.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A.100(1+x)2=331B.100+100×2x=331C.100+100×3x=331D.100[1+(1+x)+(1+x)2]=3315.下列函数中,当x>0时,y随x的增大而减小的是()A.y=x+1B.y=x2﹣1C.D.y=﹣(x﹣1)2+16.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定7.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4B.1:2C.2:1D.1:8.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣29.已知正六边形的边长为10cm,则它的边心距为()A.cm B.5cm C.5cm D.10cm10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③二、填空题(本大题共8小题,每小题4分,共32分)11.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.12.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离.14.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是.15.已知正比例函数y=﹣2x与反比例函数y=的图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为.16.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为m.17.如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=.18.如图,已知Rt△ABC是⊙O的内接三角形,其中直角边AC=6、BC=8,则⊙O的半径是.三、解答题(本大题共5小题,共38分)19.解方程:(1)x2+4x+1=0(用配方法);(2)x(x﹣2)+x﹣2=0.20.如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后能与△ACP′重合,如果AP=3,求PP′的长.21.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.22.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).四、解答题(本大题共5小题,共50分)24.如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,让两个转盘分别自由转动一次,当转盘指针落在分界线上时,重新转动.(1)请你画树状图或列表表示所有等可能的结果.(2)求两个指针落在区域的颜色能配成绿色的概率.(黄、蓝两色混合配成绿色)25.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.26.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.27.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.28.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x2+2x D.【考点】一元二次方程的定义.【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、方程含有两个未知数,故错误;B、符合一元二次方程的定义,正确;C、整理后方程二次项系数为0,故错误;D、不是整式方程,故错误.故选B.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°【考点】圆周角定理.【分析】已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.【解答】解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.【点评】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.3.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点评】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合,难度适中.4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A.100(1+x)2=331B.100+100×2x=331C.100+100×3x=331D.100[1+(1+x)+(1+x)2]=331【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:七月份月营业额+八月份月营业额+九月份月营业额=331,把相关数值代入即可求解.【解答】解:设平均每月的增长率为x,根据题意:八月份的月营业额为100×(1+x),九月份的月销售额在八月份月销售额的基础上增加x,为100×(1+x)×(1+x),则列出的方程是:100+100(1+x)+100(1+x)2=331,100[1+(1+x)+(1+x)2]=331.故选D.【点评】此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5.下列函数中,当x>0时,y随x的增大而减小的是()A.y=x+1B.y=x2﹣1C.D.y=﹣(x﹣1)2+1【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】反比例函数、二次函数的增减性都有限制条件(即范围),一次函数当一次项系数为负数时,y随着x增大而减小.【解答】解:A、函数y=2x+1的图象是y随着x增大而增大,故本选项错误;B、函数y=x2﹣1,当x<0时,y随着x增大而减小,当x>0时,y随着x增大而增大,故本选项错误;C、函数y=,当x<0或x>0时,y随着x增大而减小,故本选项正确;D、函数y=﹣(x﹣1)2+1,当x<1时,y随着x增大而增大,当x>1时,y随着x增大而减小,故本选项错误;故选C.【点评】本题考查了二次函数、一次函数、反比例函数的增减性.关键是明确各函数的增减性的限制条件.6.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定【考点】点与圆的位置关系;坐标与图形性质.