圆锥曲线中离心率及其范围的求解专题(教师版)
- 格式:doc
- 大小:1.49 MB
- 文档页数:7
1.(福建卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3.(辽宁卷)方程22520x x -+=的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2336. (全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A (B )12(C )2 (D 1 7. (广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )(B)32(C)83(D)238.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+B .13-C .213+D .13+9.[全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5 B . 5 C .25 D .45 10.( 福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32 C .22 D .2311.( 重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7312.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3 C.(3,+∞)D.[)3,+∞13.(江西卷 7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2C .(0,2D .,1)2 14.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(215.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABC D16.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=17.(江苏卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = . 18.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .19、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。
离心率的13种求法求离心率的取值范围涉及到解析几何、平面几何、代数等多个知识点,综合性强方法灵活,解题关键是挖掘题中的隐含条件,构造不等式。
椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。
例:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26 D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26C. 23 D 2解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
专题6 圆锥曲线离心率及范围问题离心率在圆锥曲线问题中有着重要应用,它的变化会直接导致曲线类型和形状的变化,同时它又是圆锥曲线统一定义中的三要素之一.有关求解圆锥曲线离心率的试题在历年高考试卷中均有出现.关于圆锥曲线离心率(范围)问题处理的主体思想是:建立关于一个,,a b c的方程(或不等式),然后再解方程或不等式,要注意的是建立的方程或不等式应该是齐次式.一般建立方程有两种办法:○1利用圆锥曲线的定义解决;○2利用题中的几何关系来解决问题。
另外,不能忽略了圆锥曲线离心率的自身限制条件(椭圆、双曲线离心率的取值范围不一致),否则很容易产生增根或者扩大所求离心率的取值范围.一、圆锥曲线的离心率方法1:利用定义法求离心率知识储备:椭圆和双曲线的第一定义。
方法技巧:一般情况题中出现圆锥曲线上的点与焦点联系在一起时,尽量转化为定义去考虑,会更简单!例1.(2015年浙江15题)椭圆22221x ya b+=(0a b>>)的右焦点(),0F c关于直线by xc=的对称点Q在椭圆上,则椭圆的离心率是.法一:(当时网上的主流解法)大家上网看到的基本上就是这种解法,此方法入手很容易,但是后期的运算量会很大,并且此题高次方程的因式分解要求很高(对大部分学生来说高次方程分解本来就是一个盲区)。
【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上, 得到OM QF ⊥且M 为QF 中点,又O 为F 1F 的中点,所以OM 为中位线,且1F Q QF ⊥。
由点到线的距离公式计算得到:,bc MF a=再由tan b FOM c ∠=得到:2c OM a =. 所以2,bcQF a=212c QF a =, 据椭圆定义:12QF QF a +=得到:2222bc c a a a+=,化简得: b c =,即22e =.通过比较我们发现法二(定义法)计算过程更加简洁,不易出错。
我在给学生讲题的时候学生经常会问我,哪个时候用定义法,其实大家只要看到有曲线上的点和焦点有联系时,就可以往定义法多思考一些。
圆锥曲线中的离心率的问题一、题型选讲题型一 、求离心率的值求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。
常见的等式关系主要有:1、题目中给出等式关系;2、通过几何关系如垂直或者夹角的关系得出等式关系;3、挖掘题目中的等式关系。
例1、【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D例2、(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( )A B .53C .52D例3、(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :2221x y 相切,双曲线M 离心率的值为( )A BCD .3例4、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2D .例5、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( ) A .15 B .21 C .53D .73例6、(2020·浙江省温州市新力量联盟高三上期末)已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( ) A .233B .263C .3D .2题型二、求离心率的范围求离心率的值关键是找到不等关系,解出a 与c 的关系,进而求出离心率的范围。
重点辅导Җ㊀云南㊀武增明㊀㊀圆锥曲线离心率取值范围问题是圆锥曲线中的一类重要问题,这类问题涉及的知识点多,综合性强,解法灵活且多种多样,所以学生在解答这类问题时,常常会不知从何入手.笔者探究发现这类问题主要涉及函数与方程㊁数形结合㊁转化与化归等数学思想,解决这类问题的关键是挖掘寻找问题中的不等关系,构造出关于a ,b ,c 的不等式;挖掘寻找问题中的变量,建立离心率e 关于题设中变量的函数.故本文试图通过实例对如何构造出关于a ,b ,c 的不等式和建立离心率e 关于题设中变量的函数,将问题转化为求解关于离心率e 的不等式,求解以离心率e 为函数的值域问题.通过归纳㊁总结,给出圆锥曲线离心率取值范围问题的求解方法,抛砖引玉,希望对同学们有所启示和帮助.1㊀利用圆锥曲线的范围运用方程思想,用a ,b ,c 表示出圆锥曲线上点的横坐标或纵坐标,然后利用圆锥曲线的范围建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e的不等式,求解此不等式,问题即可获解.例1㊀设椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,若椭圆上存在一点P ,使øO P A =π2(O为坐标原点),则椭圆离心率的取值范围为.设点P (x 0,y 0),则由O P ʅP A ,可得O P ң P A ң=0,从而(x 0,y 0) (-a -x 0,-y 0)=0,即x 20+y 20+a x 0=0.又b 2x 20+a 2y 20-a 2b 2=0,两式联立,消去y 0,得c 2x 20+a 3x 0+a 2b 2=0,即(x 0+a )(c 2x 0+a b 2)=0,所以x 0=-a (舍去)或x 0=-a b2c 2.因为-a <x 0<0(如图1),所以-a <-a b 2c2<0,故c a >22,即e >22,又0<e <1,故椭圆离心率的取值范围为(22,1).图1此题运用椭圆的参数方程引入点P 的坐标,结合三角函数的有界性也可进行解答.具体是,设P (a c o s θ,b s i n θ),由øO P A =π2,可得c o s θ=b2a 2-b 2,再由三角函数的有界性并结合题设条件,可知-1<c o s θ<1,从而-1<b2a 2-b2<1,由此解得e ɪ(22,1).2㊀利用已知条件中的参数利用已知条件中的参数表示出圆锥曲线的离心率,即将离心率转化为含参数的函数,进而将问题转化为求函数的值域问题.利用参数的范围,求出函数的值域,从而问题获解.例2㊀设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是.根据题设条件,可知e 2=a 2+(a +1)2a 2,即e 2=1a 2+2a+2.因为a >1,所以0<1a<1,从而问题转化为求函数f (a )=1a 2+2a +2(a >1)的值域.易知2<e 2<5,因此,2<e <5,即双曲线的离心率e 的取值范围是(2,5).求解函数值域的方法有很多,将问题转化为求解函数值域,可使问题快速获解.3㊀利用三角函数的范围利用a ,b ,c 表示出变量角α的正弦或余弦,然后利用三角函数的范围(有界性)建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例3㊀如图2所示,已知椭圆C :x 2a 2+y 2b2=17重点辅导(a >b >0),焦距为2c ,离心率为e ,以原点为圆心,c 为半径作圆,圆与椭圆C 交于A ,B ,C ,D 四点,若øA O D ɪ[π3,π2),则e 的取值范围是.图2设øA O x =α(αɪ[π6,π4)),则A (c c o s α,c s i n α),把点A 代入椭圆方程,可得(c c o s α)2a 2+(c s i n α)2b2=1,化简整理,得c o s 2α=2e 2-1e4.因为22<c o s αɤ32,所以22<2e 2-1e4ɤ32,解此不等式,得2-2<e ɤ63,即椭圆的离心率的取值范围为(2-2,63].利用三角函数的有界性可建立关于离心率e的不等式,从而求得离心率的取值范围.4㊀利用已知条件中的不等式或范围充分考虑已知条件中的不等式或范围与a ,b ,c的关系,由此建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例4㊀设椭圆x 2a 2+y 2b2=1(a >b >0)的左㊁右焦点分别为F 1,F 2,P 为椭圆上任意一点,且P F 1ң P F 2ң的最大值的取值范围是[c 2,3c 2],其中c =a 2-b2,则椭圆的离心率的取值范围是.设P (x ,y ),则x 2a 2+y 2b2=1,由此可得y 2=b 2-b2a 2x 2,且知P F 1ң P F 2ң=x 2+y 2-c 2=(1-b 2a2)x 2+b 2-c 2.因为0ɤx 2ɤa 2,所以当x 2=a 2时,P F 1ң P F 2ң取得最大值b 2.从而结合题意,可得c 2ɤb 2ɤ3c2,因此14ɤe2ɤ12,所以12ɤe ɤ22,故椭圆的离心率的取值范围是[12,22].求解这类问题时要善于在题目中寻找可用的条件,并合理构建不等式.5㊀利用判别式若直线与圆锥曲线有两个不同的交点,则将直线与圆锥曲线方程联立后,根据判别式大于零建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例5㊀斜率为2的直线l 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,若l 与双曲线的两个交点分别在左㊁右两支上,则双曲线离心率的取值范围是(㊀㊀).A㊀e >2;㊀㊀㊀㊀B ㊀1<e <3;C ㊀1<e <5;D㊀e >5双曲线右焦点为F (c ,0),直线l 的方程为y =2(x -c ),故由y =2(x -c ),x 2a 2-y 2b2=1,ìîíïïï可得(b 2-4a 2)x 2+8a 2c x -a 2(4c 2+b 2)=0.根据题意得Δ>0,x 1x 2<0,{即16a 4c 2+a 2(b 2-4a 2)(4c 2+b 2)>0,-a 2(4c 2+b2)b 2-4a 2<0,ìîíïïï则b 2-4a 2>0,b 2-5a 2>0,即e >5,故选D .此题还有一种很简捷的解法,即数形结合法,根据题意可得ba>2,由此也可求得e >5.6㊀利用均值不等式利用均值不等式,建立关于a ,b ,c 的不等式,进而得到关于离心率e 的不等式,问题即可获解.例6㊀已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,若椭圆上存在一点P ,使øF 1P F 2=120ʎ,则椭圆离心率e 的取值范围为.设|P F 1|=m ,|P F 2|=n ,如图3所示,则在әP F 1F 2中,由余弦定理得4c 2=m 2+n 2-2m n c o s 120ʎ=(m +n )2-2m n +m n =(m +n )2-m n .8重点辅导图3由椭圆的第一定义,可知m +n =2a ,则4a 2-4c 2=m n ɤ(m +n2)2=a 2,所以3a 2ɤ4c 2,e ȡ32,即椭圆离心率e ɪ[32,1).解答本题的关键是利用均值不等式,寻找到a,b ,c 之间的不等关系.7㊀利用三角形性质利用三角形任意两边之和大于第三边,任意两边之差小于第三边的性质,建立关于a ,b ,c 的不等式,进而将问题转化为关于离心率e 的不等式,求解此不等式,问题即可获解.例7㊀已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1(-c ,0),F 2(c ,0),若双曲线上存在点P ,使s i n øP F 1F 2s i n øP F 2F 1=ac,则该双曲线离心率的取值范围是.设|P F 1|=m ,|P F 2|=n ,则由正弦定理得m n =si n øP F 2F 1s i n øP F 1F 2.因为s i n øP F 2F 1s i n øP F 1F 2=e ,所以mn=e ,即m =e n .①㊀㊀因为e >1,所以点P 在双曲线的右支上(如图4),于是根据双曲线的第一定义得m -n =2a .②图4由①②解得m =2a e e -1,n =2ae -1,因为m +n >2c ,所以2a e e -1+2a e -1>2c ,化简得e 2-2e -1<0,又e >1,所以1<e <2+1,于是双曲线离心率的取值范围是e ɪ(1,2+1).根据三角形中 两边之和大于第三边这一简单的性质,建立a ,b ,c 之间的不等关系式是解题的关键,求解时要注意等号是否成立.8㊀利用渐近线的性质利用几何方法㊁渐近线的几何特性,建立关于a ,b ,c 的不等式,进而将问题转化为离心率e 的不等式,求解此不等式,问题即可获解.例8㊀已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60ʎ的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(㊀㊀).A㊀(1,2];㊀㊀㊀㊀B ㊀(1,2);C ㊀[2,+ɕ);D㊀(2,+ɕ)此题可以用代数方法求解,即将直线与双曲线方程联立,根据判别式就可确定离心率的取值范围,但计算比较烦琐,因此考虑用几何方法,利用渐近线的几何特性,去求离心率的取值范围.因为过点F 且倾斜角为60ʎ的直线与双曲线的右支有且仅有一个交点,如图5所示,所以渐近线y =bax 的斜率不小于过点F 且倾斜角为60ʎ的直线的斜率,即b aȡ3,解得e ȡ2,故选C .图5渐近线控制着双曲线的形状,这与离心率控制着双曲线的形状有着相似之处,知道了这一点,许多求双曲线离心率取值范围的问题就可以利用渐近线的性质来轻松地解决了.求解圆锥曲线离心率的取值范围问题,并非仅有上面介绍的8种方法,这8种方法仅是基本的㊁重要的㊁常见的方法,除此之外还有数形结合法㊁参数法等,并且这些方法并非彼此孤立的,在很多时候需要综合运用才能解决问题.限于篇幅,其他方法在此不再赘述,留给读者在学习中探究.(作者单位:云南省玉溪第一中学)9。
圆锥曲线中的离心率问题(答案)圆锥曲线中的离心率问题(答案)一、直接求出a 、c ,求解e 已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解。
来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是(的离心率是( )A. 10B. 5C. 310D. 25 分析:这里的1b ,c 1a 2+==,故关键是求出2b ,即可利用定义求解。
,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b ,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ac e ==,从而选A 。
二、变用公式,整体求出e 例2. 已知双曲线)0b ,0a (1by a x 2222>>=-的一条渐近线方程为x 34y =,则双曲线的离心率为(心率为( )A. 35B. 34C. 45D. 23 分析:本题已知=a b 34,不能直接求出a 、c ,可用整体代入套用公式。
,可用整体代入套用公式。
解:由22222222k 1a b 1a b a ab a ace +=+=+=+==(其中k 为渐近线的斜率)。
这里34a b =,则35)34(1a c e 2=+==,从而选A 。
三、第二定义法三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e 是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例 3. 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(则该椭圆的离心率为( )A. 2B. 22C. 21D. 42解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F ,则x F M ^轴,知|MF|是通径的一半,则有22|MF |=。
基本专题:(1)求曲线的标准方程 方法一:待定系数法 方法二.求c b a ,,(2)判断曲线的类型 122=+By A x 类型 022=++C By Ax 类型(3)定义的应用 判断所求轨迹的点的性质(4)求曲线的离心率 要求曲线离心率,找出关系消去b ,化简之后变成e ,注意范围取正值 (5)中点弦问题 点差法(设而不求)(6)焦点三角形 (正弦定理.余弦定理的应用)(7)弦长公式 ||1||11||1||2122122m k y y kx x k AB ∆+=-+=-+=(8)最值问题 注意几何意义(9)圆锥曲线应用题 读题--->反复读题--->建立模型--->求解结果--->写出结论 (10)直线与圆锥曲线的位置关系 (点在曲线外/内/上)(直线:联立,化简,判断△)圆锥曲线的其他有用结论总结一、椭圆中结论:1、点00(,)P x y 在椭圆22221x y a b +=内部的条件:____________________点00(,)P x y 在椭圆22221x y a b+=外部的条件:____________________2、过椭圆22221x y a b +=上一点00(,)P x y 与椭圆相切的直线方程:____________________过椭圆22221x y a b +=外一点00(,)P x y 与椭圆相切得切点弦的方程:____________________过椭圆22221x y a b+=内一点00(,)P x y 的弦与椭圆交点的切线交点轨迹:____________________3、椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,12F PF θ∠=, 则椭圆的焦点三角形的面积为____________________12||||PF PF =__________________ 4、AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则AB K =______________,即OM AB k k ⋅=______________。
微重点 离心率的范围问题圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘应用也可使问题求解更简洁.知识导图考点一 利用圆锥曲线的定义求离心率的范围考点二 利用圆锥曲线的性质求离心率的范围考点三 利用几何图形的性质求离心率的范围考点分类讲解考点一 利用圆锥曲线的定义求离心率的范围规律方法 此类题型的一般方法是利用圆锥曲线的定义,以及余弦定理或勾股定理,构造关于a ,b ,c 的不等式或不等式组求解,要注意椭圆、双曲线离心率自身的范围.1(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.35,1 B.14,35C.12,1D.0,14【答案】A【分析】根据给定条件,利用椭圆的定义求出PF 1 ,PF 2 ,再利用线段和差关系建立不等式求解即得.【详解】点P 在椭圆C :x 2a2+y 2b 2=1(a >b >0)上,F 1,F 2是椭圆C 的两个焦点,令半焦距为c ,由PF 1 =4PF 2 及PF 1 +PF 2 =2a ,得PF 1 =8a 5,PF 2 =2a 5,显然PF 1 -PF 2 ≤|F 1F 2|,当且仅当点F 1,F 2,P 共线,且F 2在线段PF 1上时取等号,因此2c ≥8a 5-2a 5=6a 5,即e =c a ≥35,又0<e <1,则35≤e <1,所以椭圆C 的离心率的取值范围是35,1 .故选:A2(23-24高三上·云南曲靖·阶段练习)已知F 1,F 2,分别为双曲线x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点,M 为双曲线左支上任意一点,若MF 22MF 1 的最小值为8a ,则双曲线离心率e 的取值范围是()A.1,72B.2,4C.1,3D.3,5【答案】C【分析】由双曲线定义MF 2 2MF 1=MF 1 +2a2MF 1,变形后由基本不等式得最小值,从而得MF 1 =2a ,再利用双曲线中的范围有MF 1 ≥c -a ,由此结合可得离心率的范围.【详解】F 1,F 2是左、右焦点,M 为双曲线左支上的任意一点,则MF 2 -MF 1 =2a ,即MF 2 =MF 1 +2a ,代入MF 22MF 1得MF 22MF 1=MF 1 +2a2MF 1=MF 1 +4a 2MF 1+4a ≥2MF 1 ×4a 2MF 1+4a =8a ,当且仅当MF 1 =2a 时取等号,即MF 1 =2a ,又点M 是双曲线左支上任意一点,所以MF 1 ≥c -a ,即2a ≥c -a ,解得e ≤3,所以双曲线离心率e 的取值范围是1,3 .故选:C .3(23-24高三上·陕西安康·阶段练习)已知双曲线E :x 2a2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过点F 1的直线l 与双曲线E 的左、右两支分别交于点A ,B ,弦AB 的中点为M 且MF 1⊥MF 2.若过原点O 与点M 的直线的斜率不小于3,则双曲线E 的离心率的取值范围为()A.1,2 B.2,+∞C.1,5D.5,+∞【答案】B【分析】方法一:连接AF 2,BF 2,结合双曲线的定义,再由条件列出不等式,代入计算,即可得到结果;方法二:连接AF 2,BF 2,可得AF 2 =BF 2 ,联立直线与双曲线方程,结合韦达定理代入计算,表示出k OM ,列出不等式,即可得到结果.【详解】方法一:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a ,AM =BM =2a ,MF 1 =m ,所以MF 2 2=m 2-4a 2=4c 2-m 2,即m 2=2c 2+2a 2.设∠BF 1F 2=α,则∠MOF 2=2α,所以tan2α=2tan α1-tan 2α≥3,解得13≤tan 2α<1.又tan α=MF 2 MF 1 ,所以13≤m 2-4a 2m 2<1,解得m 2≥6a 2,所以2c 2+2a 2≥6a 2,即c 2≥2a 2,所以e =ca≥ 2.故选:B .方法二:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a .设直线l 的方程为x =ty -c ,A x 1,y 1 ,B x 2,y 2 .