第九章反比例函数第一课时教案
- 格式:doc
- 大小:122.00 KB
- 文档页数:4
沪科版数学九年级上册21.5.1反比例函数教学设计上述几个函数都具有 的形式,一般地,形如y=k/x(k 是常数,k ≠0)的函数叫反比例函数。
1、反比例函数y=k/x,自变量x 的取值范围是不等于0的一切实数,函数y 的值也不等于0。
k 叫做比例系数,k ≠0。
2、有时反比例函数也可写成xy=k(k ≠0)或 y=k/x(k ≠0). 练习1.下列函数中,哪些是反比例函数(x 是自变量)?并说出反比例函数的比例系数。
2. 如果反比例函数y=k/x 的图像过点P(-2,3),那么k 的值是( )用待定系数法求反比例函数解析式的一般步骤: ①设出含有待定系数的反比例函数解析式, ②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数; ④写出反比例函数解析式.例1.在压力不变的情况下,某物体承受的压强 p Pa 是它的受力面积S m 2的反比例函数,如图(1)求p 与S 之间的函数表达式;(2)当S=0.5时,求p 的值.变式:已知y =(m 2+2m)x m2+m -1是y 关于x 的反比例函数,求m 的值及函数关系式变式1、已知函数熟记反比例函数的定义,理解概念梳理知识点,理解概念。
注意反比例函数图像的步骤k y x=(2)(1)k k y x-+=是反比例函数,则k 必须满足___。
变式3、已知函数y=2y1-y2,y1与x+1成正比例,y2与x成反比例,当x=1时,y=4,当x=2时,y=3,求y与x的函数关系式。
中考链接若函数是反比例函数,求k的值,并写出该反比例函数的解析式. 学生要独立完成练习,然后进行展示,其他学生相互补充。
通过例题的学习,由易到难,加深对知识点的理解和掌握.作业必做题: 随堂练习P44选做题: 习题21.5第1、2、3题独立完成学生独立完成例题变式,养成独立完成作业的习惯课堂小结反比例函数:定义/三种表达方式用待定系数法求反比例函数解析式学生独自总结回顾课堂知识,强化基础。
《反比例函数》第一课时教案《《反比例函数》第一课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!课题17.1.1反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。
2.会判断一个给定函数是否为反比例函数。
3.会根据已知条件用待定系数法求反比例函数的解析式。
【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。
难点:反比例函数的意义。
【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y 与另一腰长x之间的函数关系式。
(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。
学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。
1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。
【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x②y/x=3③y=6x-1④xy=12⑤y=5/x+2⑥y=x/2⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,(1)写出y与x的函数关系式;(2)当x=7时,y等于多少?【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。
【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。
课题:17.1.2反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。
反比例函数(第一课时)教学设计教材依据苏科版八年级数学(下)第九章反比例函数第一节一、学生知识状况分析本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念。
通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义。
由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解。
教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义。
二、教学任务分析1、教材分析在八年级上学期第五章,学习了函数、一次函数。
学生对于函数知识有了一定的基础。
此时,再接触反比例函数比较容易。
本节课从已知的一次函数过渡到反比例函数,再引用生活中大量的实例导出反比例函数模型,能激起学生学习本章内容的兴趣,并让学生感受到生活中处处有数学,数学又服务于生活。
2、学情分析由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相互关系及变化规律,并逐步加深理解。
在活动中,教师应注意提供思考或研究问题的方向。
3、教学思想知识、技能、情感与态度并重,激发学生的学习兴趣,培养学生参与意识,竞争意识和合作精神。
在教学过程中,坚持以人为本,关注每一个学生的发展.通过师生之间,生生之间的互动交流,让学生充分参与,感受数学学习的快乐,提高学生的人文素养,培养终身学习的能力。