【专题】计算题.【分析】根据P点坐标和勾股定理可计算出OP的长,然后根据点与圆的位置关系的判定方法判断它们的关系.【解答】解:∵圆心P的坐标为(5,12),∴OP==13,∴OP=r,∴原点O在⊙P上.故选B.【点评】本题考查了点与圆的位置关系:.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.7.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4B.1:2C.2:1D.1:【考点】相似三角形的性质.【专题】压轴题.【分析】本题可根据相似三角形的性质求解:相似三角形的周长比等于相似比.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的周长比为1:2.故选B.【点评】本题主要考查了相似三角形的性质:相似三角形的周长比等于相似比.8.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣2【考点】抛物线与x轴的交点.【专题】分类讨论.【分析】分为两种情况:函数是二次函数,函数是一次函数,求出即可.【解答】解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数是一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选:D.【点评】本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.9.已知正六边形的边长为10cm,则它的边心距为()A.cm B.5cm C.5cm D.10cm【考点】正多边形和圆.【分析】已知正六边形的边长为10cm,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形得出.【解答】解:如图,∵在正六边形中,OA=OB=AB,∴在Rt△AOG中,OA=AB=10,∠AOG=30°,∴OG=OA•cos30°=10×=5.故选C.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答此题的关键是根据正六边形的性质,证出△OAB为正三角形,再利用正三角形的性质解答.10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B【点评】此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共8小题,每小题4分,共32分)11.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.【考点】列表法与树状图法;三角形三边关系.【专题】常规题型.【分析】由从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;直接利用概率公式求解即可求得答案.【解答】解:∵从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:=.故答案为:.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.12.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.【考点】根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根.【专题】计算题.【分析】首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.【点评】本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离7cn或17cm.【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12,CF=CD=5,接着根据勾股定理,在Rt△OAE中计算出OE=5,在Rt△OCF中计算出OF=12,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=12,CF=DF=CD=5,在Rt△OAE中,∵OA=13,AE=12,∴OE==5,在Rt△OCF中,∵OC=13,CF=5,∴OF==12,当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;当圆心O不在AB与CD之间时,EF=OF﹣OE=12﹣5=7;即AB和CD之间的距离为7cn或17cm.故答案为7cn或17cm.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.14.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是y=(x ﹣5)2+2或y=x2﹣10x+27.【考点】二次函数图象与几何变换.【专题】压轴题;几何变换.【分析】先将抛物线的解析式化为顶点式,然后根据平移规律平移即可得到解析式.【解答】解:y=x2﹣2x=(x﹣1)2﹣1,根据平移规律,向上平移3个单位,再向右平移4个单位得到的抛物线是:y=(x﹣5)2+2,将顶点式展开得,y=x2﹣10x+27.故答案为:y=(x﹣5)2+2或y=x2﹣10x+27.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.15.已知正比例函数y=﹣2x与反比例函数y=的图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为(1,﹣2).【考点】反比例函数图象的对称性.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:根据中心对称的性质可知另一个交点的坐标是:(1,﹣2).故答案为:(1,﹣2).【点评】本题考查了反比例函数图象的中心对称性,较为简单,容易掌握.16.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为2m.【考点】垂径定理的应用;勾股定理.【分析】根据题意可得出AO=5cm,AC=4cm,由勾股定理得出CO的长,则CD=OD﹣OC=AO ﹣OC.【解答】解:如图所示:∵输水管的半径为5m,水面宽AB为8m,水的最大深度为CD,∴DO⊥AB,∴AO=5m ,AC=4m ,∴CO==3(m ),∴水的最大深度CD 为:CD=OD ﹣OC=AO ﹣OC=2m .故答案是:2.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意构造出直角三角形是解答此题的关键.17.