由x =ty -cx 2a2-y 2b2=1,消去x 并整理,得b 2t 2-a 2 y 2-2b 2tcy +b 4=0.422422242242因为直线l 与双曲线E 的两支相交,所以-ba<1t <b a ,即b 2t 2-a 2>0.由y 1+y 2=2b 2tc b 2t 2-a2y 1y 2=b 4b 2t 2-a 2,得AB =1+t 2y 1-y 2 =2ab 21+t 2 b 2t 2-a 2.结合AB =4a ,化简得t 2=b 2+2a 2b 2①.由x 21a 2-y 21b 2=1x 22a 2-y 22b 2=1,两式相减,得x 1-x 2y 1-y 2=a 2b 2⋅y 1+y 2x 1+x 2,即t =a 2b 2⋅k OM ②,②代入①化简,得k 2OM=b 4+2a 2b 2a 4≥3,所以b 2≥a 2,即c 2≥2a 2,所以e ≥ 2.故选:B .4(2023·亳州模拟)已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若C 与直线y =x 有交点,且双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则双曲线离心率的取值范围为.【答案】 (2,2)【解析】双曲线C 与直线y =x 有交点,则ba >1,b 2a 2=c 2-a 2a 2>1,解得e =ca>2,双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则P 点在双曲线右支上,设PF 1与y 轴交于点Q ,由对称性得|QF 1|=|QF 2|,所以∠QF 1F 2=∠QF 2F 1,所以∠PF 2Q =∠PF 2F 1-∠QF 2F 1=2∠PF 1F 2=∠PQF 2,所以|PQ |=|PF 2|,所以|PF 1|-|PF 2|=|PF 1|-|PQ |=|QF 1|=2a ,由|QF 1|>|OF 1|得2a >c ,所以e =ca<2,又在△PF 1F 2中,∠PF 1F 2+∠PF 2F 1=4∠PF 1F 2<180°,∠PF 1F 2<45°,所以c 2a=cos ∠PF 1F 2>22,即e =ca>2,综上,2<e <2.考点二 利用圆锥曲线的性质求离心率的范围规律方法 利用圆锥曲线的性质,如:椭圆的最大角,通径,三角形中的边角关系,曲线上的点到焦点距离的范围等,建立不等式(不等式组)求解.1(2024·陕西·模拟预测)已知椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,抛物线C2:x2=2py(p>0),椭圆C1与抛物线C2相交于不同的两点A,B,且四边形ABF1F2的外接圆直径为5c2,若b>c,则椭圆C1的离心率的取值范围是()A.55,2 2B.22,255C.55,255D.255,1【答案】A【分析】先利用椭圆与抛物线的对称性分析得四边形ABF1F2的外接圆就是△BF1F2的外接圆,再利用正弦定理求得sin∠F1BF2,再利用椭圆中焦点三角形的性质得到∠F1MF2=θ的取值范围,从而得到关于a,b,c的齐次不等式,解之即可得解.【详解】如图,由椭圆与抛物线的对称性,知点A,B关于y轴对称,四边形ABF1F2是等腰梯形,易知四边形ABF1F2的外接圆就是△BF1F2的外接圆,设四边形ABF1F2的外接圆半径为R.在△BF1F2中,由正弦定理,知2csin∠F1BF2=2R=5c2,∴sin∠F1BF2=45,记椭圆C1的上顶点为M,∠F1MF2=θ,坐标原点为O,易知∠F1BF2<θ,又b>c,则tan θ2=tan∠F1MO=cb<1,0<θ2<π2,∴0<θ2<π4,∴0<∠θ<π2,即θ为锐角,∴45=sin∠F1BF2<sinθ,又sinθ=2sinθ2cosθ2sin2θ2+cos2θ2=2tanθ2tan2θ2+1,∴2tanθ2tan2θ2+1>45,∴12<tanθ2<2.又0<θ2<π4,∴12<tanθ2<1,∴12<cb<1,则14<c2b2<1,所以14<c2a2-c2<1,则55<ca<22,即55<e<22,则椭圆C1的离心率的取值范围是55,22,故选:A.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=c a;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).2(2024高三·全国·专题练习)如图,椭圆的中心在坐标原点,焦点在x轴上,A1,A2,B1,B2椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PA2为钝角,则该椭圆离心率的取值范围是()A.5-22,0B.0,5-22C.0,5-12D.5-12,1【答案】D【分析】利用椭圆的性质及平面向量数量积的坐标表示构造齐次式计算即可.【详解】解:如图所示,∠B 1PA 2是B 2A 2 与F 2B 1的夹角;设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则B 2A 2 =a ,-b ,F 2B 1=-c ,-b ,∵向量的夹角为钝角时,B 2A 2 ⋅F 2B 1=-ac +b 2<0,又b 2=a 2-c 2,∴a 2-ac -c 2<0,两边除以a 2得1-e -e 2<0,解得e >5-12或e <-5-12;又∵0<e <1,∴1>e >5-12.故选:D .3(23-24高三下·陕西安康·阶段练习)已知椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),抛物线C 2:x 2=2py (p >0),且椭圆C 1与抛物线C 2相交于A ,B 两点,若F 1A ⋅F 1B=3c 2,则椭圆C 1的离心率的取值范围是()A.0,33B.0,33C.33,1D.33,1 【答案】B【分析】由椭圆和抛物线的对称性可知A ,B 两点关于y 轴对称,设出两点坐标,代入条件计算,将结果与椭圆联立可求解A 点纵坐标,结合点在椭圆上纵坐标的范围即可求出离心率的范围.【详解】解:设A x 0,y 0 ,则B -x 0,y 0 ,因为F 1(-c ,0),F 2(c ,0),由F 1A ⋅F 1B =3c 2,得:x 0+c ⋅-x 0+c +y 20=3c 2,即x 20-y 20=-2c 2,点A ,B 在椭圆上,所以满足x 20a2+y 20b 2=1,代入上式可得:y 20-2c 2a 2+y 20b 2=1,即b 2y 20-2c 2 +a 2y 20=a 2b 2,即y 20=a 2b 2+2b 2c 2a 2+b 2,因为点在椭圆上,所以y 20=a 2b 2+2b 2c 2a 2+b 2≤b 2,解得:2c 2≤b 2,即3c 2≤a 2,解得:0<e ≤33.故选:B4已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若双曲线上存在点P ,使sin ∠PF 1F 2sin ∠PF 2F 1=ac ,则该双曲线的离心率的取值范围为()A.(1,1+2) B.(1,1+3)C.(1,1+2]D.(1,1+3]【答案】A【解析】若点P 是双曲线的顶点,asin ∠PF 1F 2=c sin ∠PF 2F 1无意义,故点P 不是双曲线的顶点,在△PF 1F 2中,由正弦定理得|PF 1|sin ∠PF 2F 1=|PF 2|sin ∠PF 1F 2,又a sin ∠PF 1F 2=c sin ∠PF 2F 1,∴|PF 1||PF 2|=c a ,即|PF 1|=ca ·|PF 2|,∴P 在双曲线的右支上,由双曲线的定义,得|PF 1|-|PF 2|=2a ,∴c a |PF 2|-|PF 2|=2a ,即|PF 2|=2a 2c -a ,由双曲线的几何性质,知|PF 2|>c -a ,∴2a 2c -a>c -a ,即c 2-2ac -a 2<0,∴e 2-2e -1<0,解得-2+1<e <2+1,又e >1,∴双曲线离心率的取值范围是(1,1+2).考点三 利用几何图形的性质求离心率的范围规律方法 利用几何图形中几何量的大小,例如线段的长度、角的大小等,构造几何度量之间的关系.1(2023·无锡模拟)已知点P 在双曲线C :x 2a2-y 2b 2=1(a >0,b >0)上,P 到两渐近线的距离分别为d 1,d 2,若d 1d 2≤12|OP |2恒成立,则C 的离心率的最大值为()A.2B.3C.2D.5【答案】 A【解析】双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,即bx ±ay =0,设双曲线上的点P (x 0,y 0),所以x 20a2-y 20b 2=1,即b 2x 20-a 2y 20=a 2b 2,则P (x 0,y 0)到两条渐近线bx ±ay =0的距离分别为d 1=bx 0+ay 0a 2+b2,d 2=bx 0-ay 0a 2+b2,所以d 1d 2=b 2x 20-a 2y 2a 2+b 2=a 2b 2a 2+b2,又|OP |2=x 20+y 20=a 2+a 2b2y 20+y 20=a 2+a2b2+1y 20,y 0∈R ,所以|OP |2≥a 2,因为d 1d 2≤12|OP |2恒成立,所以a 2b 2a 2+b2≤12a 2,整理得b 2≤a 2,即b 2a2≤1,所以离心率e =c a =c 2a 2=1+b 2a2≤2,则C 的离心率的最大值为 2.2(2022高三上·河南·专题练习)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的焦距为2c ,直线y =ba x +b 2与椭圆C 交于点P ,Q ,若PQ ≤7c ,则椭圆C 的离心率的取值范围为()A.32,1 B.0,22 C.105,1 D.0,13【答案】C【分析】联立椭圆与直线方程,利用韦达定理与弦长公式得到关于a ,b ,c 的齐次不等式,从而得解.【详解】联立方程y =b ax +b2x 2a2+y 2b2=1,消去y ,整理得8x 2+4ax -3a 2=0,则Δ=4a 2-4×8×-3a 2 =112a 2>0,设P ,Q 的横坐标分别为x 1,x 2,则x 1+x 2=-a2,x 1⋅x 2=-3a 28,所以PQ =1+b a 2⋅x 1-x 2 =1+b a2⋅x 1+x 2 2-4x 1x 2=a 2+b 2a 2⋅a 24+3a 22=72a 2+b 2,由PQ ≤7c ,得72a 2+b 2≤7c ,整理得a 2+b 2≤4c 2,即a 2+a 2-c 2≤4c 2,即c 2a2≥25,又0<e <1,则e =c a ≥105,故105≤e <1,所以椭圆C 的离心率的取值范围为105,1 .故选:C .【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =ca;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3(23-24高三上·广东·阶段练习)过双曲线C :x 2a2-y 2b 2=1,a >0,b >0 的右焦点F 作渐近线的垂线,垂足为H ,点O 为坐标原点,若sin ∠HOF >sin ∠HFO ,又直线y =2x 与双曲线无公共点,则双曲线C 的离心率的取值范围为()A.(2,5]B.(2,+∞)C.(1,5)D.(2,5)【答案】A【分析】结合题意以及双曲线的有关知识,找到a ,b ,c 之间的不等关系,整理计算即可.【详解】如图,可知△OFH 中,OF =c ,FH =b ,OH =a ,因为sin ∠HOF >sin ∠HFO ,由正弦定理可知b >a ,即b 2>a 2,所以c 2>2a 2,得e >2.又因为直线y =2x 与双曲线无公共点,则ba≤2,即b ≤2a ,结合a 2+b 2=c 2,所以c 2≤5a 2,所以e ≤5.综上:2<e ≤5,故选:A .4(2023·陕西西安·模拟预测)已知两动点A ,B 在椭圆C :x 2a2+y 2=1a >1 上,动点P 在直线3x +4y -10=0上,若∠APB 恒为锐角,则椭圆C 的离心率的取值范围是()A.0,23B.23,1C.0,63D.63,1【答案】C【分析】由椭圆性质和图像得出椭圆的两条互相垂直的切线的交点的轨迹为圆,由条件可知直线3x +4y -10=0与圆x 2+y 2=a 2+1相离, 从而可得出a 的范围, 进而求出离心率的范围.【详解】若从圆x 2+y 2=a 2+b 2上一点引椭圆x 2a2+y 2b 2=1的两条切线一定互相垂直.证明如下:设椭圆的切线方程为y =kx ±k 2a 2+b 2,∴过圆上一点p 1x 1,y 1 的切线为y 1=kx 1±k 2a 2+b 2,y 1-kx 1 2=k 2a 2+b 2,即x 21-a 2 k 2-2x 1y 1k +y 21-b 2 =0.(1)又∵p 1x 1y 1 在圆上, ∴x 21+y 21=a 2+b 2,即x 21-a 2=-y 21-b 2 .(i )当x 21-a 2≠0时, (1)式为k 2-2x 1y 1x 2-a 2k -1=0,由根与系数关系知k 1k 2=-1, 故两条切线互相垂直.(ii )当x 21-a 2=0时, x =±a ,y =±b , 此时两条切线显然互相重直.故圆x 2+y 2=a 2+b 2上一点引椭圆x 2a2+y 2b 2=1的两条切线一定互相垂直.所以椭圆x2a2+y 2=1的两条互相垂直的切线的交点的轨迹是圆x 2+y 2=a 2+1.若∠APB 恒为锐角, 则直线3x +4y -10=0与圆x 2+y 2=a 2+1相离故109+16>a 2+1, 又a >1,∴1<a <3,∴e =c a =a 2-1a =1-1a2∈0,63 .故选:C .强化训练一、单选题1(2023·全国·模拟预测)已知双曲线C :x 2a2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 为双曲线C 的右支上一点,且PF 1⊥PF 2,2≤PF 1PF 2 ≤4,则双曲线C 的离心率的取值范围为()A.52,344B.173,5C.1,173D.5,+∞【答案】B【分析】先利用双曲线的定义及勾股定理等得到PF 1 PF 2 =2b 2,设PF 1 PF 2=m ,结合双曲线的定义得到PF 1⋅PF 2 =4a 2m (m -1)2,则b 2a 2=2m +1m -2,构造函数f (m )=m +1m -2(2≤m ≤4),利用导数法求解.【详解】解:因为PF 1 -PF 2 =2a ,PF 1⊥PF 2,∴PF 1 2+PF 2 2=PF 1 -PF 2 2+2PF 1 PF 2 =4a 2+2PF 1 PF 2 =4c 2,又b 2=c 2-a 2,∴PF 1 PF 2 =2b 2.设PF 1 PF 2=m ,则PF 1 =m PF 2 ,2≤m ≤4,∴PF 1 -PF 2 =(m -1)PF 2 =2a ,∴PF 2 =2a m -1,则PF 1 =2amm -1,∴PF 1 PF 2 =4a 2m(m -1)2.∴4a 2m (m -1)2=2b 2,则b 2a 2=2m m 2-2m +1=2m +1m -2,设f (m )=m +1m -2(2≤m ≤4),则f (m )=1-1m2>0,∴f m 在2,4 上单调递增,∴f (2)=12≤f (m )≤f (4)=94,∴49≤1f (m )≤2,∴89≤b 2a 2≤4,∴c 2a 2=1+b 2a2∈179,5 ,∴e =c a ∈173,5 ,故选:B .2(23-24高二上·江苏徐州·期中)设F 1,F 2分别为椭圆C 1:x 2a 21+y 2b 21=1a 1>b 1>0 与双曲线C 2:x 2a 22-y 2b 22=1a 2>0,b 2>0 的公共焦点,它们在第一象限内交于点M ,∠F 1MF 2=60°,若椭圆的离心率e 1∈22,32 ,则双曲线C 2的离心率e 2的取值范围为()A.52,62B.62,+∞ C.324,62D.62,142【答案】C【分析】根据椭圆以及双曲线的定义可得,MF 1 =a 1+a 2MF 2 =a 1-a 2.进而在△MF 1F 2中,由余弦定理变形可得a 1c2+3a 2c 2-4=0,1e 22=134-1e 12.根据不等式的性质,结合已知,求解即可得出答案.【详解】根据椭圆及双曲线的定义可得MF 1 +MF 2 =2a 1MF 1 -MF 2 =2a 2 ,所以MF 1 =a 1+a 2MF2 =a 1-a 2.在△MF F 中,∠F MF =60°,由余弦定理可得cos ∠F 1MF 2=MF 12+MF 2 2-F 1F 2 22MF 1 ⋅MF 2 =a 1+a 2 2+a 1-a 2 2-4c 22a 1+a 2 a 1-a 2=12,整理可得,a 21+3a 22-4c 2=0,两边同时除以c 2可得,a 1c 2+3a 2c 2-4=0.又e 1=c a 1,e 2=ca 2,所以有1e 12+31e 22-4=0,所以,1e 22=134-1e 12.因为e 1∈22,32 ,所以12≤e 21≤34,所以43≤1e 21≤2,所以,-2≤-1e 21≤-43,2≤4-1e 21≤83,所以,23≤1e 2 2=134-1e 12 ≤89.则63≤1e 2≤223,故324≤e 2≤62.故选:C .3(2023·贵州黔东南·一模)设双曲线E :x 2a2-y 2b 2=1(a >0,b >0)的右焦点为F ,M 0,3b ,若直线l 与E 的右支交于A ,B 两点,且F 为△MAB 的重心,则E 的离心率的取值范围为()A.133,3 ∪3,+∞B.2137,3 ∪3,+∞C.1,133D.1,2137 【答案】A【分析】设点D (x 0,y 0)为AB 的中点,根据F 为△MAB 的重心,求得D 3c 2,-3b 2,由直线l 与E 的右支交于A ,B 两点,得到3c 22a 2--3b22b 2>1,求得ca>133,再由e =3时,证得M ,F ,A ,B 四点共线不满足题意,即可求得双曲线E 的离心率的取值范围.【详解】由题意,双曲线E :x 2a2-y 2b 2=1(a >0,b >0)的右焦点为F (c ,0),且M 0,3b ,设点D (x 0,y 0)为AB 的中点,因为F 为△MAB 的重心,所以MF =2FD,即(c ,-3b )=2(x 0-c ,y 0),解得x 0=3c 2,y 0=-3b 2,即D 3c 2,-3b 2,因为直线l 与E 的右支交于A ,B 两点,则满足3c 2 2a 2--3b 22b 2>1,整理得c 2a2>139,解得ca >133或c a <-133(舍去),当离心率为e =3时,即a =33c 时,可得b =c 2-a 2=63c ,此时D 3c 2,-6c2 ,设A (x 1,y 1),B (x 2,y 2),可得x 1+x 2=3c ,y 1+y 2=-6c ,又由x21a2-y21b2=1x22a2-y22b2=1,两式相减可得y2-y1x2-x1=b2x2+x1a2y1+y2=b2×3ca2×(-6c)=-6,即直线l的斜率为k l=-6,又因为k MF=0-3bc-0=-6,所以k MF=k l,此时M,F,A,B四点共线,此时不满足题意,综上可得,双曲线E的离心率的取值范围为133,3∪3,+∞.故选:A.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得a,c得值,根据离心率的定义求解离心率e;2、齐次式法:由已知条件得出关于a,c的二元齐次方程或不等式,然后转化为关于e的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.4(2023·四川攀枝花·三模)已知双曲线C:x2a2-y2b2=1a>0,b>0,A为双曲线C的左顶点,B为虚轴的上顶点,直线l垂直平分线段AB,若直线l与C存在公共点,则双曲线C的离心率的取值范围是()A.2,3B.2,+∞C.3,+∞D.1,2【答案】B【分析】先根据题意求得直线l的斜率,再根据直线l与C存在公共点,只需直线l的斜率大于渐近线的斜率-ba即可求解.【详解】依题意,可得A-a,0,B0,b,则k AB=b-00+a=ba,又因为直线l垂直平分线段AB,所以k l=-a b,因为直线l与C存在公共点,所以-ab>-ba,即a2<b2,则a2<c2-a2,即2<c2a2,e2>2,解得e>2,所以双曲线C的离心率的取值范围是2,+∞.故选:B5(2023·湖北·模拟预测)已知双曲线x2m-y24-m=1,m∈0,4,过点P2,1可做2条直线与左支只有一个交点,与右支不相交,同时可以做2条直线与右支只有一个交点,与左支不相交,则双曲线离心率的取值范围是()A.1,5B.1,5 2C.1,2D.1,2【答案】B【分析】作出草图,利用双曲线的性质结合图形分类讨论计算即可.【详解】如图所示,设双曲线的两条渐近线分别为l、l ,由已知易知F22,0,若P在双曲线内部(如P 位置),显然作任何直线均与双曲线右支有交点,无法满足题意;若P在双曲线与渐近线l之间(如P 位置),过P所作直线若与双曲线左支相交则必与右支也相交,也无法满故P 只能在双曲线的渐近线l 上方,此时过P 可做唯一一条与右支相切的直线,也可以作一条与渐近线l 平行的直线,该两条直线均与左支无交点;同理也可作出唯一一条与左支相切的直线,及一条与渐近线l 平行的直线符合要求;即1>24-m m ⇒4m -1<14⇒e 2=4m <54,故e ∈1,52,故选:B6(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.0,25B.25,1C.35,1D.35,1【答案】D【分析】由PF 1 =4PF 2 结合椭圆的定义可求出PF 1 ,再由a +c ≥PF 1 ≥a -c 可求出离心率的范围.【详解】因为PF 1 =4PF 2 ,因为PF 1 +PF 2 =2a ,所以4PF 2 +PF 2 =2a ,所以PF 2 =2a 5,PF 1 =8a 5,因为a +c ≥PF 1 ≥a -c ,所以a -c ≤8a5≤a +c ,所以5a -5c ≤8a ≤5a +5c ,所以5-5e ≤8≤5+5e ,解得e ≥35,因为0<e <1,所以35≤e <1,所以离心率的范围35,1,故选:D .7(2023·四川·模拟预测)已知双曲线C :x 2a2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,离心率为2,焦点到渐近线的距离为 6.过F 2作直线l 交双曲线C 的右支于A ,B 两点,若H ,G 分别为△AF 1F 2与△BF 1F 2的内心,则HG 的取值范围为()A.22,4B.3,2C.2,433D.22,463【分析】求出双曲线的解析式,根据△AF 1F 2与△BF 1F 2的内心求出F 1E ,F 2E 的关系式和点H ,G 的横坐标,设出直线AB 的倾斜角,得到HG 的表达式,即可求出HG 的取值范围【详解】由题意,在C :x 2a2-y 2b 2=1a >0,b >0 中,根据焦点到渐近线的距可得b =6,离心率为2,∴e =ca =1+b 2a 2=1+6a 2=2,解得:a =2,∴c =b 2+a 2=22∴双曲线的方程为C :x 22-y 26=1.记△AF 1F 2的内切圆在边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,则H ,E 横坐标相等AM =AN ,F 1M =F 1E ,F 2N =F 2E ,由AF 1 -AF 2 =2a ,即AM +MF 1 -AN +NF 2 =2a ,得MF 1 -NF 2 =2a ,即F 1E -F 2E =2a ,记H 的横坐标为x 0,则E x 0,0 ,于是x 0+c -c -x 0 =2a ,得x 0=a ,同理内心G 的横坐标也为a ,故HG ⊥x 轴.设直线AB 的倾斜角为θ,则∠OF 2G =θ2,∠HF 2O =90°-θ2(Q 为坐标原点),在△HF 2G 中,HG =c -a tan θ2+tan 90°-θ2 =c -a ⋅sin θ2cos θ2+cos θ2sin θ2 =c -a ⋅2sin θ=22sin θ,由于直线l 与C 的右支交于两点,且C 的一条渐近线的斜率为ba=3,倾斜角为60°,∴60°<θ<120°,即32<sin θ≤1,∴HG 的范围是22,463 .故选:D .【点睛】本题考查双曲线的定义与几何性质、三角恒等变换,考查推理论证能力、运算求解能力、数形结合思想,以及角度的取值范围,具有极强的综合性.8(23-24高二上·山东济宁·阶段练习)设椭圆x 2a2+y 2b 2=1a >b >0 的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 13≤λ≤3 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.22,53 B.12,59C.22,104 D.12,58【答案】C【分析】设PF 2 =t ,由椭圆定义和勾股定理得到e 2=λ2+1λ+1 2,换元后得到λ2+1λ+12=21m -12 2+12,根据二次函数单调性求出12≤e 2≤58,得到离心率的取值范围.【详解】设F 1-c ,0 ,F 2c ,0 ,由椭圆的定义可得,PF 1 +PF 2 =2a ,可设PF 2 =t ,可得PF 1 =λt ,即有λ+1 t =2a ,①由∠F 1PF 2=π2,可得PF 1 2+PF 2 2=4c 2,即为λ2+1 t 2=4c 2,②由②÷①2,可得e 2=λ2+1λ+1 2,令m =λ+1,可得λ=m -1,即有λ2+1λ+12=m 2-2m +2m 2=21m -12 2+12,由13≤λ≤3,可得43≤m ≤4,即14≤1m ≤34,则m =2时,取得最小值12;m =43或4时,取得最大值58.