三、教学目标知识与技能:1、理解反比例函数的概念;2、能判断一个给定的函数是否为反比例函数;3、会根据已知条件求出反比例函数的解析式。
过程与方法:通过探索显示生活中数量间的反比例关系,体会和认识反比例函数是刻画显示世界中特定数量关系的一种数学模型,进一步理解常量和变量的辩证关系和反映在函数概念中的运动变化的观点。
反比例函数的图象与性质教案教学设计一、教学目标:1. 知识与技能:让学生掌握反比例函数的定义,理解反比例函数的图象和性质,能够运用反比例函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索反比例函数的图象与性质,培养学生的抽象思维能力和数形结合思想。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极进取的精神,使学生认识到数学在生活中的重要性。
二、教学重点与难点:1. 教学重点:反比例函数的定义,反比例函数的图象与性质。
2. 教学难点:反比例函数图象的理解,反比例函数性质的推导。
三、教学方法与手段:1. 教学方法:采用引导发现法、问题驱动法、合作交流法等。
2. 教学手段:利用多媒体课件、反比例函数图象软件、黑板等。
四、教学过程:1. 导入新课:通过展示实际问题,引导学生思考反比例函数的定义,引出本节课的内容。
2. 自主探究:让学生利用软件绘制反比例函数的图象,观察图象特征,引导学生发现反比例函数的性质。
3. 小组讨论:4. 教师讲解:对学生的探究结果进行点评,讲解反比例函数的图象与性质,引导学生深入理解。
5. 巩固练习:布置练习题,让学生运用所学知识解决问题,巩固反比例函数的图象与性质。
6. 课堂小结:五、课后作业:1. 完成练习册上的相关题目。
2. 调查生活中反比例函数的应用实例,下节课分享。
教学反思:课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
六、教学策略与实施1. 案例分析:通过分析生活中的实际案例,如化学实验中的浓度配比、经济学中的成本与产量关系等,让学生直观地感受到反比例函数的应用。
2. 数学软件辅助:利用数学软件或在线图形计算器,让学生实时观察不同反比例函数的图象,从而加深对函数性质的理解。
3. 分层教学:针对不同学生的学习水平,设计不同难度的教学内容和练习题,确保每个学生都能在课堂上得到有效的学习。
4. 互动式教学:鼓励学生在课堂上提问和分享自己的见解,通过问答和讨论,提高学生的参与度和思维能力。
第一课时反比例函数的意义教学任务分析教学目标知识与技能1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想过程与方法经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。
情感态度与价值观培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值。
重点理解反比例函数的概念,能根据已知条件写出函数解析式难点理解反比例函数的概念教学流程安排活动流程图活动内容和目的活动1 观察分析引入新知活动2 归纳概括掌握新知活动3 分组讨论体会运用活动4 分析例题形成能力活动5 归纳小结布置作业1、创设问题情境,感受数学源于生活。
2、分析问题,概括出反比例函数的概念。
3、列举生活中具有反比关系的素材,加深对反比例函数概念的理解。
4、根据已知条件求出反比例函数解析式。
5、回顾本节内容,增强学生学习数学的热情。
教学过程设计问题与情境师生行为设计意图【活动1】学生观看章前图片,教创设问题情境,让学问题:思考:下列问题中,变量间的对应关系可以用怎样的函数关系表示?这些函数有什么共同特点?1、要画一个面积是12cm2的长方形,它的宽y(单位:cm)随长x(单位:cm)的变化而变化;2、从中山到广州80km,选择不同的交通工具,所用时间t(单位:h)随速度v(单位:km/h)的变化而变化3、小明带了10元钱去商店买作业本,可买作业本的本数y(单位:本)随不同作业本的单价x(单位:元)的变化而变化.师提出问题:学生思考、交流,回答问题。
xyvtxy108012===在活动中教师应重点关注:1、学生能否正确理解路程一定时,运行时间与运行速度两个变量间的对应关系。
2、学生能否从函数是解决变量间存在单值对应关系思想出发,准确写出函数解析式。
3、对解答问题有困难的学生,如何适当加以个别引导。
5.2反比例函数(1)教材分析:反比例函数是初中阶段学习的一类重要函数,在形式、图象以及性质等各方面与一次函数都有很大的区别,同时又存在一些联系.本节课主要介绍反比例函数一些基本概念,为后面将要学到的内容做了准备. 教学设计:在教学活动中,引导学生通过独立思考、自主探索和合作交流,经历反比例函数概念的形成过程.教学中,充分利用学生已有的生活经验和成反比例量的知识,帮助学生建立反比例函数的概念. 教学目标:知识与技能:1、从已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解.2、抽象反比例函数概念的过程领会反比例函数的意义,理解反比例函数的概念.过程与方法:1、通过对两个变量之间相依关系的讨论,培养学生的辩证唯物主义观点.2、抽象反比例函数概念的过程,领会反比例函数的意义.情感态度和价值观:1、抽象反比例函数概念的过程,提高学生学习数学的兴趣.2、通过分组讨论,培养学生合作交流意识和探索精神.学习重难点:重点:理解和领会反比例函数的概念. 难点:领悟反比例函数的概念. 