如图:点A 在双曲线上,AB 丄x 轴于B ,且△AOB 的面积S △AOB =2,则k=﹣4.【考点】反比例函数系数k 的几何意义.【分析】先根据反比例函数图象所在的象限判断出k 的符号,再根据S △AOB =2求出k 的值即可.【解答】解:∵反比例函数的图象在二、四象限,∴k <0,∵S △AOB =2,∴|k|=4,∴k=﹣4.故答案为:﹣4.【点评】本题考查的是反比例系数k 的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.18.如图,已知Rt △ABC 是⊙O 的内接三角形,其中直角边AC=6、BC=8,则⊙O 的半径是5.【考点】圆周角定理;勾股定理.【分析】由∠ACB=90°可判断出AB 为直径,利用勾股定理求出AB ,继而可得出⊙O 的半径.【解答】解:由题意得,∠ACB=90°,∵Rt△ABC是⊙O的内接三角形,∴AB是⊙O的直径,在Rt△ABC中,AB==10,则⊙O的半径为5.故答案为:5.【点评】本题考查了圆周角定理的知识,解答本题的关键是掌握:90°的圆周角所对的弦是直径.三、解答题(本大题共5小题,共38分)19.解方程:(1)x2+4x+1=0(用配方法);(2)x(x﹣2)+x﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+4x+1=0,x2+4x=﹣1,x2+4x+4=﹣1+4,(x+2)2=3,x+2=±,x1=﹣2+,x2=﹣2﹣;(2)x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,x1=2,x2=﹣1.【点评】本题考查了解一元二次方程的应用,解(1)小题的关键是能正确配方,解(2)小题的关键是能把一元二次方程转化成一元一次方程,难度适中.20.如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后能与△ACP′重合,如果AP=3,求PP′的长.【考点】等边三角形的判定与性质;旋转的性质.【分析】根据旋转的性质得出AP=AP′,再根据旋转的角度为60°和等边三角形的判定得出△APP′为等边三角形;即可根据等边三角形的性质得出结论.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°∵△ABP绕A点逆时针旋转后与△ACP′重合,∴AP=AP′,∠BAP=∠CAP′,∴∠BAC=∠BAP+∠CAP=∠CAP+∠CAP′=∠PAP′=60°,∴△APP′为等边三角形,∴PP′=AP=3.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.同时考查了等边三角形的判定和性质.21.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【考点】作图-位似变换;作图-平移变换.【专题】作图题.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【点评】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.22.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?【考点】一元二次方程的应用;二次函数的应用.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解(1)设涨价x元时总利润为y,则y=(10+x)(400﹣20x)=﹣20x2+400x+4000=﹣20(x﹣5)2+4500当x=5时,y取得最大值,最大值为4500.(2)设每千克应涨价x元,则(10+x)(400﹣20x)=4420解得x=3或x=7,为了使顾客得到实惠,所以x=3.【点评】本题考查了二次函数的应用及一元二次方程的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).【考点】切线的判定;弧长的计算.【专题】证明题.【分析】(1)根据圆周角定理可得∠ACB=90°,进而可得∠CBA+∠CAB=90°,由∠EAC=∠B 可得∠CAE+∠BAC=90°,从而可得直线AE是⊙O的切线;(2)连接CO,计算出AO长,再利用圆周角定理可得∠AOC的度数,然后利用弧长公式可得答案.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.【点评】此题主要考查了切线的判定和弧长计算,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).四、解答题(本大题共5小题,共50分)24.如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,让两个转盘分别自由转动一次,当转盘指针落在分界线上时,重新转动.(1)请你画树状图或列表表示所有等可能的结果.(2)求两个指针落在区域的颜色能配成绿色的概率.(黄、蓝两色混合配成绿色)【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得两个指针落在区域的颜色能配成绿色的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个指针落在区域的颜色能配成绿色的有2种情况,∴两个指针落在区域的颜色能配成绿色的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数y=经过点A(1,﹣k+4),∴﹣k+4=,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为y=.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当一次函数的值小于反比例函数值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.26.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.【考点】相似三角形的判定与性质;三角形的面积;平行四边形的性质.【专题】几何综合题.【分析】(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD 的面积.