即有12≤e 2≤58,得22≤e ≤104.故选:C【点睛】方法点睛:求椭圆的离心率或离心率的取值范围,常见有三种方法:①求出a ,c ,代入公式e =ca;②根据条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于离心率的方程(不等式),解方程(不等式)即可得离心率或离心率的取值范围;③由题目条件得到离心率关于变量的函数,结合变量的取值范围得到离心率的取值范围.二、多选题9(2024·河北邯郸·三模)已知双曲线C :x 2λ+6-y 23-λ=1,则()A.λ的取值范围是(-6,3)B.C 的焦点可在x 轴上也可在y 轴上C.C 的焦距为6D.C 的离心率e 的取值范围为(1,3)【答案】AC【分析】根据双曲线方程的特征,易于求得-6<λ<3,判断方程中分母的符号即可判断A ,B 项,计算易得C 项,先算出离心率的表达式,再根据λ的范围,即可确定e 的范围.【详解】对于A ,∵x 2λ+6-y 23-λ=1表示双曲线,∴(λ+6)(3-λ)>0,解得-6<λ<3,故A 正确;对于B ,由A 项可得-6<λ<3,故λ+6>0,3-λ>0,∴C 的焦点只能在x 轴上,故B 错误;对于C ,设C 的半焦距为c (c >0),则c 2=λ+6+3-λ=9,∴c =3,即焦距为2c =6,故C 正确;对于D ,离心率e =3λ+6,∵-6<λ<3,∴0<λ+6<3,∴e 的取值范围是(1,+∞),故D 错误.故选:AC .10(23-24高三上·黑龙江哈尔滨·期末)已知椭圆C :x 24+y 2b2=1(0<b <2)的左右焦点分别为F 1,F 2,点P 2,1 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.离心率的取值范围为0,22B.QF 1 ⋅QF 2 的最小值为4C.不存在点Q ,使得QF 1⋅QF2=0D.当e =33时,以点P 为中点的椭圆的弦的斜率为1【答案】AC【分析】根据点P 2,1 在椭圆内部求b 的范围,然后可得离心率范围,可判断A ;利用椭圆定义和基本不等式判断B ;当点Q 为短轴端点时∠F 1QF 2最大,然后利用余弦定理判断∠F 1QF 2的最大值,然后可判断C ;利用点差法求解即可判断D .【详解】因为点P 2,1 在椭圆内部,所以24+1b2<1,得b 2>2,因为e =c a=1-b 2a2=1-b 24,所以0<e <22,A 正确;因为点Q 在椭圆上,所以QF 1 +QF 2 =2a =4,所以QF 1 ⋅QF 2 ≤QF 1 +QF 2 22=4,当且仅当QF 1 =QF 2 时等号成立,所以,QF 1 ⋅QF 2 有最大值4,B 错误;由椭圆性质可知,当点Q 为短轴端点时∠F 1QF 2最大,此时,cos ∠F 1QF 2=a 2+a 2-2c 22a2=1-2e 2,因为0<e <22,所以cos ∠F 1QF 2=1-2e 2>0,即∠F 1QF 2的最大值为锐角,故不存在点Q ,使得QF 1⋅QF2=0,C 正确;当e =33时,有c 2=33,得c =233,所以b 2=83,易知,当点P 为弦中点时斜率存在,记直线斜率为k ,与椭圆的交点为A x 1,y 1 ,B x 2,y 2 ,则x 214+y 21b 2=1x 224+y 22b 2=1 ,由点差法得y 2-y 1 y 2+y 1 x 2-x 1 x 2+x 1 =-b 24=-23,又k =y 2-y 1x 2-x 1,x 2+x 1=22,y 2+y 1=2,所以22k =-23,即k =-223,D 错误.故选:AC11(2023·广东汕头·三模)已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,P 为椭圆上任意一点(不在x 轴上),△PF 1F 2外接圆的圆心为H ,半径为R ,△PF 1F 2内切圆的圆心为I ,半径为r ,直线PI 交x 轴于点M ,O 为坐标原点,则()A.S △PF 1F 2最大时,r =33B.PH ⋅PO的最小值为2C.椭圆C 的离心率等于PI IMD.R ⋅r 的取值范围为12,23【答案】ABD【分析】对于A ,根据当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,再根据S △MF 1F 2=S △IF 1F 2+S △IF 1P+S △IF 2P =3r ,代入进而即可求解;对于B ,根据PO =12PF 1 +PF 2,然后结合平面向量数量积的几何意义与基本不等式即可求解;对于C ,运用角平分线定理即可求解;对于D ,由正弦定理可得R =1sin θ,再又结合A 可得r =tan θ2,从而得到R ⋅r =tan θ2sin θ=12cos 2θ2,再根据题意得到θ∈0°,60° ,进而即可求解.【详解】对于A ,设P x ,y ,-2<x <2,则-3<y <3,且y ≠0,所以S △PF 1F 2=12F 1F 2 ⋅y =c ⋅y =y ,则当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,又S △MF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =3r ,所以当S △PF 1F 2最大时,3r =3,即r =33,故A 正确;对于B ,过点H 作HG ⊥PF 1,垂足为点G ,又点H 为△PF 1F 2外接圆的圆心,即为△PF 1F 2三条边的中垂线的交点,则点G 为PF 1的中点,由PH ⋅PO =12PH ⋅PF 1 +PF 2 =12PH⋅PF 1 +PH ⋅PF 2 ,又PH ⋅PF 1 =PG +GH ⋅PF 1 =PG ⋅PF 1 =12PF 1 2,同理PH ⋅PF 2 =12PF 2 2,所以PH ⋅PO =14PF 1 2+PF 2 2 =14PF 1 2+PF 2 2≥12PF 1 +PF 222=a 22=2,当且仅当PF 1 =PF 2 =a 时等号成立,即PH ⋅PO的最小值为2,故B 正确;对于C ,由△PF 1F 2内切圆的圆心为I ,则IF 1,IF 2分别是∠PF 1F 2,∠PF 2F 1的角平分线,则由角平分线定理可得PI IM =PF 1 F 1M =PF 2 F 2M ,即PI IM =PF 1+ PF 2 F 1M + F 2M =2a 2c =a c =1e ,故C 错误;对于D ,设∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得2R =F 1F 2 sin θ=2c sin θ,即R =csin θ=1sin θ,则cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=6cos θ+1,因为S △PF 1F 2=12a 1a 2sin θ=3sin θcos θ+1=3sin θ2cos θ2cos 2θ2=3tanθ2,又结合A 有S △MF 1F 2=3r ,所以3tanθ2=3r ,即r =tan θ2,所以R ⋅r =tan θ2sin θ=12cos 2θ2,又因为当P 在短轴的端点时,θ最大,此时PF 1=PF 2=F 1F 2=2,θ=60°,所以θ∈0°,60° ,即θ2∈0°,30° ,所以cos θ2∈32,1,故R ⋅r =12cos 2θ2∈12,23 ,故D 正确.故选:ABD .【点睛】本题考查了椭圆的定义以及几何性质,明确外心的位置和内角平分线性质,灵活运用正弦定理和等面积法是解答本题关键,考查了推理能力、运算求解能力,属于难题.三、填空题12(22-23高三上·福建泉州·期中)抛物线C 1:y 2=4x 的焦点F ,点P 3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为.【答案】22【分析】焦点F 1,0 ,根据椭圆定义得到c =2,设椭圆和抛物线的交点为Q ,根据抛物线性质得到a =QF +QP2≥2,得到离心率的最大值.【详解】抛物线C 1:y 2=4x 的焦点F 1,0 ,根据题意2c =3-1 2+2-0 2=22,c = 2.设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =QF +QP2=d +QP 2≥3--1 2=2,当PQ 与准线垂直时等号成立,此时e =ca =22.故答案为:2213(2023·广东·一模)已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,若∠PF 1F 2≥∠F 2PF 1,则双曲线C 的离心率的取值范围为.【答案】1+32,2【分析】利用双曲线的性质及余弦定理计算即可.【详解】因为倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,可知直线PF 2的倾斜角大于双曲线的一条渐近线的倾斜角,即batan60°=3⇒3a 2 b 2=c 2-a 2⇒e <2,设PF 2 =n ,则PF 1 =2a +n ,根据∠PF 1F 2≥∠F 2PF 1可知PF 2 ≥F 1F 2 =2c ,在△PF 1F 2中,由余弦定理可知n 2+4c 2-2a +n 2=2cos120°×2cn ⇒n =2b 22a -c,即2b 22a -c≥2c ⇒b 2≥2ac -c 2⇒2c 2-2ac -a 2≥0,则2e 2-2e -1≥0⇒e ≥1+32,故2>e ≥1+32故答案为:1+32,2 14(23-24高三上·湖南娄底·期末)已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0),直线l 1和l 2相互平行,直线l 1与双曲线C 交于A ,B 两点,直线l 2与双曲线C 交于D ,E 两点,直线AE 和BD 交于点P (异于坐标原点).若直线l 1的斜率为3,直线OP (O 是坐标原点)的斜率k ≥1,则双曲线C 的离心率的取值范围为.【答案】2,10 ∪10,+∞ 【分析】首先ba≠3,故e =1+b a 2≠10,其次由题意由点差法得y M =b 23a 2x M ①,同理y N =b 23a2x N ②,由P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,代入得b23a2=y0x0=k≥1,结合离心率公式即可得解.【详解】由题意,ba≠3,故e=1+b a 2≠10,设A x1,y1,B x2,y2,D x3,y3,E x4,y4,P x0,y0,AB的中点M x M,y M,DE的中点N x N,y N,则x21a2-y21b2=1x22a2-y22b2=1,两式相减,得x21-x22a2-y21-y22b2=0,化简得y1+y22x1+x22⋅y1-y2x1-x2=b2a2,所以b2a2⋅x My M=y1-y2x1-x2=3,所以y M=b23a2x M①,同理y N=b23a2x N②,因为AB∥DE,所以P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,将①②代入得b23a2x M-y0x M-x0=b23a2x N-y0x N-x0,即x M-x Nb23a2x0-y0=0,因为x M≠x N,所以b23a2=y0x0=k≥1,所以b2a2≥3,所以双曲线C的离心率为e=ca=1+b2a2≥2.所以双曲线C的离心率的取值范围为2,10∪10,+∞.故答案为:2,10∪10,+∞.【点睛】关键点睛:关键是用点差法来得到y M=b23a2x M①,同理y N=b23a2x N②,结合P,M,N三点共线以及离心率公式即可顺利得解.四、解答题15(21-22高三上·新疆昌吉·阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上(点P不在x轴上),且PF1=5PF2.(1)用a表示PF1,PF2;(2)若∠F1PF2是钝角,求双曲线离心率e的取值范围.【答案】(1)PF1=52a,PF2=12a(2)264<e <32【分析】(1)直接利用双曲线的定义结合条件求得PF 1 ,PF 2 ;(2)由余弦定理得到cos ∠F 1PF 2=135-85e 2,利用∠F 1PF 2是钝角,则-1<cos ∠F 1PF 2<0,解得离心率e 的取值范围.【详解】(1)因为点P 在双曲线的右支上,所以PF 1 -PF 2 =2a ,又PF 1 =5PF 2 ,联立解得PF 1 =52a ,PF 2 =12a .(2)在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=254a 2+a 24-4c 22×52a ×12a =132a 2-4c 252a 2=135-85e 2,因为-1<cos ∠F 1PF 2<0,所以-1<135-85e 2<0,所以264<e <32.16(2023·上海奉贤·三模)已知双曲线T :x 2a2-y 2b 2=1(a >0,b >0)离心率为e ,圆O :x 2+y 2=R 2R >0 .(1)若e =2,双曲线T 的右焦点为F 2,0 ,求双曲线方程;(2)若圆O 过双曲线T 的右焦点F ,圆O 与双曲线T 的四个交点恰好四等分圆周,求b 2a2的值;(3)若R =1,不垂直于x 轴的直线l :y =kx +m 与圆O 相切,且l 与双曲线T 交于点A ,B 时总有∠AOB =π2,求离心率e 的取值范围.【答案】(1)x 2-y 23=1(2)2+1(3)2,+∞【分析】(1)根据离心率和右焦点即可求出答案.(2)根据对称性分析,∠AOF =45°,则A 22c ,22c,代入曲线方程即可求得结果.(3)根据已知,利用圆心到直线l 距离为m k 2+1=1,得出m 2=k 2+1,再由∠AOB =π2,可得k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,然后联立y =kx +m x 2a2-y 2b 2=1,得出x 1+x 2=2a 2kmb 2-a 2k 2,x 1x 2=-a 2m 2+b 2 b 2-a 2k 2,上式联立化简可得k 2+1 a 2+a 2b 2-b 2 =0,进而利用a ,b ,c 关系,得出ca的范围.【详解】(1)因e =2,双曲线T 的右焦点为F 2,0,则c =2,ca=2,a =1,b 2=c 2-a 2=3,则双曲线方程为x 2-y 23=1.(2)如图所示,因为圆O 与双曲线T 的四个交点恰好四等分圆周,则OA =c ,∠AOF =45°,则A 22c ,22c,代入双曲线方程x 2a 2-y 2b2=1,可得b 2a 2-a 2b 2=2,令x =b 2a2x >0 ,则x -1x =2,解得x =1+2,即b 2a2=2+1.(3)由题知,作图如下,因为直线l :y =kx +m 与圆O 相切,且R =1,则圆心到直线l 距离为mk 2+1=1,化简得m 2=k 2+1,①又∠AOB =π2,设A x 1,y 1 ,B x 2,y 2 ,则k OA ⋅k OB =-1,即y 1x 1⋅y 2x 2=-1,则k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,②联立y =kx +mx 2a2-y 2b2=1得b 2-a 2k 2 x 2-2a 2kmx -a 2m 2-a 2b 2=0,则x 1+x 2=2a 2kmb 2-a 2k2,x 1x 2=-a 2m 2+b 2 b 2-a 2k 2,③联立①②③,得k 2+1 a 2+a 2b 2-b 2 =0,则a 2+a 2b 2-b 2=0,又c 2=a 2+b 2,则c 2a2=c 2-a 2+2=b 2+2>2,则e =ca>2,即离心率e 的取值范围为2,+∞ .【点睛】关键点睛:本题考查双曲线的性质,直线与双曲线和圆的位置关系,训练“点差法”的应用,计算量较大,属于中档题.17(23-24高三上·辽宁朝阳·阶段练习)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,a 2+b 2=1,O 为坐标原点,过F 的直线l 与C 的右支相交于A ,B 两点.(1)若b <22,求C 的离心率e 的取值范围;(2)若∠AOB 恒为锐角,求C 的实轴长的取值范围.【答案】(1)1,2 (2)5-1,2【分析】(1)根据已知条件代入离心率公式计算取值范围即可;(2)设直线l 的方程x =my +1,与双曲线方程联立,以双曲线C 的实半轴长a 和m 表示A ,B 两点坐标,根据∠AOB 恒为锐角,转化为OA ⋅OB>0,代入坐标计算,由关于m 的不等式恒成立,求得a 的取值范围.【详解】(1)因为b <22,所以b 2<12,因为a 2+b 2=1,所以c =1,a 2=1-b 2>12,所以a >22,则C 的离心率e =ca=1a <122=2,又e >1,所以C 的离心率的取值范围是1,2 .(2)因为F 1,0 ,直线l 的斜率不为零,所以可设其方程为x =my +1.结合b 2=1-a 2(0<a <1),联立x =my +1,x 2a2-y 21-a2=1, 得a 2m 2+1 -m 2 y 2+2m a 2-1 y -a 2-1 2=0,设A x 1,y 1 ,B x 2,y 2 由韦达定理,得y 1+y 2=-2m a 2-1a 2m 2+1 -m 2,y 1y 2=-a 2-1 2a 2m 2+1 -m 2,由于A ,B 两点均在C 的右支上,故y 1y 2<0⇒a 2m 2+1 -m 2>0,即m 2<a 21-a2.则OA ⋅OB=x 1x 2+y 1y 2=my 1+1 my 2+1 +y 1y 2=m 2+1 y 1y 2+m y 1+y 2 +1=m 2+1 ⋅-a 2-1 2a 2m 2+1 -m2+m ⋅-2m a 2-1 a 2m 2+1 -m2+1=m 2a 21-a 2 -a 4+3a 2-1a 2m 2+1 -m 2.由∠AOB 恒为锐角,得对∀m 2<a 21-a 2,均有OA ⋅OB >0,即m 2a 21-a 2 -a 4+3a 2-1>0恒成立.由于a 21-a 2 >0,因此不等号左边是关于m 2的增函数,所以只需m 2=0时,-a 4+3a 2-1>0成立即可,解得5-12<a <5+12,结合0<a <1,可知a 的取值范围是5-12,1 .综上所述,C 的实轴长的取值范围是5-1,2 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.18(2023·上海徐汇·一模)已知双曲线E :x 2a2-y 2b 2=1a >0,b >0 的离心率为e .(1)若e =2,且双曲线E 经过点(2,1),求双曲线E 的方程;(2)若a =2,双曲线E 的左、右焦点分别为F 1、F 2,焦点到双曲线E 的渐近线的距离为3,点M 在第一象限且在双曲线E 上,若MF 1 =8,求cos ∠F 1MF 2的值;(3)设圆O :x 2+y 2=4,k ,m ∈R .若动直线l :y =kx +m 与圆O 相切,且l 与双曲线E 交于A ,B 时,总有∠AOB =π2,求双曲线E 离心率e 的取值范围.【答案】(1)x 2-y 2=1;(2)1316;。
圆锥曲线之----双曲线专题1. 设F 1,F 2分别是双曲线x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得∠F 1PF 2=60°,|OP|=3b(O 为坐标原点),则该双曲线的离心率为( )A. 43B. 2√33C. 76D. √426【答案】D【解析】【分析】本题考查双曲线的定义与余弦定理的应用,得到a 2与c 2的关系是关键,也是难点,考查分析问题,解决问题的能力,属于中档题.利用双曲线的定义与余弦定理可得到a 2与c 2的关系,从而可求得该双曲线的离心率. 【解答】解:设该双曲线的离心率为e ,依题意,||PF 1|−|PF 2||=2a , ∴|PF 1|2+|PF 2|2−2|PF 1|⋅|PF 2|=4a 2,不妨设|PF 1|2+|PF 2|2=x ,|PF 1|⋅|PF 2|=y , 上式为:x −2y =4a 2,① ∵∠F 1PF 2=60°, ∴在△F 1PF 2中,由余弦定理得,|F 1F 2|2=|PF 1|2+|PF 2|2−2|PF 1|⋅|PF 2|⋅cos60°=4c 2,② 即x −y =4c 2,②又|OP|=3b ,PF 1⃗⃗⃗⃗⃗⃗⃗ +PF 2⃗⃗⃗⃗⃗⃗⃗ =2PO ⃗⃗⃗⃗⃗ ,∴PF 1⃗⃗⃗⃗⃗⃗⃗ 2+PF 2⃗⃗⃗⃗⃗⃗⃗ 2+2|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |⋅cos60°=4|PO ⃗⃗⃗⃗⃗ |2=36b2, 即|PF 1|2+|PF 2|2+|PF 1|⋅|PF 2|=36b 2,即x +y =36b 2,③由②+③得:2x =4c 2+36b 2, ①+③×2得:3x =4a 2+72b 2, 于是有12c 2+108b 2=8a 2+144b 2, ∴c 2a =76, ∴e =ca =√426. 故选D .2. 过双曲线x 2a2−y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交双曲线于点P ,O 为坐标原点,若OE ⃗⃗⃗⃗⃗=12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则双曲线的离心率为( )A. 1+√52B. √52C. √5D. 1+√32【答案】C【解析】【分析】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查双曲线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.设F′为双曲线的右焦点,由题设知|EF|=b ,|PF|=2b ,|PF′|=2a ,再由|PF|−|PF′|=2a ,知b =2a ,由此能求出双曲线的离心率. 【解答】解:∵|OF|=c ,|OE|=a ,OE ⊥EF ,∴|EF|=b , 设F′为双曲线的右焦点,∵OE ⃗⃗⃗⃗⃗ =12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则E 为PF 的中点,OE 为△FPF′的中位线,∴|PF|=2b ,|PF′|=2a ,∵|PF|−|PF′|=2a ,∴b =2a , ∴e =√1+(ba )2=√5, 故选:C3. 已知F 1,F 2分别是双曲线y 2a 2−x 2b 2=1(a,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线离心率的取值范围是( ) A. (1,2) B. (2,+∞) C. (1,√2) D. (√2,+∞) 【答案】A【解析】解:如图1,不妨设F 1(0,c),F 2(0,−c),则过F 1与渐近线y =ab x 平行的直线为y =ab x +c , 联立{y =a b x +cy =−a b x 解得{x =−bc2a y =c 2即M(−bc 2a ,c2) 因M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内, 故(−bc 2a )2+(c2)2<c 2,化简得b 2<3a 2,即c 2−a 2<3a 2,解得c a <2,又双曲线离心率e =ca >1,所以双曲线离心率的取值范围是(1,2).故选:A .不妨设F 1(0,c),F 2(0,−c),则过F 1与渐近线y =a b x 平行的直线为y =ab x +c ,联立直线组成方程组,求出M 坐标,利用点与圆的位置关系,列出不等式然后求解离心率即可. 本题考查直线与双曲线的位置关系的应用,双曲线的简单性质的应用,考查数形结合以及计算能力.4. 若双曲线E :x 2a2−y 2b 2=1(a >0,b >0)的一个焦点为F(3,0),过F 点的直线l 与双曲线E 交于A ,B 两点,且AB 的中点为P(−3,−6),则E 的方程为( )A. x 25−y 24=1B. x 24−y 25=1C. x 26−y 23=1D. x 23−y 26=1【答案】D【解析】解:由题意可得直线l 的斜率为k =k PF =0+63+3=1, 可得直线l 的方程为y =x −3, 代入双曲线E :x 2a 2−y 2b 2=1可得(b 2−a 2)x 2+6a 2x −9a 2−a 2b 2=0,设A(x1,y1),B(x2,y2),则x1+x2=6a2a2−b2,由AB的中点为P,可得6a2a2−b2=−6,即有b2=2a2,又a2+b2=c2=9,解得a=√3,b=√6,则双曲线的方程为x23−y26=1.故选:D.求出直线l的斜率和方程,代入双曲线的方程,化简可得x的二次方程,运用韦达定理和中点坐标公式,结合焦点坐标,可得a,b的方程组,解得a,b,进而得到双曲线的方程.本题考查双曲线的方程的求法,注意运用双曲线的焦点和联立方程组,运用韦达定理、中点坐标公式,考查运算能力,属于中档题.5.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线,交双曲线右支于点M,若∠F1MF2=45°,则双曲线的离心率为()A. √3B. 2C. √2D. √5【答案】A【解析】【分析】本题考查双曲线的离心率,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a,b的关系,则c=√a2+b2=√3a,进而得到离心率.