课前准备教具准备 教师准备PPT 课件 课时安排:4课时 教学过程: 情景导入:阅读课本第14页,“观察与思考”完成以下内容: 1.变量间的对应关系可用怎样的函数关系式表示? 2.这些函数有什么共同特点? 【设计意图】:先让学生进行小组合作交流,再在全班范围内进行问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看成函数,让学生了解所讨论的反比例函数的表达形式. 请观察这几个式子有什么共同特点?84y x =200t v=10q p-=形如ky x=(k 是常数,k ≠0)的函数叫做反比例函数 例1.写出下列问题中y 与x 之间的函数表达式,并判断是否为反比例函数.(1)三角形的面积为36cm 2,底边长y (cm)与该底边上的高x (cm) (2)圆柱的体积为60cm 3,它的高h (cm)与底面的面积 s (cm 2) (3)圆柱的体积为60cm 2,它的高h (cm)与底面的半径 r (cm)解:(1)由三角形的面积公式,得为1/2xy =36,于是 y=72/x ,所以当三角形的面积为定值36cm 2时,y 是x 的反比例函数.(2)由圆柱的体积公式,得sh =60,于是h =60/s ,所以当圆柱的体积为定值60cm 3时,h 是s 的反比例函数.(3)由圆柱的体积公式得 260r h π= ,于是h =60/∏r2 , 由于分母上自变量r 的次数是2,所以h 不是底面半径r 的反比例函数.例2.已知y 是x 的反比例函数,且当x =2时,y =-3,求这个反比例函数的表达式.解:设所求的反比例函数的表达式为将x =2,y =-3,代入上式,得-3= ,解得k =-6,所以,这个反比例函数的表达式为【设计意图】:通过例题引导学生经历分析和解题过程,使知识循序渐进地进入学生的思维空间,这种体验可以帮助学生更好地理解反比例函数的概念. 当堂检测:1.是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.2.如果一个反比例函数的图象经过点(-2,5),则其解析式为 . 3.若一次函数y =kx +b 与反比例函数ky x=的图象的交点是(2,3),则k = ,b = .4.已知点(2,5)在反比例函数ky x=的图象上,其中“□”是被污染的无法辨认的字迹,则下列各点在该反比例函数图象上的是( )A .(2,-5)B .(-5,-2)C .(-3,4)D .(4,-3)6y x-=6y x-=k2课堂小结:本节课学习了反比例函数的定义作业:课本 P.16第2题板书设计:5.2反比例函数(1) 反比例函数的定义例1例2。
反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。
2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。
教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。
今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。
这两种量之间是反比例关系。
活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。
(2)三角形的面积肯定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积肯定,底面积和高。
反比例函数的图像和性质(第一课时)核心目标:学会用描点法作反比例函数的图象,理解反比例函数的图像的性质预习部分(课前小测):1. 下列函数中哪些是反比例函数①②③④⑤⑥⑦⑧2、反比例函数关系式是。
k的取值范围是;的取值范围是;函数y的取值范围。
3、一次函数y=kx+b(k≠0)的图象是,称为如图:当k>0时, 当k < 0时,,y随x的增大而y随x的增大而4、还记得作函数图象的三个步骤是、、。
(注意:列表时自变量取值易于计算,易于描点。
)5、预习课本第4—6页内容,要求能有所理解。
二、探究部分:<1、请画出函数和图象。
《…【、…2、小结:1)、图象的形状:图像分别都是由两支曲线组成,因此称反比例函数的图象为。
2)、图象的位置: 函数的两支曲线分别位于第象限内.函数的两支曲线分别位于第象限内。
3)反比例函数的图象在哪两个象限,由确定。
当时,两支双曲线分别位于一、三象限内;当时,两支双曲线分别位于二、四象限内。
4)图象的增减性:当时, y随的x增大而;当时, y随的x增大而。
三、尝试练习(A组)课本第6页练习1、2题(各人完成后小组成员间交换答案,对有疑问的地方进行讨论)。
四、反馈练习:1、基础训练:(A组)1)、函数的图象在第________象限,在每一象限内,y 随x 的增大而_________.2)、函数的图象在第________象限,在每一象限内,y 随x 的增大而_________.3)、函数,当x>0时,图象在第____象限,y随x 的增大而_________.4)、反比例函数的图象大致是()2、小组合作提高题(B组):1)、写出符合下列条件的反比例函数解析式。
(1)函数的图象位于第一三象限_____________;(2)在每一象限内,y随x增大而增大,_____________. 2)、已知k<0,则函数在同一坐标系中的图象大致是( )3)、已知k>0,则函数在同一坐标系中的图象大致是( )3、课外探索与交流(C组):在同一坐标系中,函数和y=k2x+b的图像大致如下,则k1 、k2、b各应满足什么条件说明理由。