【解答】(1)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF ∽△CEB(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC ,AB 平行且等于CD∴△DEF ∽△CEB ,△DEF ∽△ABF∵DE=CD∴,∵S △DEF =2S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE ﹣S △DEF =16∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.【点评】本题考查了平行四边形的性质、相似三角形的判定和性质等知识.27.如图,在△ABC 中,AB=AC ,∠BAC=54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F .(1)求证:BE=CE ;(2)求∠CBF 的度数;(3)若AB=6,求的长.【考点】切线的性质;圆周角定理;弧长的计算.【分析】(1)连接AE ,求出AE ⊥BC ,根据等腰三角形性质求出即可;(2)求出∠ABC ,求出∠ABF ,即可求出答案;(3)求出∠AOD 度数,求出半径,即可求出答案.【解答】(1)证明:连接AE ,∵AB 是⊙O 直径,∴∠AEB=90°,即AE ⊥BC ,∵AB=AC ,∴BE=CE .(2)解:∵∠BAC=54°,AB=AC ,∴∠ABC=63°,∵BF是⊙O切线,∴∠ABF=90°,∴∠CBF=∠ABF﹣∠ABC=27°.(3)解:连接OD,∵OA=OD,∠BAC=54°,∴∠AOD=72°,∵AB=6,∴OA=3,∴弧AD的长是=.【点评】本题考查了切线的性质,等腰三角形的性质,弧长公式,圆周角定理的应用,主要考查学生运用定理进行推理和计算的能力.28.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.【考点】二次函数综合题.【专题】压轴题;开放型.【分析】(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式;(2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求;。
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。
2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。
7. 下列选项中,哪个不是等腰三角形的性质?________。
8. 若一个正方形的边长为5cm,则其对角线的长度为________。
9. 下列哪个选项是二次函数的一般形式?________。
10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。
答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。
解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。
根据题目,首项a1 = 2,公差d = 5 2 = 3。
所以,该数列的通项公式为an = 2 + (n 1)×3。
12. 一个正方形的边长为5cm,求其对角线的长度。
解答:正方形的对角线长度可以通过勾股定理来求解。
设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.方程20x x +=的解为()A .0x =B .1x =-C .10x =,21x =-D .11x =,21x =-2.下列图形中,既是轴对称图形又是中心对称图形的是()A .平行四边形B .菱形C .等边三角形D .等腰直角三角形3.下列说法正确的是()A .“经过有交通信号的路口遇到红灯”是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C .投掷一枚硬币正面朝上是随机事件D .明天太阳从东方升起是随机事件4.已知一元二次方程240x x m -+=有一个根为2,则另一根为()A .-4B .-2C .4D .25.若点M 在抛物线2(3)4y x =+-的对称轴上,则点M 的坐标可能是()A .(3,-4)B .(-3,0)C .(3,0)D .(0,-4)6.将二次函数y=x 2+2x ﹣1的图象沿x 轴向右平移2个单位长度,得到的函数表达式是()A .y=(x+3)2﹣2B .y=(x+3)2+2C .y=(x ﹣1)2+2D .y=(x ﹣1)2﹣27.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则 DE的长为()A .3πB .23πC .43πD .76π8.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A .12B .23C .13D .259.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°10.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是() A.28(1-2x)=16B.16(1+2x)=28C.28(1-x)2=16D.16(1+x)2=28二、填空题11.已知点P(a+1,1)关于原点的对称点在第四象限,则a的取值范围是_____.12.若一元二次方程ax2﹣bx﹣2018=0有一个根为x=﹣1,则a+b=____.13.若关于x的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.14.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:与x轴只有一个交点;乙:对称轴是直线3x=;丙:与y轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为______________________.15.如图,若点P在反比例函数y=﹣3x(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON的面积为_____.16.平面直角坐标系中,P(2,3)关于原点对称的点A坐标是__________.三、解答题17.解一元二次方程:24x4x1=-.18.已知抛物线y=ax2+bx+c经过点A(1,0),B(﹣1,0),C(0,﹣2).求此抛物线的函数解析式和顶点坐标.19.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=3.(1)以BC边上一点O为圆心作⊙O,使⊙O分别与AC、AB都相切(要求:尺规作图,保留作图痕迹,不写作法);(2)求⊙O的面积.20.车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.21.