【解答】解:设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,由|ON|=a,且ON为△F1F2A的中位线,可得|F2A|=2a,|F1N|=√c2−a2=b,即有|F1A|=2b,在直角三角形MF2A中,可得|MF2|=2√2a,即有|MF1|=2b+2a,由双曲线的定义可得|MF1|−|MF2|=2b+2a−2√2a=2a,可得b=√2a,∴c=√a2+b2=√3a,∴e=ca=√3.故选:A .6. 已知F 1,F 2分别是双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 2与双曲线的一条渐近线平行的直线交另一条渐近线于点M ,若∠F 1MF 2为锐角,则双曲线离心率的取值范围是( ) A. (1,√2) B. (√2,+∞) C. (1,2) D. (2,+∞) 【答案】D【解析】【分析】可得M ,F 1,F 2的坐标,进而可得MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ,MF 2⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标,由MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ >0,结合abc 的关系可得关于ac 的不等式,结合离心率的定义可得范围.本题考查双曲线的离心率,考查学生解方程组的能力,属中档题. 【解答】解:联立{x 2a 2−y 2b2=1y =b a(x −c),解得{x =c 2y =−bc 2a,∴M(c 2,−bc2a ),F 1(−c,0),F 2(c,0), ∴MF 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−3c 2,bc 2a),MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =(c 2,bc2a ), 由题意可得MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ >0,即b 2c 24a 2−3c24>0,化简可得b 2>3a 2,即c 2−a 2>3a 2, 故可得c 2>4a 2,c >2a ,可得e =ca >2 故选D .7. 设双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线左右两支于点M ,N ,连结MF 2,NF 2,若MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅NF 2⃗⃗⃗⃗⃗⃗⃗ =0,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|NF 2⃗⃗⃗⃗⃗⃗⃗ |,则双曲线C 的离心率为( )A. √2B. √3C. √5D. √6【答案】B【解析】解:若MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅NF 2⃗⃗⃗⃗⃗⃗⃗ =0,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|NF 2⃗⃗⃗⃗⃗⃗⃗ |,可得△MNF 2为等腰直角三角形,设|MF 2|=|NF 2|=m ,则|MN|=√2m , 由|MF 2|−|MF 1|=2a ,|NF 1|−|NF 2|=2a ,两式相加可得|NF 1|−|MF 1|=|MN|=4a ,即有m =2√2a ,在直角三角形HF 1F 2中可得4c 2=4a 2+(2a +2√2a −2a)2, 化为c 2=3a 2,即e=ca=√3.故选:B.由题意可得△MNF2为等腰直角三角形,设|MF2|=|NF2|=m,则|MN|=√2m,运用双曲线的定义,求得|MN|=4a,可得m,再由勾股定理可得a,c的关系,即可得到所求离心率.本题考查双曲线的定义、方程和性质,主要是离心率的求法,注意运用等腰直角三角形的性质和勾股定理,考查运算能力,属于中档题.8.已知双曲线x2a2−y2b2=1(a>0,b>0)的左,右焦点分别为F1,F2,点A在双曲线上,且AF2⊥x轴,若△AF1F2的内切圆半径为(√3−1)a,则其离心率为()A. √3B. 2C. √3+1D. 2√3【答案】A【解析】【分析】本题考查双曲线的离心率的求法,注意运用双曲线的定义和三角形的等积法,考查化简整理的运算能力,属于中档题.由题意可得A在双曲线的右支上,由双曲线的定义可得|AF1|−|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用等积法和勾股定理,可得r=c−a,结合条件和离心率公式,计算即可得到所求值.【解答】解:如图:由点A在双曲线上,且AF2⊥x轴,可得A在双曲线的右支上,由双曲线的定义可得|AF1|−|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用面积相等可得S△AF1F2=12|AF2|⋅|F1F2|=12r(|AF1|+|AF2|+|F1F2|),由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,解得r=|AF2|+|F1F2|−|AF1|2=2c−2a2=c−a=(√3−1)a,从而可以得出c=√3a,则离心率e=ca=√3,故选A.9.已知O为坐标原点,双曲线x2−y2b2=1(b>0)上有一点P,过点P作两条渐近线的平行线,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为1,则双曲线的离心率为()A. √17B. √15C. √5D. √3【答案】C【解析】解:由双曲线方程可得渐近线方程bx±y=0,设P(m,n)是双曲线上任一点,设过P平行于bx+y=0的直线为l,则l的方程为:bx+y−bm−n=0,l与渐近线bx−y=0交点为A,则A(bm+n2b ,bm+n2),|OA|=|bm+n2b|√1+b2,P点到OA的距离是:d=√b2+1,∵|OA|⋅d=1,∴|bm+n2b |√1+b2⋅bm−n√b2+1=1,∴b=2,∴c=√5,∴e=√5故选:C.求得双曲线的渐近线方程,设P(m,n)是双曲线上任一点,设过P平行于bx+y=0的直线为l,求得l的方程,联立另一条渐近线可得交点A,|OA|,求得P到OA的距离,由平行四边形的面积公式,化简整理,解方程可得b,求得c,进而得到所求双曲线的离心率.本题考查双曲线的离心率的求法,注意运用渐近线方程和两直线平行的条件:斜率相等,联立方程求交点,考查化简整理的运算能力,属于中档题.10.倾斜角为30°的直线l经过双曲线x2a2−y2b2=1(a>0,b>0)的左焦点F1,交双曲线于A、B两点,线段AB的垂直平分线过右焦点F2,则此双曲线的渐近线方程为()A. y=±xB. y=±12x C. y=±√32x D. y=±√52x【答案】A【解析】解:如图MF2为△ABF2的垂直平分线,可得AF2=BF2,且∠MF1F2=30°,可得MF2=2c⋅sin30°=c,MF1=2c⋅cos30°=√3c,由双曲线的定义可得BF1−BF2═2a,AF2−AF1=2a,即有AB=BF1−AF1=BF2+2a−(AF2−2a)=4a,即有MA=2a,AF2=√MA2+MF22=√4a2+c2,AF1=MF1−MA=√3c−2a,由AF2−AF1=2a,可得√4a2+c2−(√3c−2a)=2a,可得4a2+c2=3c2,即c=√2a,b=√c2−a2=a,则渐近线方程为y=±x.故选:A.由垂直平分线性质定理可得AF2=BF2,运用解直角三角形和双曲线的定义,求得AB= 4a,结合勾股定理,可得a,c的关系,进而得到a,b的关系,即可得到所求双曲线的渐近线方程.本题考查双曲线的方程和性质,主要是渐近线方程的求法,考查垂直平分线的性质和解直角三角形,注意运用双曲线的定义,考查运算能力,属于中档题.11. 已知双曲线x 2a 2−y2b 2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则该双曲线的离心率为( )A. √62B. √52C. 2√33D. √3【答案】B【解析】解:如图,不妨设直线l 的斜率为−ab ,∴直线l 的方程为y =−ab (x −c),联立{y =−a b (x −c)x 2a2−y 2b 2=1,得(b 2−a 2)c 2y 2−2ab 3cy +a 2b 4=0. ∴y =ab 3±a 2b 2(b 2−a 2)c.由题意,方程得(b 2−a 2)c 2y 2−2ab 3cy +a 2b 4=0的两根异号, 则a >b ,此时y A =ab 3+a 2b 2(b 2−a 2)c<0,y B =ab 3−a 2b 2(b 2−a 2)c>0.则ab 3+a 2b 2(a 2−b 2)c =3ab 3−a 2b 2(b 2−a 2)c,即a =2b .∴a 2=4b 2=4(c 2−a 2),∴4c 2=5a 2,即e =ca=√52. 故选:B .不妨设直线l 的斜率为−a b ,∴直线l 的方程为y =−ab (x −c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解. 本题考查双曲线的简单性质,考查计算能力,是中档题.12. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45°,则双曲线的渐近线方程为( )A. y =±√2xB. y =±√3xC. y =±xD. y =±2x 【答案】A【解析】【分析】本题考查双曲线的渐近线方程,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A ,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a ,b 的关系,进而得到所求渐近线方程. 【解答】解:设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A , 由|ON|=a ,且ON 为△F 1F 2A 的中位线,可得 |F 2A|=2a ,|F 1N|=√c 2−a 2=b , 即有|F 1A|=2b , 因为∠F 1MF 2=45°,所以在等腰直角三角形MF 2A 中,可得|MF 2|=2√2a , 即有|MF 1|=2b +2a ,由双曲线的定义可得|MF 1|−|MF 2|=2b +2a −2√2a =2a , 可得b =√2a ,则双曲线的渐近线方程为y =±√2x. 故选A .13. 已知点F 为双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的右焦点,直线x =a 与双曲线的渐近线在第一象限的交点为A ,若AF 的中点在双曲线上,则双曲线的离心率为( )A. √5B. 1+√2C. 1+√5D. −1+√5【答案】D【解析】解:设双曲线C :x 2a2−y 2b 2=1的右焦点F(c,0),双曲线的渐近线方程为y =ba x , 由x =a 代入渐近线方程可得y =b , 则A(a,b),可得AF 的中点为(a+c 2,12b),代入双曲线的方程可得(a+c)24a 2−14=1,可得4a 2−2ac −c 2=0, 由e =ca ,可得e 2+2e −4=0,解得e =√5−1(−1−√5舍去), 故选:D .设出双曲线的右焦点和渐近线方程,可得将交点A 的坐标,运用中点坐标公式,可得中点坐标,代入双曲线的方程,结合离心率公式,计算即可得到所求值.本题考查双曲线的离心率的求法,考查渐近线方程的运用,以及中点坐标公式,考查方程思想和运算能力,属于中档题.14. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0),过左焦点F 的直线切圆x 2+y 2=a 2于点P ,交双曲线C 右支于点Q ,若FP⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ ,则双曲线C 的渐近线方程为( ) A. y =±x B. y =±2xC. y =±12xD. y =±√32x 【答案】B【解析】【分析】本题考查直线与双曲线的位置关系,考查双曲线的定义和渐近线方程,属于中档题. 由已知可得|OP |=a ,设双曲线的右焦点为F′,由P 为线段FQ 的中点,知|QF′|=2a ,|QF|=2b ,由双曲线的定义知:2b −2a =2a ,由此能求出双曲线C :x 2a −y 2b =1(a >0,b >0)的渐近线方程.【解答】解:∵过双曲线C :x 2a 2−y 2b 2=1(a >0,b >0),左焦点F 引圆x 2+y 2=a 2的切线,切点为P ,∴|OP |=a ,设双曲线的右焦点为F′, 由FP ⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ 可得,P 为线段FQ 的中点, ∴|QF′|=2|OP |=2a,|QF |=2|PF |=2b,,由双曲线的定义知:|QF |−|QF′|=2b −2a =2a , ∴b =2a . ∴双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x =±2x , 故选B .15. 已知F 为双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的右焦点.过点F 向C 的一条渐近线引垂线.垂足为A.交另一条渐近线于点B.若|OF|=|FB|,则C 的离心率是( )A. √62B. 2√33C. √2D. 2【答案】B【解析】【分析】 本题考查双曲线的简单几何性质,考查求双曲线性质的常用方程,考查数形结合思想,属于中档题.方法一:由双曲线的渐近线方程,利用点到直线的距离公式即可求得|AF|,分别求得|OB|,|根据勾股定理|OB|2=|OA|2+|AB|2,求得a 和b的关系,即可求得双曲线的离心率; 方法二:利用余弦定理求得:|OB|2=|OF|2+|FB|2−2|OF||FB|cos∠OFB =2c 2+2bc ,即可求得求得a 和b 的关系,即可求得双曲线的离心率;方法三:根据三角形的面积相等及渐近线方程求得A 点坐标,利用直角三角形的性质,即可求得a和b的关系,即可求得双曲线的离心率;方法四:求得双曲线的渐近线及AB的方程,联立即可求得A和B点坐标,根据等腰三角形的性质,即可求得a和b的值,即可求得双曲线的离心率.【解答】解:方法一:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,|AB|=b+c,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a,|OB|2=OA|2+|AB|2=a2+ (b+c)2.∴4a2=a2+(b+c)2,整理得:c2−bc−2b2=0,解得:c=2b,由a2=c2−b2,则2a=√3c,e=ca =2√33,故选B.方法二:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a由∠OFB=π−∠OFA,cos∠OFB=cos(π−∠OFA)=−cos∠OFA=−bc,由余弦定理可知:|OB|2=|OF|2+|FB|2−2|OF||FB|cos∠OFB=2c2+2bc,∴2c2+2bc=4a2,整理得:c2−bc−2b2=0,解得:c=2b,由a2=c2−b2,则2a=√3c,e=ca =2√33故选B.方法三:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a,根据三角形的面积相等,则A(a2c ,abc),∴在Rt△OAB中,2a=2×2×abc ,即c=2b,由a2=c2−b2,则2a=√3c,e=ca=2√33故选B.方法四:双曲线的一条渐近线方程为y=ba x,直线AB的方程为:y=−ab(x−2),{y=baxy=−ab(x−c),解得:{x=a2cy=abc,则A(a2c,abc),{y=−baxy=−ab(x−c),解得:{x=a2ca2−b2y=−abca2−b2,则B(a2ca2−b2,abca2−b2),由△OFB为等腰三角形,则D为OB的中点,则2×abc =abca2−b2,整理得:a2=3b2,∴e=c a=√1+b 2a =2√33, 故选:B .16. 已知双曲线x 2(m+1)2−y 2m 2=1(m >0)的离心率为√52,P 是该双曲线上的点,P 在该双曲线两渐近线上的射影分别是A ,B ,则|PA|⋅|PB|的值为( )A. 45B. 35C. 43D. 34【答案】A【解析】解:双曲线x 2(m+1)2−y 2m 2=1(m >0)的离心率为√52,可得e 2=c 2a 2=(m+1)2+m 2(m+1)2=54, 解得m =1,即双曲线的方程为x 24−y 2=1,渐近线方程为x ±2y =0, 设P(s,t),可得s 2−4t 2=4, 由题意可得|PA|⋅|PB|=√1+4⋅√1+4=|s 2−4t 2|5=45.故选:A .运用离心率公式,解方程可得m =1,求得渐近线方程,设P(s,t),可得s 2−4t 2=4,运用点到直线的距离公式,化简整理,即可得到所求值. 本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查点到直线的距离公式,化简整理的运算能力,属于中档题.17. 过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 29的切线,切点为E ,延长FE 交双曲线右支于点P ,若FP⃗⃗⃗⃗⃗ =2FE ⃗⃗⃗⃗⃗ ,则双曲线的离心率为( ) A. √173B. √176C. √105D. √102【答案】A【解析】【分析】本题考查双曲线的离心率的求法,注意运用直线和圆相切的性质,以及双曲线的定义和中位线定理,勾股定理,考查化简整理的运算能力,属于中档题.由FP ⃗⃗⃗⃗⃗ =2FE ⃗⃗⃗⃗⃗ ,知E 为PF 的中点,令右焦点为F′,则O 为FF′的中点,则|PF′|=2|OE|=23a ,运用双曲线的定义可得|PF|=|PF′|+2a =83a ,在Rt △PFF′中,|PF|2+|PF′|2=|FF′|2,由此能求出离心率. 【解答】解:由若FP ⃗⃗⃗⃗⃗ =2FE⃗⃗⃗⃗⃗ ,可得E 为PF 的中点, 令右焦点为F′,O 为FF′的中点, 则|PF′|=2|OE|=23a ,由E 为切点,可得OE ⊥PF , 即有PF′⊥PF ,由双曲线的定义可得|PF|−|PF′|=2a , 即|PF|=|PF′|+2a =83a ,在Rt △PFF′中,|PF|2+|PF′|2=|FF′|2,即649a 2+49a 2=4c 2,即c =√173a ,则离心率e =c a =√173.故选A .18. 已知双曲线M :x 2a 2−y2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,|F 1F 2|=2c.若双曲线M 的右支上存在点P ,使a sin∠PF 1F 2=3csin∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A. (1,2+√73) B. (1,2+√73] C. (1,2) D. (1,2]【答案】A【解析】解:由a sin∠PF 1F 2=3csin∠PF 2F 1,在△PF 1F 2中,由正弦定理可得PF 2sin∠PF 1F 2=PF1sin∠PF 2F1, 可得3c ⋅PF 2=a ⋅PF 1,且PF 1−PF 2=2a联立可得PF 2=2a 23c−a >0,即得3c −a >0,即e =ca >13,…①又PF 2>c −a(由P 在双曲线右支上运动且异于顶点), ∴PF 2=2a 23c−a >c −a ,化简可得3c 2−4ac −a 2<0, 即3e 2−4e −1<0,得2−√73<e <2+√73…②又e >1,③由①②③可得,e 的范围是(1,2+√73).故选:A .利用正弦定理及双曲线的定义,可得a ,c 的不等式,结合PF 2>c −a ,即可求出双曲线的离心率的取值范围.本题考查双曲线的离心率的取值范围,考查正弦定理及双曲线的定义,考查化简整理的圆能力,属于中档题.19. 设F 1,F 2是双曲线x 24−y 2=1的两个焦点,点P 在双曲线上,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =0,则|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |的值等于( )A. 2B. 2√2C. 4D. 8【答案】A【解析】解:由已知F 1(−√5,0),F 2(√5,0),则|F 1F 2|=2√5.即{|PF 1|2+|PF 2|2=|F 1F 2|2=20||PF 1|−|PF 2|=4, 得|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2. 故选A .先由已知F 1(−√5,0),F 2(√5,0),得出|F 1F 2|=2√5.再由向量的数量积为0得出直角三角形PF 1F 2,最后在此直角三角形中利用勾股定理及双曲线的定义列出关于的方程,即可解得|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |的值.本题主要考查了双曲线的应用及向量垂直的条件.考查了学生对双曲线定义和基本知识的掌握.20. 已知双曲线y 2a 2−x2b 2=1(a >0,b >0)的上、下焦点分别为F 2,F 1,过F 1且倾斜角为锐角的直线1与圆x 2+y 2=a 2相切,与双曲线的上支交于点M.若线段MF 1的垂直平分线过点F 2,则该双曲线的渐近线的方程为( )A. y =±43xB. y =±34xC. y =±53xD. y =±35x【答案】B【解析】解:设MF 1与圆相切于点E ,因为|MF 2|=|F 1F 2|=2c ,所以△MF 1F 2为等腰三角形, N 为MF 1的中点, 所以|F 1E|=14|MF 1|,又因为在直角△F 1EO 中,|F 1E|2=|F 1O|2−a 2=c 2−a 2, 所以|F 1E|=b =14|MF 1|①又|MF 1|=|MF 2|+2a =2c +2a ②, c 2=a 2+b 2 ③ 由①②③可得c 2−a 2=(c+a 2)2, 即为4(c −a)=c +a ,即3c =5a , b =√c 2−a 2=√259a 2−a 2=43a , 则双曲线的渐近线方程为y =±ab x , 即为y =±34x.故选:B .先设MF 1与圆相切于点E ,利用|MF 2|=|F 1F 2|,及直线MF 1与圆x 2+y 2=a 2相切,可得几何量之间的关系,从而可求双曲线的渐近线方程.本题考查直线与圆相切,考查双曲线的定义,考查双曲线的几何性质,注意运用平面几何的性质,考查运算能力,属于中档题.21. 已知双曲线x 2a 2−y2b 2=1(a >0,b >0)的右焦点为F ,过F 作双曲线渐近线的垂线,垂足为A ,直线AF 交双曲线右支于点B ,且B 为线段AF 的中点,则该双曲线的离心率是( )A. 2B. √62C. 2√105D. √2【答案】D【解析】【分析】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出FA 的中点B 的坐标是解题的关键.设渐近线方程为y =b a x ,则FA 的方程为y −0=−ab (x −c),代入渐近线方程求得A 的坐标,由中点公式求得中点B 的坐标,再把点B 的坐标代入双曲线求得离心率. 【解答】解:由题意设渐近线方程为y =ba x , 则FA 的方程为y −0=−ab (x −c), 代入渐近线方程y =b a x 可得A 的坐标为(a 2c ,abc),B 是线段AF 2的中点(c+a 2c2,ab2c ),根据中点B 在双曲线C 上, ∴(a 2c +c)24a 2−a 2b 24b 2c 2=1,∴c 2a 2=2, 故e =ca =√2, 故选:D .22. 已知F 是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,过点F 作垂直于x 轴的直线交该双曲线的一条渐近线于点M ,若|FM|=2a ,记该双曲线的离心率为e ,则e 2=( )A. 1+√172B. 1+√174C. 2+√52D. 2+√54【答案】A【解析】解:由题意可设F(c,0),一条渐近线方程为y =ba x , 可得M(c,bca ), 即有2a =bc a ,即bc =2a 2,即b 2c 2=4a 4,即(c 2−a 2)c 2−4a 4=0,由e=c可得e4−e2−4=0,a(负的舍去),解得e2=1+√172故选:A.设出F的坐标和一条渐近线方程,求得M的坐标和|FM|,由a,b,c的关系和离心率公式,解方程可得所求值.本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题.。
培优点19 离心率范围的求法【方法总结】圆锥曲线离心率的范围是高考的热点题型,对圆锥曲线中已知特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘应用也可使问题求解更简洁.【典例】 (1)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.53 C .2 D.73【答案】 B【解析】 方法一 由双曲线的定义知|PF 1|-|PF 2|=2a ,①又|PF 1|=4|PF 2|,②故联立①②,解得|PF 1|=83a ,|PF 2|=23a. 在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2, 要求e 的最大值,即求cos ∠F 1PF 2的最小值,当cos ∠F 1PF 2=-1时,解得e =53, 即e 的最大值为53,故选B. 方法二 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a , ∵|F 1F 2|=2c ,∴83a +23a ≥2c , ∴c a ≤53,即双曲线的离心率e 的最大值为53. (2)已知P 是以F 1,F 2为左、右焦点的椭圆x 2a 2+y 2b 2=1(a>b>0)上一点,若∠F 1PF 2=120°,则该椭圆的离心率的取值范围是________. 【答案】 ⎣⎢⎡⎭⎪⎫32,1 【解析】 当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2逐渐增大,当P 点位于短轴端点P 0处时,∠F 1PF 2最大.∵存在点P 为椭圆上的一点,使得∠F 1PF 2=120°,∴在△P 0F 1F 2中,∠F 1P 0F 2≥120°,∴在Rt △P 0OF 2中,∠OP 0F 2≥60°,∴c b ≥3,即c 2a 2-c 2≥3,即c a ≥32,∴32≤e<1. (3)过椭圆C :x 2a 2+y 2b2=1(a>b>0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若16<|k|<13,则椭圆C 的离心率的取值范围是________. 【答案】 ⎝ ⎛⎭⎪⎫23,56 【解析】 设F(c,0),将x =c 代入椭圆的方程,可得c 2a 2+y 2b 2=1,解得y =±b 2a ,∴B ⎝ ⎛⎭⎪⎫c ,±b 2a , 又∵A(-a,0),∴直线AB 的斜率为k =±b 2a -0c +a =±a 2-c 2a a +c =±a -c a=±(1-e). ∵16<|k|<13,0<e<1,∴16<1-e<13, 解得23<e<56, ∴椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫23,56. 【方法总结】求离心率范围的常用方法(1)利用椭圆、双曲线中a ,b ,c 某个量的取值范围确定e ;构造a ,b ,c 的齐次不等式确定e .(2)利用图形中的位置关系(如三角形中的边角关系,曲线上的点到焦点距离的范围等)建立不等式(不等式组),确定e.【拓展训练】1.若椭圆上存在三点,使得这三点与椭圆中心恰好是一个正方形的四个顶点,则该椭圆的离心率为( )A.5-12 B.33 C.22 D.63 【答案】 D【解析】 设椭圆的方程为x 2a 2+y 2b2=1(a>b>0),根据椭圆与正方形的对称性,可画出满足题意的图形,如图所示,因为|OB|=a ,所以|OA|=22a , 所以点A 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2, 又点A 在椭圆上,所以a 24a 2+a 24b2=1,所以a 2=3b 2, 所以a 2=3(a 2-c 2),所以3c 2=2a 2,所以椭圆的离心率为e =c a =63. 2.已知中心在原点的椭圆C 1与双曲线C 2具有相同的焦点F 1(-c,0),F 2(c,0),P 为C 1与C 2在第一象限的交点,|PF 1|=|F 1F 2|且|PF 2|=5.若椭圆C 1的离心率e 1∈⎝ ⎛⎭⎪⎫35,23,则双曲线C 2的离心率e 2的取值范围是( )A.⎝ ⎛⎭⎪⎫32,53 B.⎝ ⎛⎭⎪⎫53,2 C .(2,3) D.⎝ ⎛⎭⎪⎫32,3 【答案】 C【解析】 设椭圆的方程为x 2a 2+y 2b2=1(a>b>0), 由|PF 1|=|F 1F 2|且|PF 2|=5知,2a -5=2c ⇒e 1=c a =2c 2c +5. 设双曲线的方程为x 2m 2-y 2n2=1(m>0,n>0), 同理,可得e 2=2c 2c -5. 由e 1=2c 2c +5∈⎝ ⎛⎭⎪⎫35,23知,2c ∈⎝ ⎛⎭⎪⎫152,10,故e 2=2c 2c -5∈(2,3). 3.已知P 是椭圆x 2a 2+y 2b 2=1(a>b>0)上的一点,椭圆长轴的两个端点为A ,B ,若∠APB =120°,则该椭圆的离心率的取值范围是________.【答案】 ⎣⎢⎡⎭⎪⎫63,1 【解析】 设Q 是椭圆的短轴的一个端点,则∠AQB ≥∠APB =120°,于是∠AQO ≥60°,∴a≥3b ,即a 2≥3(a 2-c 2),∴c 2a 2≥23,又0<e<1,∴椭圆的离心率e ∈⎣⎢⎡⎭⎪⎫63,1. 4.(2020·济宁模拟)设双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,|F 1F 2|=2c ,过F 2作x 轴的垂线,与双曲线在第一象限的交点为A ,点Q 的坐标为⎝⎛⎭⎪⎫c ,3a 2且满足|F 2Q|>|F 2A|,若在双曲线C 的右支上存在点P 使得|PF 1|+|PQ|<76|F 1F 2|成立,则双曲线的离心率的取值范围是________________. 【答案】 ⎝ ⎛⎭⎪⎫32,102 【解析】 将x =c 代入双曲线的方程,得y =±b c 2a 2-1=±b 2a ,所以A ⎝ ⎛⎭⎪⎫c ,b 2a , 由|F 2Q|>|F 2A|,得3a 2>b 2a ,所以⎝ ⎛⎭⎪⎫b a 2<32, 所以e =c a =1+⎝ ⎛⎭⎪⎫b a 2<1+32=102. 因为|PF 1|+|PQ|=2a +|PF 2|+|PQ|≥2a +|F 2Q|,又在双曲线C 的右支上存在点P 使得|PF 1|+|PQ|<76|F 1F 2|成立,所以2a +|F 2Q|<76|F 1F 2|,即2a +3a 2<76×2c ,解得e>32, 又e>1,所以32<e<102.。
1.解析几何——难点突破——离心率专题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解析几何——难点突破——离心率专题离心率是圆锥曲线的重要几何性质,是描述圆锥曲线形状的重要参数.圆锥曲线的离心率的求法是一类常见题型,也是历年高考考查的热点.求解圆锥曲线的离心率的值或取值范围,其关键是建立恰当的等量或不等量关系,以过渡到含有离心率e 的等式或不等式使问题获解.[典例] (2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )[思路点拨]本题以椭圆内点线的交错关系为条件,而结论是椭圆的离心率,思考目标自然是要得到a ,b ,c 满足的等量关系,那么方向不外乎两个:坐标关系或几何关系,抓住条件“直线BM 经过OE 的中点”作为突破口适当转化,获得所需等式.[方法演示] 法一:数形结合法如图,设直线BM 与y 轴的交点为N ,且点N 的坐标为(0,m ),根据题意,点N 是OE 的中点,则E (0,2m ),从而直线AE 的方程为x -a +y 2m =1,因此点M 的坐标为-c ,2m a -ca. 又△OBN ∽△FBM , 所以|FM ||ON |=|FB ||OB |,即2m a -ca m =a +c a ,解得c a =13,所以椭圆C 的离心率为13. 法二:交点法同法一得直线AE 的方程为x -a+y 2m =1,直线BN 的方程为x a +y m =1.又因为直线AE 与直线BN 交于点M ,且PF ⊥x 轴,可设M (-c ,n ).则⎩⎪⎨⎪⎧-c -a +n 2m =1,-c a +nm =1,消去n ,解得ca =13,所以椭圆C 的离心率为13.法三:三点共线法同法一得直线AE 的方程为x -a+y 2m =1,由题意可知M ⎝⎛⎭⎫-c ,2m ⎝⎛⎭⎫1-c a ,N (0,m ),B (a,0)三点共线,则2m ⎝⎛⎭⎫1-c a -m-c =m -a,解得c a =13,所以椭圆C 的离心率为13.法四:方程法设M (-c ,m ),则直线AM 的方程为y =m a -c (x +a ),所以E ⎝⎛⎭⎫0,ma a -c .直线BM 的方程为y =m -c -a (x -a ),与y 轴交于点⎝⎛⎭⎫0,ma a +c ,由题意知,2ma a +c =ma a -c ,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13.法五:几何法在△AOE 中,MF ∥OE ,所以MF OE =a -ca .在△BFM 中,ON ∥MF ,所以OE 2MF =a a +c ,即OE MF =2aa +c.所以MF OE ·OE MF =a -c a ·2a a +c =1,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13. [答案] A [解题师说]1.本题的五种方法,体现出三个重要的数学解题策略.想求得离心率.由于椭圆(双曲线)的元素a,b,c在图形、方程中具有一定的几何意义,所以通常可借助坐标关系或几何关系来解决离心率的问题.2.在求解圆锥曲线(椭圆和双曲线)的离心率问题时,要把握一个基本思想,就是充分利用已知条件和挖掘隐含条件建立起a与c的关系式.[注意]在求离心率的值时需建立等量关系式,在求离心率的范围时需建立不等量关系式.[应用体验]1.(2018·新疆模拟)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()C.3 D.2解析:选A依题意,不妨设点P在双曲线的右支上,F1,F2分别为其左、右焦点,设椭圆与双曲线的离心率分别为e1,e2,则有e1=|F1F2||PF1|+|PF2|,e2=|F1F2||PF1|-|PF2|,则1e1+1e2=2|PF1||F1F2|.在△PF1F2中,易知∠F1F2P∈⎝⎛⎭⎫0,2π3,由正弦定理得|PF1||F1F2|=sin∠F1F2Psin∠F1PF2=23sin∠F1F2P,所以1e1+1e2=43sin∠F1F2P≤43=433,当且仅当sin∠F1F2P=1,即∠F1F2P=π2时取等号,因此1e1+1e2的最大值是433.2.已知双曲线x2a2-y2b2=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥45c,则双曲线离心率的取值范围为__________.解析:设直线l的方程为xa+yb=1.由已知,点(1,0)到直线l的距离d1与点(-1,0)到直线l的距离d2之和s=d1+d2=b a-1a2+b2+b a+1a2+b2=2abc≥45c,整理得5a c2-a2≥2c2,即5e2-1≥2e2,所以25e2-25≥4e4,即4e4-25e2+25≤0,解得54≤e2≤5,52≤e≤ 5.故双曲线离心率的取值范围为52, 5.答案:52,5一、选择题1.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c2=14×2b ,解得c a =12,即e =12.2.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )D .2解析:选A 法一:作出示意图如图所示,离心率e =c a =2c2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2. 法二:因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.3.(2018·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率等于( )或2516或54解析:选D 当m <0,n >0时,圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径R =1,由mx 2+ny 2=1,得y 21n -x 2-1m=1,则双曲线的焦点在y 轴上,对应的一条渐近线方程为y =±a b x ,设双曲线的一条渐近线为y =ab x ,即ax -by =0.∵一条渐近线与圆x 2+y 2-6x -2y +9=0相切,∴圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,所以8a 2-6ab =0,即4a -3b =0,b =43a ,平方得b 2=169a 2=c 2-a 2,所以c 2=259a 2,c =53a ,故离心率e =c a =53;当m >0,n <0时,双曲线的渐近线为y =±ba x ,设双曲线的一条渐近线方程为y =ba x ,即bx -ay =0, ∴|3b -a |a 2+b 2=1, 即9b 2-6ab +a 2=c 2=a 2+b 2,∴8b 2-6ab =0,即4b =3a ,平方得16b 2=9a 2,即16(c 2-a 2)=9a 2, 可得e =54. 综上,e =53或54.4.(2018·广西三市第一次联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1.∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a .∵|PA |=12|PF 1|=a +c ,∴4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.5.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作∠F 1PF 2的角平分线交x 轴于点M ,若2|PM |2=|PF 1|·|PF 2|,则该椭圆的离心率为( )解析:选B 记∠PF 1F 2=2α,∠PF 2F 1=2β,则有∠F 1MP =2β+π-2α+2β2=π2+(β-α),sin ∠F 1MP =cos(α-β)=sin ∠F 2MP ,则椭圆的离心率e =2c 2a =sin 2α+2βsin 2α+sin 2β=2sin α+βcos α+β2sin α+βcos α-β=cos α+βcos α-β.由已知得2|PM ||PF 1|=|PF 2||PM |,即2sin 2αcos α-β=cos α-βsin 2β,2sin 2αsin 2β=cos 2(α-β),cos(2α-2β)-cos(2α+2β)=cos 2(α-β),即[2cos 2(α-β)-1]-[2cos 2(α+β)-1]=cos 2(α-β),cos 2(α-β)=2cos 2(α+β),cos α+βcos α-β=22=e ,所以该椭圆的离心率e =22.6.(2018·云南11校跨区调研)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与C 在第二象限的交点为P ,O 为原点,若|OP |=|OF |,则C 的离心率为( )A .5解析:选A 依题意得F (-5,0),|OP |=|OF |=5,tan ∠PFO =43,cos ∠PFO =35,|PF |=2|OF |cos ∠PFO =6.记双曲线的右焦点为F 2,则有|FF 2|=10.在△PFF 2中,|PF 2|=|PF |2+|FF 2|2-2|PF |·|FF 2|·cos ∠PFF 2=8.由双曲线的定义得a =12(|PF 2|-|PF |)=1,则C 的离心率为e =ca =5.7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,若双曲线右支上存在两点B ,C 使得△ABC 为等腰直角三角形,则该双曲线的离心率e 的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选C如图,由△ABC 为等腰直角三角形,所以∠BAx =45°. 设其中一条渐近线与x 轴的夹角为θ,则θ<45°,即tan θ<1. 又其渐近线的方程为y =ba x , 则ba <1,又e = 1+b 2a 2,所以1<e <2,故双曲线的离心率e 的取值范围为(1,2).8.(2018·广东五校协作体诊断)已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1―→·NF 1―→>0,则该双曲线的离心率e 的取值范围是( )A .(2,2+1)B .(1,2+1)C .(1,3)D .(3,+∞)解析:选B 设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,所以y =±b 2a ,不妨设M ⎝⎛⎭⎫c ,b 2a ,N ⎝⎛⎭⎫c ,-b 2a ,则MF 1―→·NF 1―→=-2c ,-b 2a ·⎝⎛⎭⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+ 2.9.(2018·贵阳检测)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,且“右”区域是由不等式组⎩⎨⎧y <b a x ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此题中的双曲线的离心率e =1+⎝⎛⎭⎫b a 2∈⎝ ⎛⎭⎪⎫52,+∞.10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )解析:选C 由题意可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =a 2-c 2a a +c .又13<k <12,所以13<a 2-c 2a a +c <12,化简可得13<1-e 21+e<12,从而可得12<e <23.11.已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线的离心率的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选A 如图,不妨设F 1(0,c ),F 2(0,-c ),则过点F 1与渐近线y =ab x 平行的直线为y =ab x +c .联立⎩⎨⎧y =ab x +c ,y =-ab x ,解得⎩⎨⎧x =-bc2a ,y =c2,即M ⎝⎛⎭⎫-bc 2a ,c 2.因为点M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内,故⎝⎛⎭⎫-bc 2a 2+⎝⎛⎭⎫c 22<c 2,化简得b 2<3a 2,即c 2-a 2<3a 2,解得ca <2,所以双曲线的离心率的取值范围为(1,2).12.(2018·湘中名校联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率的取值范围为( ),+∞ ,+∞ C .1,53D .1,54解析:选B 将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,不妨取A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±b a x ,得y =±bc a ,不妨取C ⎝⎛⎭⎫c ,bc a ,D ⎝⎛⎭⎫c ,-bc a ,所以|CD |=2bc a .因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54.二、填空题13.(2018·洛阳第一次统考)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点为,C 是椭圆E 上关于原点对称的两点(B ,C 均不在x 轴上),若直线BF 平分线段AC ,则E 的离心率为________.解析:法一:设AC 的中点为M (x 0,y 0),依题意得点A (a,0),C (2x 0-a,2y 0),B (a -2x 0,-2y 0),F (c,0),其中y 0≠0.由B ,F ,M 三点共线得k BF =k BM ,2y 0c -a +2x 0=3y 03x 0-a ≠0,化简得a =3c ,因此椭圆E 的离心率为13.法二:连接AB ,记AC 的中点为M ,B (x 0,y 0),C (-x 0,-y 0),则在△ABC 中,AO ,BM 为中线,其交点F 是△ABC 的重心.又F (c,0),由重心坐标公式得c =x 0-x 0+a3,化简得a =3c ,因此椭圆E 的离心率为13.答案:1314.(2018·湖北部分重点高中联考)已知双曲线C 2与椭圆C 1:x 24+y 23=1具有相同的焦点,则两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为__________.解析:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由⎩⎨⎧ x 24+y 23=1,x 2a 2-y 2b 2=1,解得交点的坐标满足⎩⎪⎨⎪⎧ x 2=4a 2,y 2=31-a 2,由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=44a 2·31-a 2=83·a 2·1-a 2≤83·a 2+1-a 22=43,当且仅当a 2=1-a 2,即a 2=12时,取等号,此时双曲线的方程为x 212-y 212=1,离心率e = 2. 答案:215.已知点A (3,4)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,则当椭圆的中心到直线x =a 2a 2-b 2的距离最小时,椭圆的离心率为__________.解析:因为点A (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的点,所以9a 2+16b 2=1,所以b 2=16a 2a 2-9.因为a >b >0,所以1=9a 2+16b 2>9a 2+16a 2=25a 2,从而a 2>25.设椭圆的中心到直线x =a 2a 2-b 2的距离为d ,则 d =a 2a 2-b 2=a 4a 2-16a 2a 2-9=a 21-16a 2-9=a 2a 2-9a 2-25=a 2-25+400a 2-25+41≥2400+41=9, 当且仅当a 2-25=400a 2-25,即a 2=45时,等号成立,此时b 2=20,c 2=25,于是离心率e =c a =2545=535=53. 答案:5316.已知抛物线y =14x 2的准线过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点,且双曲线C 与直线l :x +y =1相交于两点A ,B .则双曲线C 的离心率e 的取值范围为________.解析:抛物线y =14x 2化为x 2=4y ,所以准线为y =-1,所以双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点为(0,-1),即b =1,所以双曲线C :x 2a 2-y 2=1(a >0).联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1, 消去y ,得(1-a 2)x 2+2a 2x -2a 2=0. ∵与双曲线交于两点A ,B ,∴⎩⎪⎨⎪⎧ 1-a 2≠0,4a 4+8a 21-a 2>0⇒0<a 2<2且a 2≠1. 而b =1,则c =a 2+b 2=a 2+1,∴离心率e =c a =a 2+1a =1+1a 2>1+12=62,且e =1+1a 2≠2, ∴e 的取值范围为⎝⎛⎭⎪⎫62,2∪(2,+∞). 答案:⎝ ⎛⎭⎪⎫62,2∪(2,+∞)。