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.22.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?23.已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x 轴,交y 轴于点B ;过点A 作直线AC y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.24.如图⊙O 是△ABC 的外接圆,∠ABC =45°,延长BC 于D ,连接AD ,使得AD ∥OC ,AB 交OC 于E .(1)求证:AD 与⊙O 相切;(2)若AE =5CE =2.求⊙O 的半径和AB 的长度.25.如图,直线l :y =﹣12x+1与x 轴、y 轴分别交于点B 、C ,经过B 、C 两点的抛物线y =x 2+bx+c 与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ∥x 轴交l 于点D ,PE ∥y 轴交l 于点E ,求PD+PE 的最大值;(3)设F 为直线l 上的点,以A 、B 、P 、F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.参考答案1.C 【解析】试题解析:20x x +=,分解因式得:x (x +1)=0,∴x =0,x +1=0,解方程得:120, 1.x x ==-故选C.2.B 【解析】试题解析:A.不是轴对称图形,是中心对称图形,故此选项错误,不合题意;B.是轴对称图形,也是中心对称图形,故此选项正确,符合题意;C.是轴对称图形,不是中心对称图形,故此选项错误,不合题意;D.无法确定是轴对称图形,也不是中心对称图形,故此选项错误,不合题意.故选B.3.C 【详解】试题解析:A.“经过有交通信号的路口遇到红灯”是随机事件,说法错误.B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误.C.投掷一枚硬币正面朝上是随机事件,说法正确.D.明天太阳从东方升起是必然事件.说法错误.故选C.4.D 【详解】试题解析:设关于x 的一元二次方程240x x m -+=的另一个根为t ,则24t +=,解得t =2.故选D.点睛:一元二次方程()200.ax bx c a ++=≠两根分别是12,.x x 1212,.b cx x x x a a+=-=5.B 【解析】试题解析:22(3)4y x =+- ,∴对称轴为x =-3,∵点M 在对称轴上,∴M 点的横坐标为-3,故选B.6.D 【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【详解】解:∵y=x2+2x-1=(x+1)2-2,∴二次函数y=x2+2x-1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1-2)2-2=(x-1)2-2,故选D.【点睛】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.7.B【分析】连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴ DE的长=602180π⨯=23π;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.8.B【详解】试题解析:∵盒子中装有6个大小相同的乒乓球,其中4个是黄球,∴摸到黄球的概率是42 63故选B.考点:概率公式.9.B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=12∠DOC=25°.故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.10.C【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=16,把相应数值代入即可求解.【详解】解:设该药品平均每次降价的百分率是x ,则第一次降价后的价格为28×(1﹣x )元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x ,为28×(1﹣x )×(﹣x )元,则列出的方程是28(1﹣x )2=16.故选:C .11.1a <-【解析】试题解析:∵P (1a +,1关于原点对称的点在第四象限,∴P 点在第二象限,∴a +1<0,解得:a <−1,故答案为:a <−1.12.2018【解析】【分析】把x=-1代入方程,整理即可求出a+b 的值.【详解】解:把x=-1代入方程有:a+b-2018=0,即a+b=2018.故答案是:2018.【点睛】本题考查的是一元二次方程的解,把方程的解代入方程,可以求出代数式的值.13.5m <且1m ≠【详解】试题解析:∵一元二次方程()21410m x x --+=有两个不相等的实数根,∴m −1≠0且△=16−4(m −1)>0,解得m <5且m ≠1,∴m 的取值范围为m <5且m ≠1.故答案为:m <5且m ≠1.点睛:一元二次方程()200.ax bx c a ++=≠方程有两个不相等的实数根时:0.∆>14.21(3)3y x =-或21(3)3y x =--【解析】试题解析:∵二次函数2()y a x k =-的对称轴为直线x =3,∴k =3,∴二次函数2()y a x k =-的解析式为2(3)y a x =-,∵与y 轴的交点到原点的距离为3,∴与y 轴交于点(0,3)或(0,−3),把(0,3)代入得,39a =,13a ∴=把(0,−3)代入得,39a -=,13a ∴=-∴解析式为:()2133y x =-或()2133y x =--.故答案为()2133y x =-或()2133y x =--.15.3【分析】设PN =a ,PM =b ,根据P 点在第二象限得P (﹣a ,b ),根据矩形的面积公式即可得到结论.【详解】解:设PN =a ,PM =b ,∵P 点在第二象限,∴P (﹣a ,b ),代入y =3x中,得k =﹣ab =﹣3,∴矩形PMON 的面积=PN •PM =ab =3,故答案为:3.【点睛】本题考查了反比例函数的几何意义,即S 矩形PMON =K16.(﹣2,﹣3)【解析】若两个点关于原点对称,则它们的横坐标与纵坐标分别互为相反数.根据上述规律可知,点P (2,3)关于原点的对称点A 的坐标为(-2,-3).故本题应填写:(-2,-3).17.1212x x ==【解析】【分析】用直配方法解方程即可.【详解】解:原方程可化为:24410x x -+=,∴()2210x -=,解得:1212x x ==.18.