第81讲圆锥曲线拓展题型一必考题型全归纳题型一:定比点差法例1.已知椭圆2222:1x y C a b+=(0a b >>)的离心率为2,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k【解析】由e =,可设椭圆为2224x y m +=(0m >),设11(,)A x y ,22(,)B x y,,0)F ,由3AF FB =,所以12123133013x x y y +=+⎨+⎪=⎪+⎩,1212330x x y y ⎧+=⎪⇒⎨+=⎪⎩.又2221122222(1)4(2)4x y m x y m ⎧+=⎪⎪⎨⎪+=⎪⎩2221122222(1)4(2)9999(3)4x y m x y m λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型由(1)-(3)得212121212(3)(3)(3)(3)84x x x x y y y y m +-++-=-128333x x ⇒-=-,又123x x +=1233x m ⇒=236(,33A ⇒±.又,0)Fk ⇒=.例2.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.【解析】设11(,)A x y ,22(,)B x y ,(0,3)P ,由AP PB λ=,所以12120131x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩121203(1)x x y y λλλ+=⎧⇒⎨+=+⎩.由221122224936(1)4936(2)x y x y ⎧+=⎪⎨+=⎪⎩221122222224936(1)4)936()2(3x y x y λλλ⎧+=⎪⎨+=⎪⨯⎩配比由(1)-(3)得:()()()()()21212121249361x x x x y y y y λλλλλ⇒+-++-=-()()12413y y λλ-⇒-=,又()1231y y λλ+=+11356y λ+⇒=,又[]12,2y ∈-15,5λ⎡⎤⇒∈--⎢⎣⎦,从而1,55PA PB λ⎡⎤=∈⎢⎥⎣⎦.例3.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ= ,22PF F B μ=若2λ=,求μ的值.【解析】设()00,P x y ,11(,)A x y ,22(,)B x y ,,由11PF F A λ= ,22PF F B μ=得①()1,0F c -满足()0101010111001x x c x x c y y y y λλλλλλλ+⎧-=⎪⎧+=-+⎪⎪+⇒⎨⎨++=⎪⎩⎪=⎪+⎩()2,0F c 满足()0202020211001x x c x x c y y y y μμμμμμμ+⎧=⎪⎧+=-++⎪⎪⇒⎨⎨++=⎪⎩⎪=⎪+⎩②由2200222211221(1)1(2)x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩⇒2200222222211221(1)(3)x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩③由(1)-(3)得:()()()()010101012221x x x x y y y yx a b λλλλ-+-++=-()()()()()()2010*******x x x x a a x x c λλλλλλ-+⇒=⇒-=---+,又()()011x x c λλ+=-+222202a c a c x c c λ-+⇒=-,同理可得222202a c a c x c c μ-+=-+()()2222222222108a c a c a c c c a c λμλμμ-++⇒+=⋅⇒+=⋅=⇒=-.变式1.设1F ,2F 分别为椭圆2213x y +=的左、右焦点,点A ,B 在椭圆上,若125F A F B = ,求点A 的坐标【解析】记直线1F A 反向延长交椭圆于1B ,由125F A F B = 及椭圆对称性得1115AF F B =,设11(,)A x y ,22(,)B x y,(F .①由定比分点公式得12125155015x x y y +⎧=⎪⎪+⎨+⎪=⎪+⎩1212550x x y y ⎧+=-⎪⇒⎨+=⎪⎩②又221122221(1)31(2)3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩221122221(1)4(2)25252525(3)3x y x y λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型③由(1)-(3)得12121212(5)(5)(5)(5)243x x x x y y y y +-++-=-125x x ⇒-=,又125x x +=-10x ⇒=(0,1)A ⇒±.变式2.已知椭圆22:12C x y +=,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112PA PB PQ+=,求点Q的轨迹方程.【解析】设11(,)A x y ,22(,)B x y ,()00,Q x y 由112PA PB PQ +=22PQ PQ PA AQ PB QB PA PB PA PB-+⇒+=⇒+=0AQ QB PA AQPA PB PB QB -⇒+=⇒=,记()0AP AQ PB QBλλ==> ,即AP PB λ=- ,AQ QB λ=.①AP PB λ=- ,由定比分点得:()()1212121222112121x x x x y y y y λλλλλλλλ-⎧=⎪⎧-=-⎪⎪-⇒⎨⎨--=-⎪⎪⎩=⎪-⎩AQ QB λ= ,由定比分点得()()121201212001111x x x x x x y y y y y y λλλλλλλλ+⎧=⎪⎧+=+⎪⎪+⇒⎨⎨++=+⎪⎪⎩=⎪+⎩②又2211222222(1)22(2)x y x y ⎧+=⎪⎨⎪+=⎩22112222222222(1)22(23())x y x y λλλλ⎧+=⎪⎨⎪⨯+=⎩配比③由(1)-(3)得:()()()()()212121212221x x x x y y y y λλλλλ+⋅-+⋅+⋅-=-()()()()()20021141121x y λλλλλ⇒+⋅-+⋅+⋅-=-00242x y ⇒+=,即()2200002122x y x y +=+<.题型二:齐次化例4.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.【解析】直线()()1122:4,,,,PQ x my P x y Q x y =+由4x my =+,得14x my-=则由244x my y x =+⎧⎨=⎩,得:244x my y x -=⋅,整理得:210y y m x x ⎛⎫+-= ⎪⎝⎭,即:12121y y x x ⋅=-.所以12121OP OQ y y k k x x ⋅==-,则OP OQ ⊥,即:90POQ ︒∠=.例5.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.【解析】设直线()()1122:(1)1,,,,PQ mx n y P x y Q x y ++=则21m n +=.由22(1)112mx n y x y ++=⎧⎪⎨+=⎪⎩,得:22[(1)1]12x y ++-=.则22(1)2(1)[(1)]02x y y mx n y ++-+++=,故2111(12)202y y n m x x ++⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭.所以1212112221y y m x x n +++==-.即1212112AP AQ y y k k x x +++=+=.例6.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.【解析】设直线:(1)1l mx n y +-=......(1)由22:14x C y +=,得22[(1)1]14x y +-+=即:22(1)2(1)04x y y +-+-=......(2)由(1)(2)得:22(1)2(1)[(1)]04x y y mx n y +-+-+-=整理得:2111(12)204y y n m x x --⎛⎫++⋅+= ⎪⎝⎭则221212112112P A P B y y mk k x x n--+=+=-=-+,则221m n =+,代入直线:(1)1l mx n y +-=,得::(21)2(1)2l n x n y ++-=显然,直线过定点(2,1)-.变式3.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ过定点.【解析】设直线PQ 方程为:y kx b =+则()2222213163303x y k x kbx b y kx b ⎧+=⎪⇒+++-=⎨⎪=+⎩即12221226133313kb x x k b x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,又因为()()()21212121212121211111123BP BQkx x k b x x b y y kx b kx b k k x x x x x x +-++---+-+-=⋅===化简得()221223b b b -=-⇒=-或1b =(舍去).即PQ 直线为3y kx =-,即直线PQ 过定点()0,3-.题型三:极点极线问题例7.(2024·全国·高三专题练习)椭圆方程2222:1(0)x y a b a b Γ+=>>,平面上有一点00(,)P x y .定义直线方程0022:1x x y y l a b +=是椭圆Γ在点00(,)P x y 处的极线.已知椭圆方程22:143x y C +=.(1)若0(1,)P y 在椭圆C 上,求椭圆C 在点P 处的极线方程;(2)若00(,)P x y 在椭圆C 上,证明:椭圆C 在点P 处的极线就是过点P 的切线;(3)若过点(4,0)P -分别作椭圆C 的两条切线和一条割线,切点为X ,Y ,割线交椭圆C 于M ,N 两点,过点M ,N 分别作椭圆C 的两条切线,且相交于点Q .证明:Q ,X ,Y 三点共线.【解析】(1)由题意知,当01x =时,032y =±,所以3(1,2P 或3(1,2P -.由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,所以椭圆C 在点3(1,)2P 处的极线方程为142x y+=,即240x y +-=点3(1,2P -处的极线方程为142x y -=,即240x y --=(2)因为00(,)P x y 在椭圆C 上,所以2222000013434120x y x y ++=⇒-=,由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,当00y =时,02x =±,此时极线方程为2x =±,所以P 处的极线就是过点P 的切线.当00y ≠时,极线方程为00000331434+=⇒=-+x x y y x y x y y .联立00022334143x y x y y x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得20220002021836312094x x x y y x y ⎛⎫-++-= ⎪⎝⎭.()222002002222000036318936()4(3)(12)04142x y x x y y y y ∴⋅--+-=-∆==+.综上所述,椭圆C 在点P 处的极线就是过点P 的切线;(3)设点00(,)Q x y ,11(,)M x y ,22(,)N x y ,由(2)可知,过点M 的切线方程为111:143x x y yl +=,过点N 的切线方程为222:143x x y yl +=.因为1l ,2l 都过点00(,)Q x y ,所以有10102020143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,则割线MN 的方程为000:143x x y yl +=;同理可得过点(4,0)P -的两条切线的切点弦XY 的方程为34:114xl x -=⇒=-.又因为割线MN 过点(4,0)P -,代入割线方程得04114x x -=⇒=-.所以Q ,X ,Y 三点共线,都在直线1x =-上.例8.(2024·全国·高三专题练习)阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.(二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线);③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹.结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P 对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【解析】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又2c e a ==,所以c =,所以2224b a c =-=,所以椭圆C 的方程为221164x y +=.根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=;(2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=,将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上.当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-,所以当MT TN = 时,直线MN 的方程为()1122y x -=--,即240x y +-=.例9.(2024秋·北京·高三中关村中学校考开学考试)已知椭圆M :22221x y a b+=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.【解析】(1)因为点(2,0)A -,(0,1)B 都在椭圆M 上,所以2a =,1b =.所以c ==所以椭圆M的离心率2c e a ==.(2)由(1)知椭圆M 的方程为2214x y +=,(2,0)C .由题意知:直线AB 的方程为22x y =-.设00(,)P x y (00y ≠,01y ≠±),(22,)Q Q Q y y -,(,0)S S x .因为,,C P Q 三点共线,所以有//CP CQ ,00(2,),(222,)Q Q CP x y CQ y y =-=--,所以00(2)(24)Q Q x y y y -=-.所以000422Q y y y x =-+.所以00000004244(,2222y x y Q y x y x +--+-+.因为,,B S P 三点共线,所以0011s y x x -=-,即001s x x y =-.所以0(,0)1x S y -.所以直线QS 的方程为000000000004242214122y x xy x y xx y y y y x +---+-=+--+,即2200000000044844(1)1x y x y y xx y y y --+-=+--.又因为点P 在椭圆M 上,所以220044x y =-.所以直线QS 的方程为0022(1)21y x x y y --=-+-.所以直线QS 过定点(2,1).变式4.(2024·全国·高三专题练习)若双曲线229x y -=与椭圆2222:1(0)x y C a b a b+=>>共顶点,且它们的离心率之积为43.(1)求椭圆C 的标准方程;(2)若椭圆C 的左、右顶点分别为1A ,2A ,直线l 与椭圆C 交于P 、Q 两点,设直线1A P 与2A Q 的斜率分别为1k ,2k ,且12105k k -=.试问,直线l 是否过定点?若是,求出定点的坐标;若不是,请说明理由.【解析】(1,又两曲线离心率之积为43,所以椭圆的离心;由题意知3a =,所以c =1b =.所以椭圆的标准万程为2219x y +=.(2)当直线l 的斜率为零时,由对称性可知:120k k =-≠,不满足12105k k -=,故直线l 的斜率不为零.设直线l 的方程为x ty n =+,由2219x ty n x y =+⎧⎪⎨+=⎪⎩,得:()2229290t y tny n +++-=,因为直线l 与椭圆C 交于P 、Q 两点,所以()()222244990t n t n ∆=-+->,整理得:2290t n -+>,设()11,P x y 、()22,Q x y ,则12229tn y y t +=-+,212299n y y t -=+,1113y k x =+,2223y k x =-.因为12105k k -=,所以()()()()1121211222121233315333y y x y ty n k x y k y x y ty n x -+-+====+++-,整理得:121245(3)(3)0ty y n y n y +--+=,()1212245(3)(612)ty y n y y n y +-+=-,将12229tn y y t +=-+,212299n y y t -=+代入整理得:()22(2)(3)(2)9t n n n t y --=-+要使上式恒成立,只需2n =,此时满足2290t n -+>,因此,直线l 恒过定点()2,0.变式5.(2024·全国·高三专题练习)已知椭圆2222:1(0)x y E a b a b +=>>且过点⎛ ⎝⎭,A ,B 分别为椭圆E 的左,右顶点,P 为直线3x =上的动点(不在x 轴上),PA 与椭圆E 的另一交点为C ,PB 与椭圆E 的另一交点为D ,记直线PA 与PB 的斜率分别为1k ,2k.(Ⅰ)求椭圆E 的方程;(Ⅱ)求12k k 的值;(Ⅲ)证明:直线CD 过一个定点,并求出此定点的坐标.【解析】(1)由条件可知:221314c e a a b ⎧==⎪⎪⎨⎪+=⎪⎩且222a b c =+,解得2241a b ⎧=⎨=⎩,所以椭圆E 的方程为2214x y +=;(2)因为()()2,0,2,0A B -,设()()3,0P t t ≠,所以()12,32532tt t k k t ====---,所以12155tk k t ==;(3)设()()3,0P t t ≠,所以()():2,:25tPB y t x PA y x =-=+,因为()222544t y x x y ⎧=+⎪⎨⎪+=⎩,所以()222242516161000t x t x t +++-=,所以22164+25C A t x x t +=-,所以22221650824+254+25C t t x t t -=-+=,所以()22025425C C t t y x t =+=+,所以22250820,4+25425t t C t t ⎛⎫- ⎪+⎝⎭,又因为()22244y t x x y ⎧=-⎨+=⎩,所以()2222214161640t x t x t +-+-=,所以221614B D t x x t +=+,所以2222168221414D t t x t t-=-=++,所以()24214D D t y t x t =-=-+,所以222824,1414t t D tt ⎛⎫-- ⎪++⎝⎭,所以222222222508828244+2514:204141442514t t t t t t CD x y t t t t t t ----⎛⎫+-=+ ⎪++⎛⎫⎝⎭--⎪++⎝⎭,所以222282544:14614t t t CD x y t t t --⎛⎫-=+ ⎪++⎝⎭,所以222225454482:661414t t t t CD x y t t t t ---=+⋅+++,所以2544:63t CD x y t -=+,所以直线CD 过定点4,03⎛⎫⎪⎝⎭.题型四:蝴蝶问题例10.(2003·全国·高考真题)如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x 轴的情形)【解析】(1) 椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心(0,)M r ,∴椭圆方程为2222()1x y r a b -+=焦点坐标为1()F r,2)F r离心率e =(2)证明:将直线CD 的方程1y k x =代入椭圆方程2222()1x y r ab-+=,得2222221()b x a k x r a b +-=整理得22222222211()2()0b a k x k a rx a r a b +-+-=根据韦达定理,得211222212k a r x x b a k +=+,2222122221a r a b x x b a k -=+,所以22121212x x r b x x k r-=+①将直线GH 的方程2y k x =代入椭圆方程2222()1x y r a b -+=,同理可得22343422x x r b x x k r -=+②由①、②得2223411212342k x x k x x r b x x r x x -==++所以结论成立.(3)证明:设点(,0)P p ,点(,0)Q q 由C 、P 、H 共线,得111424x p k x x p k x -=-解得12141124()k k x x p k x k x -=-由D 、Q 、G 共线,同理可得212323x p k x x p k x -=-∴12231223()k k x x q k x k x -=-由1122341234k x x k x x x x x x =++变形得1223121411241223()()k k x x k k x x k x k x k x k x ---=--所以p q =即||||OP OQ =例11.(2024·全国·高三专题练习)已知椭圆2222:1x y C a b +=(0a b >>),四点()11,1P ,()20,1P,31,2P ⎛- ⎝⎭,31,2P ⎛⎫- ⎪ ⎪⎝⎭,41,2P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)蝴蝶定理:如图1,AB 为圆O 的一条弦,M 是AB 的中点,过M 作圆O 的两条弦CD ,EF .若CF ,ED 分别与直线AB 交于点P ,Q ,则MP MQ =.该结论可推广到椭圆.如图2所示,假定在椭圆C 中,弦AB 的中点M 的坐标为10,2⎛⎫⎪⎝⎭,且两条弦CD ,EF 所在直线斜率存在,证明:MP MQ =.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点,又由222211134a b a b +>+知,C 不过点1P ,所以点2P 在C 上,因此222111314b a b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩,故椭圆C 的方程为2214x y +=;(2)因点M 的坐标10,2⎛⎫⎪⎝⎭在y 轴上,且M 为AB 的中点,所以直线AB 平行于x 轴,设()11,C x y ,()22,D x y ,()33,E x y ,()44,F x y ,设直线CD 的方程为112y k x =+,代入椭圆22:14x C y +=,得:221113044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:11221441k x x k +=-+,1221341x x k =-+,①同理,设直线EF 的方程为212y k x =+,代入椭圆22:14x C y +=,得:222213044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:23422441k x x k +=-+,3422341x x k =-+,②由于C 、P 、F 三点共线,得111142441212P P y x x k x x x k x y --==--,()12141124P k k x x x k x k x -=-,同理,由于E 、Q 、D 三点共线,得:()12231223Q k k x x x k x k x -=-,结合①和②可得:()()1214122311241223P Q k k x x k k x x x x k x k x k x k x --+=--()()()()()()121412231223112411241223k k x x k x k x k k x x k x k x k x k x k x k x --+--=--()()()()12112421341123223411241223k k k x x x k x x x k x x x k x x x k x k x k x k x --+-=--()()()()()12112342341211241223k k k x x x x k x x x x k x k x k x k x -+-+⎡⎤⎣⎦=--()()()1221122222122111241223343441414141k k k k k k k k k k k x k x k x k x ⎛⎫-----⋅-⋅⎪++++⎝⎭=--()()()()()()()12121222221212112412231212414141410k k k k k k k k k k k x k x k x k x ⎛⎫ ⎪-- ⎪++++⎝⎭==--即P Q x x =-,所以P Q x x =,即MP MQ =.例12.(2021·全国·高三专题练习)(蝴蝶定理)过圆AB 弦的中点M ,任意作两弦CD 和EF ,CF 与ED 交弦AB 于P 、Q ,求证:PM QM =.【解析】如图所示,以M 为原点,AB 所在直线为x 轴建立直角坐标系,设圆方程为222()(||)x y b r b r +-=<设直线CD 、EF 的方程分别为1y k x =,2y k x =.将它们合并为()()120y k x y k x --=,于是过点C 、D 、E 、F 的曲线系方程为()()22212()0x y b r y k x y k x λ+--+--=.令0y =,得()2221210k k x b r λ++-=,即过点C 、D 、E 、F 的曲线系与AB 交于点P 、Q 的横坐标是方程()2221210k k x b r λ++-=的两根.由韦达定理得0P Q x x +=,即M 是PQ 的中点,故PM QM =.变式6.(2024·全国·高三专题练习)蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.(1)求证:34121234y y y y y y y y ++=.(2)设CF 交x 轴于点P ,ED 交x 轴于点Q .求证:OP OQ =.