抛物线222y x =-顶点坐标为(0,-2)【解析】【分析】利用待定系数法即可求出二次函数解析式,化为顶点式即可求出抛物线的顶点坐标.【详解】把点A (1,0)、B (-1,0)、C (0,-2)的坐标,分别代入2y ax bx c =++得:002a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得:202a b c =⎧⎪=⎨⎪=-⎩,∴二次函数的解析式为222y x =-.∴抛物线222y x =-顶点坐标为(0,-2).【点睛】本题考查了二次函数的图像和性质,掌握待定系数法求解析式和化为顶点式是解二次函数题目的关键.19.(1)图形见解析(2)3π【解析】【分析】(1)直接利用角平分线的作法得出∠CAB 的角平分线,进而得出答案;(2)利用勾股定理得出⊙O 的半径,进而利用圆的面积求法得出答案.【详解】解:(1)如图所示:⊙O为所求的图形.(2)在Rt △ABC 中,∵∠ABC =30°,∴∠CAB =60°,∵AO 平分∠CAB ,∴∠CAO =30°,设CO x =,则2AO x =,∵在Rt △ACO 中,222AO CO AC -=,∴()22223x x -=,解得:x x =,∴⊙O 的面积为23S ππ==.【点睛】此题主要考查了复杂作图以及勾股定理,正确掌握角平分线的性质是解题关键.20.(1)14;(2)34.【详解】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A 通道通过的概率=14,故答案为14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.21.(1)见解析;(2)52.【分析】(1)由折叠可得DE=DM ,∠EDM 为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF 为45°,可得出∠EDF=∠MDF ,再由DF=DF ,利用SAS 可得出三角形DEF 与三角形MDF 全等,由全等三角形的对应边相等可得出EF=MF ;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE 求出EB 的长,再由BC+CM 求出BM 的长,设EF=MF=x ,可得出BF=BM-FM=BM-EF=4-x ,在直角三角形BEF 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为EF 的长.【详解】(1)∵△DAE 逆时针旋转90°得到△DCM∴DE=DM ∠EDM=90°∴∠EDF +∠FDM=90°∵∠EDF=45°∴∠FDM =∠EDM=45°∵DF=DF∴△DEF ≌△DMF∴EF=MF …(2)设EF=x∵AE=CM=1∴BF=BM-MF=BM-EF=4-x∵EB=2在Rt △EBF 中,由勾股定理得222EB BF EF +=即2222(4)x x +-=解之,得52x =22.(1)y 10000x 80000=-+(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】试题分析:(1)设y =kx +b ,再由题目已知条件不难得出解析式;(2)设利润为W ,将W 用含x 的式子表示出来,W 为关于x 的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y =kx +b ,根据题意得:3526k b k b=+⎧⎨=+⎩,解得:k =-1,b =8,所以,y 与x 的函数关系式为y =-x +8;(2)设利润为W ,则W =(x -4)(-x +8)=-(x -6)2+4,因为a =-1<0,所以当x =6时,W 最大为4万元.当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.点睛:要求最值,一般讲二次函数解析式写成顶点式.23.(1)反比例函数的表达式为:6y x=正比例函数的表达式为23y x =(2)第一象限内,当03x <<时,反比例函数的值大于正比例函数的值.(3)BM DM =,理由见解析【分析】(1)将A (3,2)分别代入y=k x,y=ax 中,得ak 的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x <3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;(3)有S △OMB =S △OAC =12×|k|=3,可得S 矩形OBDC 为12;即OC•OB=12;进而可得mn 的值,故可得BM 与DM 的大小;比较可得其大小关系.【详解】解:(1)将()32A ,分别代入k y y ax x ==,中,得2323k a ==,∴263k a ==,∴反比例函数的表达式为:6y x =正比例函数的表达式为23y x =(2)第一象限内,当03x <<时,反比例函数的值大于正比例函数的值.(3)BM DM=理由:∵132OMB OAC S S k ==⨯= ∴33612OMB OAC OBDC OADM S S S S =++=++= 矩形四边形即·12OC OB =∵3OC =∴4OB =即4n =∴632m n ==∴3333222MB MD ==-=,∴MB MD =24.(1)见解析;(2)AB =5.【分析】(1)连接OA,要证明切线,只需证明OA⊥AD,根据AD∥OC,只需得到OA⊥OC,根据圆周角定理即可证明;(2)设⊙O的半径为R,则OA=R,OE=R-2,Rt△OAE中根据勾股定理可计算出R=4;作OH⊥AB于H,根据垂径定理得AH=BH,再利用面积法计算出OH=5,然后根据勾股定理计算出【详解】(1)连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∴AD是⊙O的切线.(2)设⊙O的半径为R,则OA=R,OE=R﹣2,AE=在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2,解得R=4,作OH⊥AB于H,如图,OE=OC﹣CE=4﹣2=2,则AH=BH,∵12OH•AE =12•OE•OA ,∴OH =OE OAAE ⋅在Rt △AOH 中,AH ∵OH ⊥AB ,∴AB =2AH 【点睛】本题考查了切线的判定定理.综合运用了圆周角定理、等腰直角三角形的性质、等腰三角形的性质、30度的直角三角形的性质得到有关线段之间的关系,综合性较强,是中考常考体型.25.(1)抛物线的解析式为2512y x x =-+(2)当1m =时,PD +PE 的最大值是3(3)能,以A 、B 、P 、F 为顶点的四边形能构成平行四边形.