【解析】(1)已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,联立()222x y b r x my ⎧+-=⎪⎨=⎪⎩,化简得2222(1)20m y by b r +-+-=,则12221b y y m +=+,221221b r y y m -=+,所以1222122y y b y y b r +=-,同理线x ny =与圆M 交于()33,E x y ,()44,F x y ,联立()222x y b r x ny⎧+-=⎪⎨=⎪⎩化简得2222(1)20n y by b r +-+-=,则12221b y y n +=+,221221b r y y n -=+,所以3422342y y b y y b r +=-,故有34122212342y y y y b y y b r y y ++==-,所以34121234y y y y y y y y ++=成立;(2)不妨设点(,0)P p ,点(,0)Q q ,因为C 、P 、F 三点共线,所以414100y y x p x p --=--,化简得411414x y x y p y y -=-,因为点C 在直线x my =上,所以11x my =,点F 在直线x ny =上,所以44x ny =,则4114141414()ny y my y y y n m p y y y y --==--,同理因为E 、Q 、D 三点共线,所以322300y y x q x q --=--,化简得233232x y x y q y y -=-,因为点D 在直线x my =上,所以22x my =,点E 在直线x ny =上,所以33x ny =,则2332233232()my y ny y y y m n q y y y y --==--,又由34121234y y y y y y y y ++=,可得12341111y y y y +=+,41231111y y y y ∴-=-,即32141423y y y y y y y y --=,所以23141432y y y y y y y y =--,则23141432()()y y m n y y n m y y y y --=---,所以p q =-,所以OP OQ =成立.变式7.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【解析】(1)因为AB 4=,椭圆C 离心率为12,所以2222412a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120k x k x k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k-⋅=+.所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+y y x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+-()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦.()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭.所以点Q 在直线4x =上.变式8.(2024·全国·高三专题练习)已知椭圆C :22x a +22y b=1(a >b >0)的左、右顶点分别为A ,B ,离心率为12,点P 31,2⎛⎫⎪⎝⎭为椭圆上一点.(1)求椭圆C 的标准方程;(2)如图,过点C (0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.【解析】(1)因为椭圆的离心率为12,所以a =2c .又因为a 2=b 2+c 2,所以b.所以椭圆的标准方程为224x c +223y c=1.又因为点P 31,2⎛⎫ ⎪⎝⎭为椭圆上一点,所以214c +2943c=1,解得c =1.所以椭圆的标准方程为24x +23y =1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1.设M (x 1,y 1),N (x 2,y 2).联立方程组消去y 可得(3+4k 2)x 2+8kx -8=0.所以由根与系数关系可知x 1+x 2=-2834k k +,x 1x 2=-2834k +.因为k 1=112y x +,k 2=222y x -,且k 1=2k 2,所以112y x +=2222y x -.即()21212y x +=()222242y x -.①又因为M (x 1,y 1),N (x 2,y 2)在椭圆上,所以21y =34(4-21x ),22y =34(4-22x ).②将②代入①可得:1122x x -+=()22422x x +-,即3x 1x 2+10(x 1+x 2)+12=0.所以32834k ⎛⎫- ⎪+⎝⎭+102834k k ⎛⎫- ⎪+⎝⎭+12=0,即12k 2-20k +3=0.解得k =16或k =32,又因为k >1,所以k =32.变式9.(2021秋·广东深圳·高二校考期中)已知椭圆()222210x y C a b a b+=>>:的右焦点是()0F ,过点F 的直线交椭圆C 于A ,B 两点,若线段AB 中点Q的坐标为67⎫-⎪⎪⎝⎭.(1)求椭圆C 的方程;(2)已知()0,P b -是椭圆C 的下顶点,如果直线y =kx +1(k ≠0)交椭圆C 于不同的两点M ,N ,且M ,N 都在以P 为圆心的圆上,求k 的值;(3)过点02a D ⎛⎫ ⎪⎝⎭,作一条非水平直线交椭圆C 于R 、S 两点,若A ,B 为椭圆的左右顶点,记直线AR 、BS 的斜率分别为k 1、k 2,则12k k 是否为定值,若是,求出该定值,若不是,请说明理由.【解析】(1)设11(,)A x y ,22(,)B x y ,直线AB 的斜率显然存在,则12x x ≠,因为线段AB 中点Q的坐标为677⎛⎫- ⎪ ⎪⎝⎭,所以12x x +=,12127y y +=-,直线AB的斜率12126073AB QF y y k k x x ---===-,A ,B 两点在椭圆椭圆C 上,所以2211221x y a b +=,2222221x y a b +=,两式相减得22221212121212122222()()()()0x x y y x x x x y y y y a b a b --+-+-+=+=,即1212122212()0x x y y y y a b x x ++-+⋅=-,21207b =,整理得224a b =,①又c =且222a b c =+,②由①②可解得4a =,2b =,所以椭圆C 的方程为221164x y +=.(2)由2211164y kx x y =+⎧⎪⎨+=⎪⎩得22(14)8120k x kx ++-=,则2814M N k x x k +=-+,21214M N x x k=-+,226448(14)0k k ∆=++>,设M ,N 中点为00(,)E x y ,则024214E F x x k x k +==-+,0021114y kx k =+=+,因为M ,N 都在以P 为圆心的圆上,所以PM PN =,则点P 在线段MN 的垂直平分线上,依题意(0,2)P -,所以线段MN 的垂直平分线方程为12y x k=--,M ,N 中点为00(,)E x y 在此直线上,所以有0012y x k =--,即2211421414k k k k =⋅-++,解得4k =±.所以k的值为4±.(3)依题意有()20D ,,(4,0)A -,(4,0)B ,设直线RS 的方程为2(0)x ty t =+≠,由2221164x ty x y =+⎧⎪⎨+=⎪⎩得22(4)4120t y ty ++-=,则244R S t y y t +=-+,2124R S y y t =-+,124(2)22()24(6)66S R S R S R R S R S S R R S S R R S S R S Sx y ty ty y y ty y y y y k y k x y y ty ty y y ty y y ----++=⋅==++++22222124()2242(4)14412126(4)3()64S S S S t t y t y t t t t y t t y t⋅-+⋅+-+⋅+++===-+⋅+⋅-++,所以12k k 为定值13.变式10.(2024·全国·高三专题练习)如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,A ,B 分别是椭圆C 的左、右顶点,右焦点F ,1BF =,过F 且斜率为(0)k k >的直线l 与椭圆C 相交于M ,N 两点,M 在x轴上方.(1)求椭圆C 的标准方程;(2)记AFM △,BFN 的面积分别为1S ,2S ,若1232S S =,求k 的值;(3)设线段MN 的中点为D ,直线OD 与直线4x =相交于点E ,记直线AM ,BN ,FE 的斜率分别为1k ,2k ,3k ,求213()k k k ⋅-的值.【解析】(1)设椭圆的焦距为2(0)c c >.依题意可得12c e a ==,1a c -=,解得2a =,1c =.故2223b a c =-=.所以椭圆C 的标准方程为22143x y +=.(2)设点1(M x ,1)y ,2(N x ,2)y .若1232S S =,则121||||3212||||2AF y BF y = ,即有212y y =-,①设直线MN 的方程为1(0)x my m =+>,与椭圆方程223412x y +=,可得22(43)690m y my ++-=,则122643m y y m +=-+,122943y y m =-+,②将①代入②可得22843m m =+,解得m =则k =;(3)由(2)得1223243D y y m y m +==-+,24143D D x my m =+=+,所以直线OD 的方程为34m y x =-,令4x =,得3E y m =-,即(4,3)E m -.所以3341m k m -==--.所以2121321211()()()22y y k k k k k m k x x ⋅-=⋅+=⋅+-+,122112211212(2)(3)(2)(2)(3)(1)y y my x y y my my x x my my ++++==+-+-,212221212(1)333m y y my m y y my my ++=-+-2122212122(1)3()34m y y my m y y m y y my ++=-+-+,222222222222229(1)9(1)33343439612(1)4344434343m m my my m m m m m my my m m m++-+-+++===+-+-+-++++.变式11.(2024秋·福建莆田·高二莆田华侨中学校考期末)已知点(1,2-A 在椭圆C :22221(0)x y a b a b +=>>上,O 为坐标原点,直线l:21x a =的斜率与直线OA 的斜率乘积为14-(1)求椭圆C 的方程;(2)不经过点A 的直线l:y x t +(0t ≠且t R ∈)与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:AM AN =.【解析】(Ⅰ)由题意,2212124OA b k k a ⋅=-=-=-,即224a b =①又221314a b+=②联立①①解得21a b =⎧⎨=⎩所以,椭圆C 的方程为:2214x y +=.(Ⅱ)设()11,P x y ,()22,Q x y ,()11,R x y --,由22214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2210x t +-=,所以240t ∆=->,即22t -<<,又因为0t ≠,所以,()()2,00,2t ∈-⋃,12x x +=,2121x x t ⋅=-,解法一:要证明AM AN =,可转化为证明直线AQ ,AR 的斜率互为相反数,只需证明0AM AN k k +=,即证明0AQ AR k k +=.12122211AQ ARy y k k x x -++=++-()()()()1221121111y x y x x x ⎛⎛-+++ ⎝⎭⎝⎭=+-∴()()()()1221121111x t x x t x x x +-+++⎝⎭⎝⎭=+-()()()12121211x t x x x x +++=+-)()()()2121011t t x x -+==+-∴0AM AN k k +=,∴AM AN =.解法二:要证明AM AN =,可转化为证明直线AQ ,AR 与y 轴交点M 、N 连线中点S 的纵坐标为2-,即AS 垂直平分MN 即可.直线AQ 与AR 的方程分别为:()222:121AQ y l y x x ++=--,()112:121AR y l y x x -+=---,分别令0x =,得2221M y y x -=-1121N y y x -+=-+而21212211M Ny y y y x x --+=+-+,同解法一,可得M N y y +=2M N S y y y +==,即AS 垂直平分MN .所以,AM AN =.变式12.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b+=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.【答案】103ty x -+-=(或330x ty -+=);7.【解析】(1)由题得AB :4143x ty -+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t →=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉=sin PMB∠==47=,即()minsin PMB∠故答案为:103tyx-+-=;7。
圆锥曲线中离心率及其范围的求解专题【高考要求】1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。
2.掌握解析几何中有关离心率及其范围等问题的求解策略;3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。
【热点透析】与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决:(1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化范围;(3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。
直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。
因此,它们的应用价值在于:① 通过参数θ简明地表示曲线上点的坐标;② 利用三角函数的有界性及其变形公式来帮助求解范围等问题; (6)构造一个二次方程,利用判别式∆≥0。
2.解题时所使用的数学思想方法。
(1)数形结合的思想方法。
一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。
(2)转化的思想方汉。
如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。
(3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。
(4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。
【题型分析】1. 已知双曲线22122:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为( )A BCD .解:由已知可得抛物线的准线为直线2a x c =-,∴ 方程为224a y x c=;由双曲线可知2(,)b P c a ,∴ 2224()b a c a c =⨯,∴ 222222b b a a=⇒=,∴ 212e -=,e =2.椭圆22221x y a b+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( B )AB1- C.4(2) D解析:设点P 为椭圆上且平分正三角形一边的点,如图,由平面几何知识可得2112||:||:||2PF PF F F =,所以由椭圆的定义及cea=得:1212||212||||F F c e a PF PF ====+,故选B . 变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率1e =+.3. (09浙江理)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) ABCD【解析】对于(),0A a ,则直线方程为x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因此222,4,ABBC a b e =∴=∴= C4. (09江西理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) ABC .12D .13【解析】因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a =从而可得c e a == B 5.(08陕西理)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )1F 2F xOyPA.BCD6.(08浙江理)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(D )(A )3 (B )5 (C )3 (D )57.(08全国一理)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .388.(10辽宁文)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A(B(C(D解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为:b a ,直线FB 的斜率为:b c -,()1b ba c∴⋅-=-,2b ac ∴= 220c a ac --=,解得c e a ==9.(10全国卷1理)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.解析:答案:33如图,设椭圆的标准方程为22x a +22y b=1(a >b >0)不妨设B 为上顶点,F 为右焦点,设D (x ,y ).由BF =2FD ,得(c ,-b )=2(x -c ,y ),即2()2c x c b y =-⎧⎨-=⎩,解得322c x by ⎧=⎪⎪⎨⎪=-⎪⎩,D (32c ,-2b ).由D 在椭圆上得:22223()()22b c a b -+=1, ∴22c a=13,∴e =ca.【解析1如图,||BF a ==, 作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r ,得 1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232,c a a a =-e ⇒=【解析2】设椭圆方程为第一标准形式22221x y a b+=,设()22,D x y ,F 分 BD 所成的比为2,222230223330;122212222c c c c y b x b y b bx x x c y y -++⋅-=⇒===⇒===-++,代入222291144c b a b +=,e ⇒=10. (07全国2理)设12F F ,分别是双曲线2222x y a b -的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( B ) ABCD解1222221222()()(2)AF AF AF a a e AF AF c ì-==ïï??íï+=ïî11. 椭圆22221(0,0)x y a b a b+=>>的左焦点为F ,若过点F 且倾斜角为45o的直线与椭圆交于A 、B 两点且F 分向量BA 的比为2/3,椭圆的离心率e 为: 。
专题52离心率及其范围问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线离心率问题是热点之一,从命题的类型看,有小题,也有大题,就难度来说,小题大难度基本处于中档,而大题中则往往较为简单,小题中单纯考查椭圆、双曲线的离心率的确定较为简单,而将三种曲线结合考查,难度则大些,本文在分析研究近几年高考题及各地模拟题的基础上,重点说明离心率及其范围问题的解法与技巧.一、基础知识1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距)(1)椭圆:()0,1e ∈;(2)双曲线:()1,+e ∈∞;2、圆锥曲线中,,a b c 的几何性质及联系(1)椭圆:222a b c=+①2a :长轴长,也是同一点的焦半径的和:122PF PF a +=;②2b :短轴长;③2c :椭圆的焦距;(2)双曲线:222c b a=+①2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a -=;②2b :虚轴长;③2c :双曲线的焦距;3、求离心率的方法:求椭圆双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在等边三角形、平行四边形、圆等等特殊图形,那么可考虑寻求几何关系,进而找到,,a b c 之间的比例,从而可求解;(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解;4、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求,例如椭圆与双曲线对横坐标的范围有要求,如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口;(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可;(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率;【注】在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞.【经典例题】例1.【2016年高考浙江卷】已知椭圆1C :2221x y m +=()1m >与双曲线2C :2221x y n-=()0n >的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则()A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <例2.【2018年高考北京卷】已知椭圆()222210x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为;双曲线N 的离心率为.例3.【2018年高考全国II 卷】已知1F ,2F 是椭圆()222210x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为()A.23B .12C .13D .14例4.【2019年高考全国II 卷】设F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,O 为坐标原点,以OF为直径的圆与圆222x y a +=交于,P Q 两点.若PQ OF =,则C 的离心率为()A B C .2D例5.【2019年高考全国I 卷】已知双曲线C :()222210,0x y a b a b -=>>的左,右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点,若1F A AB = ,120F B F B ⋅=,则C 的离心率为.例6.【福建省厦门市厦门外国语学校2019届高三最后一模】双曲线M 的焦点是12,F F ,若双曲线M 上存在点P ,使12PF F △是有一个内角为23π的等腰三角形,则M 的离心率是.例7.【江苏省南通、如皋市2018-2019学年第二学期高三年级联考】已知12,F F 分别为椭圆2222:1x y E a b+=()0a b >>的左,右焦点,点,A B 分别是椭圆E 的右顶点和上顶点,若直线AB 上存在点P ,使得12PF PF ⊥,则椭圆C 的离心率e 的取值范围是.例8.【2016年高考全国III 卷】已知O 为坐标原点,F 是椭圆()2222:10x y C a b a b+=>>的左焦点,,A B分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()A.13B.12 C.23D.34例9.【2009年高考全国II 卷】已知双曲线2222:1x y C a b -=()0,0a b >>的右焦点为F ,过F 的直线交C 于,A B 两点,若4AF FB =,则双曲线C 的离心率为()A .65B.75C.58D.95例10.【2020届湖南省长沙市长郡中学高三下学期3月阶段性测试】如图,已知梯形ABCD 中2AB CD =,点E 在线段AC 上,且25AE AC =,双曲线过C ,D ,E 三点,以A ,B 为焦点,则双曲线离心率e 的值为()A B .C .3D【精选精练】1.【2019年高考模拟试题】设点12,A A 分别为椭圆22221x y a b+=()0a b >>的左右顶点,若在椭圆上存在异于点12,A A 的点P ,使得2PO PA ⊥,其中O 为坐标原点,则椭圆的离心率e 的取值范围是()A.10,2⎛⎫⎪⎝⎭B.0,2⎛⎫⎪⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.,12⎛⎫⎪⎪⎝⎭2.【云南省昆明市第一中学2018届新课标高三月考卷】已知双曲线()2222:1,0x y C a b a b-=>的左、右焦点分别为12,F F ,过1F 的直线与双曲线C 的左、右两支分别交于,A B 两点,若2AB AF =,27cos 8BAF ∠=,则双曲线C 的离心率为.3.【2018届四川省成都七中高考数学一诊试卷】已知12,F F 是双曲线()222210,0x y a b a b-=>>的左右焦点,以12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N ,且M ,N 均在第一象限,当直线1MF ON 时,双曲线的离心率为e ,若函数()222f x x x x=+-,则()f e =.4.【2017届陕西省宝鸡市一模试卷】已知双曲线()22:10C mx ny mn +=<的一条渐近线与圆226290x y x y +--+=相切,则C 的离心率等于()A.53B.54 C.53或2516D.53或545.【2014年高考数学浙江卷】设直线()300x y m m -+=≠与双曲线22221x y a b-=()0,0a b >>的两条渐近线分别交于点,A B ,若点(),0P m 满足PA PB =,则该双曲线的离心率是.6.【湖南省岳阳市2019届高三第二次模拟考试】设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,O为坐标原点,若双曲线及其渐近线上各存在一点,Q P ,使得四边形OPFQ 为矩形,则其离心率为.7.【四川省成都市2019届高三第一次诊断性检测】设椭圆()2222:10x y C a b a b +=>>的左,右顶点为,A B .P 是椭圆上不同于,A B 的一点,设直线,AP BP 的斜率分别为,m n ,则当2233a b mn mn⎛⎫-+ ⎪⎝⎭()3ln ln m n ++取得最小值时,椭圆C 的离心率为()A .15B .22C .45D .328.【河北省邯郸市2018届第一次模拟考试】设双曲线Ω:()222210,0x y a b a b-=>>的左顶点与右焦点分别为A ,F ,以线段AF 为底边作一个等腰AFB △,且AF 边上的高h AF =.若AFB △的垂心恰好在Ω的一条渐近线上,且Ω的离心率为e ,则下列判断正确的是()A .存在唯一的e ,且3,22e ⎛⎫∈⎪⎝⎭B .存在两个不同的e ,且一个在区间31,2⎛⎫⎪⎝⎭内,另一个在区间3,22⎛⎫⎪⎝⎭内C .存在唯一的e ,且31,2e ⎛⎫∈ ⎪⎝⎭D .存在两个不同的e ,且一个在区间31,2⎛⎫ ⎪⎝⎭内,另一个在区间3,22⎛⎫⎪⎝⎭内9.【2014年高考湖北卷】已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C.3D.210.已知12,F F 是椭圆()2222:10x y E a b a b+=>>的左右焦点,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是()A.,15⎫⎪⎪⎣⎭ B.,12⎫⎪⎪⎣⎭C.0,5⎛ ⎝⎦D.0,2⎛ ⎝⎦。