此时点F 的坐标为F (3,12-)或F (1,12)【解析】【分析】(1)在112y x =-+中求出0x =和0y =时y 与x 的值可得点C B 、的坐标,根据点B C 、坐标利用待定系数法可得抛物线解析式;(2)设P (m ,2512m m -+),则D (225m m -+,2512m m -+),E (m ,112m -+),用m 表示出PD PE +,配方即可求出最大值.(3)令25102x x -+=,求出点A 坐标,求出AB 的值,然后分类讨论.【详解】解:(1)∵直线112y x =-+与x 轴、y 轴分别交于点B 、C ,∴B (2,0)、C (0,1),∵B 、C 在抛物线解2y x bx c =++上,∴4201b c c ++=⎧⎨=⎩,解得:521b c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为2512y x x =-+.(2)设P (m ,2512m m -+),∵PD ∥x 轴,PE ∥y 轴,点D ,E 都在直线112y x =-+上,∴E (m ,112m -+),D (225m m -+,2512m m -+),∴PD +PE =2215251122m m m m m m ⎡⎤⎛⎫⎛⎫-+-+-+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,236m m =-+,()2313m =--+,∴当1m =时,PD +PE 的最大值是3.(3)能,理由如下:由2512y x x =-+,令25102x x -+=,解得:12x =,212x =,∴A (12,0),B (2,0),∴32AB =,若以A 、B 、P 、F 为顶点的四边形能构成平行四边形,①当以AB 为边时,则AB ∥PF 且AB=PF ,设P (a ,2512a a -+),则F (225a a -+,2512a a -+),∴23252a a a -+-=,整理得:24830a a -+=,解得:132a =,212a =(与A 重合,舍去),∴F (3,12-),②当以AB 为对角线时,连接PF 交AB 于点G ,则AG=BG ,PG=FG ,设G (m ,0),∵A (12,0),B (2,0),∴m-12=2-m ,∴m=54,∴G (54,0),作PM ⊥AB 于点M ,FN ⊥AB 于点N ,则NG=MG ,PM=FN ,设P (x ,2512x x -+),则F (2254x x -+,2512x x -+-),∴25525444x x x -=-+-,整理得:24830x x -+=,解得:132x =,212x =(与A 重合,舍去),∴F (1,12).综上所述,以A 、B 、P 、F 为顶点的四边形能构成平行四边形.此时点F 的坐标为F (3,12-)或F (1,12).【点睛】此题是二次函数综合题,主要考查了待定系数法,二次函数极值的确定方法,平行四边形的性质,用分类讨论的思想解决问题是解本题的关键.。
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
九年级上册数学期末考试试题及答案人教版九年级上册数学期末考试试题及答案人教版本文将为大家详细介绍九年级上册数学期末考试试题及答案人教版,帮助大家更好地备战期末考试。
一、填空题1、若等腰三角形的一个角是70°,则另外两个角的度数分别为_________。
2、在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB边上的中线长为_________。
3、已知抛物线y=x2-4x+1的对称轴为直线x=a,则a的值为_________。
二、选择题1、已知点A(1,2)在函数y=x+b的图象上,则b的值为()。
A. -3B. -2C. 2D. 32、等腰三角形一腰上的高与底边所夹锐角的度数为α,则这个等腰三角形的顶角的度数为()。
A. 90°-2α B. 90°+2α C. 90°-α D. 90°+α三、解答题1、计算:cos60°-sin45°+tan60°。
2、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的各项系数之和为h,则此方程的两个根之和为_________。
3、已知一个二次函数的图象开口向上,其对称轴在y轴的左侧,则该二次函数的解析式可以是_________。
(只需写出一个符合题意的解析式)四、应用题1、某商店用8000元购进一批货物,其中一部分以每件10元的价格出售,另一部分以每件20元的价格出售,最终获利1500元。
问该商店购进的两种货物各多少件?2、已知直线y=2x+4与x轴、y轴分别交于A、B两点,求AB线段的中点的坐标。
五、综合题1、在直角坐标系中,O为原点,点A(x,y)在第二象限内,且到x 轴、y轴的距离分别为4和8,则点A的坐标为_________。
2、已知抛物线y=x2-4x+c的顶点在x轴上,求c的值。
六、附加题1、已知:如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高。
求证:CD2=AD·DB。
答案:一、填空题1、70°,(180°-70°)÷2=55°;另外两个角的度数分别为70°和55°。
2、在Rt△ABC中,根据勾股定理求得AB=5,再根据直角三角形斜边上的中线等于斜边的一半,求得AB边上的中线长为2.5。
答案为:2.5。
3、y=x2-4x+1=(x-2)2-3,抛物线的对称轴为直线x=2,所以a的值为2。
答案为:2。
二、选择题1、点A(1,2)在函数y=x+b的图象上,将点A(1,2)代入函数解析式得:1+b=2,解得b=1。
故选:D。
2、等腰三角形一腰上的高与底边所夹锐角的度数为α,则顶角为90°-α。
答案为:C。
三、解答题1、cos60°-sin45°+tan60°=1/2-√2/2+√3=1/2-√2/2+√3/1。
2、根据一元二次方程ax2+bx+c=0(a≠0)的各项系数之和为h可得:h=a+b+c,根据根与系数的关系得两根之和=-b/a,所以该方程的两个根之和为-(a+b+c)/a。
答案为:-(a+b+c)/a。
3、二次函数的图象开口向上,其对称轴在y轴的左侧,则该二次函数的解析式可以是y=(x-1)2+1。
答案不唯一。
人教版九年级上册英语期末试题人教版九年级上册英语期末试题一、引言期末考试是学生学习生活中的重要环节,旨在评估学生在一个学期内的学习成果。
人教版九年级上册英语期末试题是众多学生和教师在备考期间关注的焦点。
本文将根据关键词和内容,详细剖析这一试题,为学生和教师提供有价值的参考。
二、试题总体分析据往年经验,人教版九年级上册英语期末试题总体上呈现出“难度适中、考查全面、注重能力”的特点。
试卷结构一般包括听力、选择、完形填空、阅读理解、翻译和写作等部分,覆盖了词汇、语法、阅读和语言表达等多个方面的知识点。
题型设置注重考察学生的语言应用能力,如阅读理解、完形填空和写作等,要求学生不仅具备扎实的语言基础,还要具备分析问题、解决问题的能力。
三、各部分试题详解1、听力部分:听力试题主要考察学生的听力理解和反应能力。
一般包括对话理解、短文听写等题型。
学生在备考期间应加强听力训练,提高听力和理解能力。
2、选择题部分:这部分试题主要考察学生的词汇和语法知识。
题型包括动词时态、名词单复数、从句等,要求学生对基础语法和词汇有清晰的理解。
3、完形填空部分:完形填空题型旨在考察学生的语篇理解和语言运用能力。
学生需要理解文章大意,根据上下文选择适当的单词填空。
在备考过程中,学生应注重提高阅读理解能力和词汇积累。
4、阅读理解部分:阅读理解是英语考试的重要部分,旨在考察学生的阅读速度和理解能力。
学生需要快速阅读文章,理解主旨,并回答与文章相关的问题。
在备考期间,学生应多进行阅读训练,提高阅读速度和理解能力。
5、翻译部分:翻译题型主要考察学生的语言表达和写作能力。
学生需要将英文句子翻译成中文,注意语法的正确性和表达的流畅性。
在备考过程中,学生应加强英文写作和翻译练习。
6、写作部分:写作试题主要考察学生的语言表达和写作能力。
一般包括命题作文、看图写作等题型。
学生需要注意写作的逻辑性和连贯性,同时要保证语法和拼写的正确性。
在备考期间,学生应多进行写作练习,提高写作技巧和表达能力。
四、备考建议针对人教版九年级上册英语期末试题的特点和要求,提出以下备考建议:1、全面复习:学生在备考期间应对所学知识进行全面复习,梳理知识点,形成完整的知识体系。
2、强化听力训练:听力部分在试卷中占有较大比例,建议学生在备考期间多进行听力训练,提高听力和理解能力。
3、提高阅读速度和理解能力:阅读理解是考试的重要部分,建议学生在备考期间多进行阅读训练,提高阅读速度和理解能力。
4、加强写作练习:写作部分在试卷中也占有较大比例,建议学生在备考期间多进行写作练习,提高写作技巧和表达能力。
5、注重策略和技巧:针对不同题型的特点和要求,学生应掌握相应的解题技巧和方法,提高答题效率和准确性。
五、总结本文对人教版九年级上册英语期末试题进行了详细分析,包括试题总体分析、各部分试题详解和备考建议。
学生应根据自身实际情况,在备考期间制定合理的复习计划,全面提高语言运用和应试能力。
教师也应根据学生的学习特点和问题,有针对性地开展教学辅导,帮助学生更好地应对考试挑战。
新人教版九年级上册数学期末考试试卷新人教版九年级上册数学期末考试试卷一、选择题(每题3分,共36分)1、下列式子中,正确的是() A. 2既是偶数又是质数 B. –2既是负数又是偶数,但不是质数 C. 0既是正数又是负数 D. –7既是正数又是负数2、下列各组数中,互为相反数的有() A. 与-2 B. 23与6 C. 与-(+2) D. -(+)与-(―)3、若|x| = ,则x的值为() A. ± B. - C. 0 D. ±4、在数轴上,表示-4的点移动3个单位长度后,所表示的数是()A. -1B. -7C. -1或-7D. 以上答案都不对5、若|x| = ,那么x的值是() A. ± B. 0C. - D. 无法确定6、一个数的平方等于这个数的倒数,这个数是() A. 1或-1B. 1C. -1D. 07、下列说法错误的是() A.零既不是正数,也不是负数B.相反数等于它本身的数是0 C.有理数的绝对值不小于0 D. 1没有倒数8、下列各式中不正确的是() A.(―)―(―)=0 B.―(+)=―C.―(+)=― D.―(+)=―(+)9、如果一个数的平方等于它的倒数,则这个数是() A.1B.-1C.0D.1或-110、下列结论正确的是() A.近似数1.2与1.20的精确度相同B.近似数5百与500的精确度相同 C.近似数3.040与3.04的精确度不同D.近似数5.2万与52000的精确度相同11、下列说法正确的是() A.两个无理数的和为无理数B.任何一个无理数都可以用数轴上的点来表示 C.任何一个无理数都有一个立方根D.有理数和无理数概念不明确12、下列语句正确的是() A.在所有连结两点的线中,直线最短 B.线段AB是点A与点B的距离 C.在同一平面内,两点确定一条直线 D.经过三点可以确定一条直线二、填空题(每题3分,共36分) 13. 请在横线上填写“>”、“<”或“=”.若,则_________若,则___________. 14. 在,,,,,中无理数的个数为_________。
15. 一个数的平方根为则这个数是_________。
16. 请在下面的方框中填上适当的数字.使一个四位数与它的各位数字之和的乘积是一个五位数,这个五位数是,则这个四位数是_________。
17. 若一个数的立方根就是它本身,则这个数是_________。
18. 若,则的算术平方根是_________。
19. 一个三角形的三边长分别为和则这个三角形的面积为_________。
20. 若,则的值为_________。
21. 若,则的值为_________。
22. 等腰三角形的一边等于5,一边等于11,则它的周长是_________。
三、解答题(每题6分,共30分) 23. 求出下列各式中的的值:(1)已知(2)已知的相反数是,求的值。
24. 化简求值:已知,求代数式的值。
25. 先化简,再求值:其中。
提示:要把括号内通分。
九年级政治上册期末考试试题及答案九年级政治上册期末考试试题及答案一、单项选择题1、下列选项中,对艰苦奋斗的错误理解是() A. 艰苦奋斗是中华民族的传统美德 B. 艰苦奋斗就是指在艰难困苦中冲锋向前 C. 艰苦奋斗的创业精神是与爱国主义精神紧密联系在一起的 D. 艰苦奋斗仅仅属于战争年代和特定环境2、新世纪,中国共产党确立了“三步走”战略部署,其中第二步是指() A. 全面实现小康 B. 基本实现社会主义现代化 C. 全面建成小康社会 D. 建成富强民主文明和谐的社会主义现代化国家3、下列选项中,属于我国基本国策的是() A. 改革开放 B. 计划生育 C. 大力发展生产力 D. 节约资源4、在我国,人民行使当家作主权力的机关是() A. 各级人民政府B. 全国人民代表大会及地方各级人民代表大会C. 人民代表大会制度D. 国务院二、多项选择题1、下列选项中,对我国现阶段的民族关系的正确认识是() A. 各民族之间没有任何矛盾和问题 B. 各民族都以自己独特的民族特色丰富了中华文化 C. 各民族之间依然存在着一些差异 D. 各民族之间依然存在着一些差距2、下列选项中,属于我国未成年人保护法所称的“未成年人”的是() A. 王某,15岁,正在接受义务教育 B. 李某,20岁,正在服兵役 C. 张某,22岁,正在监狱服刑 D. 赵某,18岁,患有先天疾病三、判断题1、我国处理民族关系的基本原则是团结、互助、共同繁荣。