圆锥曲线中离心率的相关问题——求值、取值范围(或最值)授课时间:2018年5月4日一.近五年高考考查概况年份,类型,题号考查曲线考查题型分值2013全国1卷,理科,4 双曲线 求离心率 5分 2014全国1卷,理科,202014全国2卷,理科,20,(1) 椭圆 椭圆 根据离心率求方程求离心率 12分 5分 2015全国2卷,理科,11 双曲线 求离心率5分 2016全国2卷,理科,11 2016全国3卷,理科,11 双曲线 椭圆 求离心率 求离心率 5分 5分 2017全国1卷,理科,15 2017全国2卷,理科,9 2017全国3卷,理科,10双曲线与圆 双曲线 椭圆求离心率 求离心率 求离心率5分 5分 5分二.问题分析与策略求圆锥曲线的离心率的值、取值范围(或最值),是解析几何中的重点、难点,它也是历年高考中考查的热点之一. 在圆锥曲线的诸多性质中,离心率也同时会渗透于各类题型中。
这类问题通常有以下两类:一是根据条件利用定义直接求椭圆、双曲线的离心率;二是根据一定条件求椭圆、双曲线离心率的取值范围(或最值). 无论是哪类问题,一般都要采用以下方法与策略:一个关键:寻求建立,,a b c 之间(或其中两者)的一个等式或不等式;二个切入:从“形”入手、从“数”下手;三个方向:从圆锥曲线的定义思考、从几何图形的性质出发、从方程(或不等式)的角度落笔;四种工具:平面几何基础知识、平面向量知识、三角函数、基本(重要)不等式; 五种思想:数形结合思想、方程思想、函数思想、等价转化思想、分类讨论思想.三.题型分类与讲解1.利用定义求离心率例1.(宁夏银川一模)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是21F F 、,点P 在椭圆上,O 为坐标原点,若2121F F OP =,且221a PF PF =∙,则该椭圆的离心率为( )43.A 23.B 22.C 21.D【变式练习1-1】已知双曲线)0,0(12222>>=-b a by a x 左、右焦点分别是21F F 、,点P 在双曲线上,且b PF PF 321=+,ab PF PF4921=∙,则该双曲线的离心率为( )34.A 35.B 49.C 3.D例2.已知椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别是21F F 、,过点2F 的直线与椭圆交于B A 、两点,若AB F 1∆是以A 为直角顶点的等腰三角形,则椭圆的离心率为( ) 22.A 32.-B 25.-C 36.-D【变式练习2-1】已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别是21F F 、,过点2F 的直线与双曲线的右支交于B A 、两点,若AB F 1∆是以A 为直角顶点的等腰三角形,则2e =( )221.+A 224.-B 225.-C 223.+D【变式练习2-2】如右图所示,点C B A ,,是双曲线)0,0(12222>>=-b a b y a x 上的三个点,AB 经过原点O ,AC 经过右焦点F ,且BFC ∆是以F 为直角顶点的等腰三角形,则该双曲线的离心率是( ) 10.A 210.B 23.C 3.D例 3.旧题新解(2016全国3卷,11题,5分)已知O 为坐标原点,F 是椭圆)0(1:2222>>=+b a by a x C 的左焦点,B A ,分别为C 的左,右顶点. P 为C 上的一点,且x PF ⊥轴. 过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE 的中点,则C 的离心率为( ) 31.A 21.B 32.C 43.D2. 求离心率的取值范围例4.(1)【显性不等关系】已知双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,若过点F 且倾斜角为o 45的直线与双曲线的左支没有公共点,则此双曲线离心率的取值范围为 .(2)【隐性不等关系】(2014湖北七市联考)已知双曲线)0,0(12222>>=-b a by a x 的左右焦点分别为)0,(),0,(21c F c F -,若双曲线存在一点P 使caF PF F PF =∠∠1221sin sin ,则该双曲线的离心率的取值范围为 .例 5.设点P 是椭圆上)0(1:2222>>=+b a by a x C 的一点,21F F 、分别是其左、右焦点,若o 2190=∠PF F ,则该椭圆的离心率的取值范围为 .思路1:利用图形的几何特性思路2:利用基本(重要)不等式思路3:利用三角函数的有界性思路4:利用一元二次方程B 2B 1F 1y xO F 2P课后巩固练习1.21,F F 为双曲线)0,0(1:2222>>=-b a by a x C 的左右焦点,O 为原点,点P 为双曲线上一点,且a OP 3=,2211PF F F PF 、、成等比数列,则双曲线的离心率( ) 321.A 37.B 372.C 337.D 2.改编:(2015江西八校联考,9)已知圆,02:221=++y cx x C 圆,02:222=+-y cx x C 椭圆)0(1:2222>>=+b a by a x C ,0>c ,且222b a c -=. 若圆21C C ,都在椭圆内,则椭圆离心率的最大值是( )21.A 22.B 31.C 33.D 3.(2016湖南十校联考,11)设双曲线)0,0(1:2222>>=-b a b y a x C 的两条渐近线与直线ca x 2=分别交于B A ,两点,F 为该双曲线的右焦点. 若009060<∠<AFB ,则该双曲线的离心率的取值范围是( ))2,1.(A )2,2.(B )2,1.(C ),2.[+∞D4.(2017全国卷1,15)已知双曲线)0,0(1:2222>>=-b a by a x C 的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于N M ,两点. 若o 60=∠MAN ,则C 的离心率为 .5.(1)已知)0,(),0,(21c F c F -为椭圆)0(1:2222>>=+b a by a x C 的两个焦点,P 为椭圆上一点,且221c PF PF =∙→→,则椭圆的离心率的取值范围为 .(2)已知)0,(),0,(21c F c F -为双曲线)0,0(1:2222>>=-b a by a x C 的左右焦点,若P 为双曲线上一点,且22121c PF PF -=∙→→,则双曲线的离心率的取值范围为 .。
第一篇圆锥曲线专题05离心率的求法一、求离心率值的问题求离心率的值需要构造一个含有,,a b c 或数字的等式,而等式关系如何构造,只能依照题目中给出的条件结合几何形状见招拆招,没套路可言。
1、基本方法:从定义出发,特别注意第一定义中的焦点三角形问题,以椭圆为例,在焦点三角形中三条边中蕴含了,a c 的关系,因此如果能找出三条边的关系也就可以求出离心率的值。
例1:如图,12,F F 是椭圆221:14x C y +=和双曲线2C 的公共焦点,若四边形12AF BF 为矩形,则双曲线的离心率为____________.【解析】关于共焦点的问题,c 相等,在椭圆里面1224AF AF a +==在12RT AF F ∆中满足2221212+=AF AF F F ,解得12AF AF则在双曲线中a c ==62e =例2:设椭圆的两个焦点分别是12,F F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率为_________.2、几何法,几何方法不是方法,而是分析几何图形的能力,根据题目中给出的或隐含的条件找出等量关系即可,比如题目中给出的等腰,中垂线,垂直等条件都可能是破解题目的入手点。
例3:已知,A B 为双曲线E 的左右顶点,点M 在E 上,ABM ∆为等腰三角形且顶角为120︒,则E 的离心率为_________.上图中A,B 两点不是焦点,2AB a =,且条件中没有b 和c 的量,因此无法构成等量关系,但是注意双曲线的方程本身就是包含,a b 的等式,因此题目的关键不是构造等式而是求出点M 的坐标,代入到双曲线的方程中即可求出离心率。
【解析】从M 点作x 轴的垂线,垂足为C ,因为2,60BM a MBC ︒=∠=所以,BC a MC ==,所以点M 的坐标为(2)a 代入到双曲线中得2222(2)(3)1a a b -=整理得e =例4:设12,F F 分别是椭圆2222:1x y E a b+=的左右焦点,过点1F 的直线交椭圆E 于A,B 两点,11||3||AF BF =,若23cos 5AF B ∠=,求椭圆E 的离心率。
圆锥曲线中离心率及其范围的求解专题【高考要求】1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。
2.掌握解析几何中有关离心率及其范围等问题的求解策略;3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。
【热点透析】与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化范围;(3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。
直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。
因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标;② 利用三角函数的有界性及其变形公式来帮助求解范围等问题; (6)构造一个二次方程,利用判别式∆≥0。
2.解题时所使用的数学思想方法。
(1)数形结合的思想方法。
一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。
(2)转化的思想方汉。
如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。
(3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。
(4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。
【题型分析】1.已知双曲线22122:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为( )ABCD.解:由已知可得抛物线的准线为直线2a x c =-,∴ 方程为224a y x c=;由双曲线可知2(,)b P c a ,∴ 2224()b a c a c =⨯,∴ 222222b b a a=⇒=,∴ 212e -=,e =2.椭圆22221x y a b+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为( B )AB1 C.4(2) D解析:设点P 为椭圆上且平分正三角形一边的点,如图,由平面几何知识可得2112||:||:||2PF PF F F =,所以由椭圆的定义及ce a =得:1212||212||||F F c e a PF PF ====-+,故选B .变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率1e =.3. 过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )ABCD 【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a abB C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,1F 2F x O y P因此222,4,AB BC a b e =∴=∴= C4. 过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( )ABC .12D .13【解析】因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a =从而可得c e a ==B 5.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )ABCD6.若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(D )(A )3 (B )5 (C )3 (D )57.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .388.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) (A(B(C(D解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为:ba ,直线FB 的斜率为:bc -,()1b ba c∴⋅-=-,2b ac ∴= 220c a ac --=,解得c e a ==. 9.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD,则C 的离心率为________.解析:答案:33如图,设椭圆的标准方程为22x a +22y b=1(a >b >0)不妨设B 为上顶点,F 为右焦点,设D (x ,y ).由BF =2FD,得(c ,-b )=2(x -c ,y ),即2()2c x c b y =-⎧⎨-=⎩,解得322c x by ⎧=⎪⎪⎨⎪=-⎪⎩,D (32c ,-2b ).由D在椭圆上得:22223()()22b c a b -+=1, ∴22c a =13,∴e =c a. 【解析1||BF a ==, 作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r ,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a =-=-又由||2||BF FD =,得232,c a a a =-e ⇒=【解析2】设椭圆方程为第一标准形式22221x y a b +=,设()22,D x y ,F分 BD所成的比为2,222230223330;122212222c c c c y b x b y b bx x x c y y -++⋅-=⇒===⇒===-++,代入222291144c b a b +=,e ⇒=10. 设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( B ) ABCD 解1222221222()()(2)AF AF AF a a e AF AF c ì-==ïï??íï+=ïî11. 椭圆22221(0,0)x y a b a b+=>>的左焦点为F ,若过点F 且倾斜角为45o的直线与椭圆交于A 、B 两点且F 分向量BA 的比为2/3,椭圆的离心率e 为: 。
本题通法是设直线方程,将其与椭圆方程联立,借助韦达定理将向量比转化为横坐标的比。
思路简单,运算繁琐。
下面介绍两种简单解法。
解法(一):设点A(),A A x y ,B (),B B x y ,由焦半径公式可得32A B a ex a ex +=+,则2()3()A B a ex a ex +=+,变形2()A B B a ex a ex a ex +--=+,所以2()A B B e x x a ex -=+因为直线倾斜角为45o,所以有2e e =提示:本解法主要运用了圆锥曲线焦半径公式,借助焦半径公式将向量比转化为横坐标的关系。
焦半径是圆锥曲线中的重要线段,巧妙地运用它解题,可以化繁为简,提高解题效率。
一般来说,如果题目中涉及的弦如果为焦点弦,应优先考虑焦半径公式。
解法(二):1125BE BF AB e e ==∙1135AD AF AB e e ==∙AC ==AD BE AC -==1315AB e e ∙-e =12. 设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB = .椭圆C的离心率 ;解: 设1122(,),(,)Ax y B x y ,由题意知1y <0,2y >0.(Ⅰ)直线l 的方程为)y x c =-,其中c =联立2222),1y x c x yab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-= 解得12y y ==因为2AF FB =,所以122y y -=. 即 2= 得离心率 23c e a ==. ……6分13. A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OP A =2π,则椭圆离心率的范围是_________.解析:设椭圆方程为2222b y a x +=1(a >b >0),以OA 为直径的圆:x 2-ax +y 2=0,两式联立消y 得222ab a -x 2-ax +b 2=0.即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2e a -a ,0<x 2<a ,即0<2ea -a <a 22⇒<e <1.答案:22<e <114. 在椭圆22221(0)x y a b a b+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212MF MF b ⋅=,椭圆的离心率的取值范围是;解析: 由椭圆的定义,可得 212MF MF a +=又2212MF MF b ⋅=,所以21,MF MF 是方程22220x ax b -+=的两根,由22(2)420a b ∆=--⨯≥, 可得222a b ≥,即2222()a c a ≥-所以c e a =≥,所以椭圆离心率的取值范围是 15.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)解析 由题意可知2233()()22a a a e a c c ->+即331122e e->+解得2e >故选B.16.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F ≤2,则该椭圆离心率的取值范围是( )A.1(0]2,B.(0 C.1[1)2,D.1)解析 由题意得2222a c c ≤⨯∴e ≥故选D. 17.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )A .(0B .(0C .1) D.1)分析 通过题设条件可得22PF c =,求离心率的取值范围需建立不等关系,如何建立?解析:∵线段1PF 的中垂线过点2F , ∴22PF c =,又点P 在右准线上,∴22a PF c c≥-即22a c c c ≥-∴c a ≥1e ≤<,故选D. 点评 建立不等关系是解决问题的难点,而借助平面几何知识相对来说比较简便.18. 双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为(B )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?利用第二定义及焦半径判断0x a ³解析:∵|PF 1|=2|PF 2|,∴|PF 1|-|PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥所以双曲线离心率的取值范围为13e <≤,故选B. 解2 如图2所示,设2PF m =,12(0)F PF θθπ∠=<≤,22c e a ===当点P 在右顶点处有θπ=.∵1cos 1θ-<≤,∴(]1,3e ∈.选B.小结 本题通过设角和利用余弦定理,将双曲线的离心率用三角函数的形式表示出来,通过求角的余弦值的范围,从而求得离心率的范围. 点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.19.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M总在椭圆内部,则椭圆离心率的取值范围是(C )A .(0,1)B .1(0,]2C. D. 解 据题意可知,∠1F M 2F 是直角,则垂足M 的轨迹是以焦距为直径的圆.所以2222212cb c b a c e <⇒<=-⇒<.又(0,1)e ∈,所以)22,0(∈e .选C. 小结 本题是最常见的求离心率范围的问题,其方法就是根据已知条件,直接列出关于 a ,b ,c 间的不等量关系,然后利用a ,b ,c 间的平方关系化为关于a ,c 的齐次不等式,除以2a 即为关于离心率e 的一元二次不等式,解不等式,再结合椭圆或双曲线的离心率的范围,就得到了离心率的取值范围.20. 已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e的最大值为:( )A43 B 53 C 2 D 73∵|PF 1|=4PF 2|,∴|PF 1|-|PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥所以双曲线离心率的取值范围为513e <≤,故选B.21. 已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( ) A (1,2] B (1,3] C [2,3] D [3,)+∞解析222122222(2)4448PF a PF a PF a a a PF PF PF +==++≥+=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤.22. 已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,椭圆的离心率e 的取值范围是; 。