《反比例函数》 教学设计第 1 课时《反比例函数》人教版数学九年级下册第二十六章第一节内容,反比例函数从形式上看虽然简洁,但它在日常生活中和其它学科的学习中都有着十分重要的作用.本节教材主要研究反比例函数的概念及其解析式.在学习本节课之前,学生已经研究了正比例函数、一次函数和二次函数等函数模型,从本节课开始进一步研究反比例函数,并通过反比例函数图象得出它的性质,最后通过实际问题的研究来体会反比例函数的实用价值.教材从生活现实和数学中具有反比例关系的问题出发,抽象出描述反比例变化规律的数学模——反比例函数,让学生体会反比例函数的意义.为了巩固反比例函数的概念,教材通过例1,由反比例函数的自变量和函数值,确定常数k 的值,从而得到反比例函数的解析式,根据反比例函数的解析式,就可以得到与任意自变量对应的函数值.1. 认识反比例函数是描述具有反比例变化规律的数学模型;结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.2. 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯.3.让学生经历在实际问题中探索数量关系的过程,体会数学在解决实际问题中的作用.【教学重点】理解反比例函数的概念.【教学难点】抽象得出反比例变化规律的数学模型.多媒体课件、教具等.一、提出问题,思考引入问题1 ⑴在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y,则称x为,y叫x的.⑵一次函数的解析式一般形式是,当时,称为正比例函数,二次函数的解析式的一般形式是.⑶一条直线经过点(2,3)、(4,7),求该直线的解析式,以上这种求函数解析式的方法叫.问题2 下列问题中,变量间的对应关系可用怎样的函数关系式表示?⑴京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v (单位:km/h)的变化而变化;⑵某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长为y随宽x的变化;⑶已知北京市的总面积为41.6810平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.设计意图:问题1通过复习函数的概念、一次函数、二次函数的解析式及待定系数法求函数解析式等知识,为本节课探究反比例函数的概念及确定其解析式作好知识储备.问题2用实际问题引出现实中的反比例关系,为后续反比例函数的意义教学做好铺垫.二、合作交流,探究新知问题3 ⑴上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? 三个问题的关系式是1463v t =,1000y x=,41.6810S n ⨯=. ⑵这些关系式有什么共同点?⑶它们是正比例函数吗?是一次函数吗?是二次函数吗?这类函数称之为什么函数? 归纳整理出反比例函数的意义:一般地,形如k y x=(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.追问1:反比例函数xk y =中自变量x 在分式的什么位置?自变量的取值范围是什么? 追问2:你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴交流.三、运用新知.例1 下列哪些式子表示y 是关于x 的反比例函数?每一个反比例函数中相应的k 值是多少? ⑴x y 4=;⑵x y 5-=;⑶16+=x y ;⑷3=x y ;⑸123=xy ;⑹xy 32-=;⑺x y -=. 解:⑵⑸⑹是反比例函数,它们的系数分别为5-,13,32-. 例2 已知y 是x 的反比函数,并且当x =2时,y =6.⑴写出y 关于x 的函数解析式.⑵当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以先设x k y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式.解:⑴设x k y =.因为当x =2,y =6,所以有26k =,解得k =12.因此xy 12=. ⑵把x =4时代入x y 12=,得3412==y . 例3:已知y 与2x 成反比例,并且当x =3时y =4,⑴写出y 和x 的函数解析式;⑵求当x =1.5时y 的值.解:⑴设2x k y =.因为当x =3,y =4,所以有234k =,解得k =36.因此236xy =. ⑵把x =1.5代入236x y =,得165.1362==y . 四、巩固新知练习1 用函数解析式表示下列问题中变量间的对应关系: ⑴苹果每千克x 元,花10元钱可买y 千克的苹果;⑵矩形的面积为4,一条边的长为x ,另一条边的长为y .练习2 已知y 是x 的反比例函数,并且当x =3时,y =-8. ⑴写出y 与x 之间的函数关系式.⑵求y =2时x 的值.练习3 y 是x 的反比例函数,下表给出了x 与y 的一些值:x -2 -1 21-21 1 3⑴写出这个反比例函数的表达式;⑵根据函数表达式完成上表.练习4 已知函数21y y y+=,1y 与x +1成正比例,2y 与x 成反比例,且当x =1时,y =0;当x =4时,y =9.求当x =-1时y 的值.五、归纳小结回顾本课所学主要内容,并请学生回答以下问题:1. 我们今天学习了反比例函数的哪些知识?2. 反比例函数中的两个变量的关系是什么?3. 反比例函数对自变量取值有何要求?4. 如何根据已知条件求反比例函数的解析式? 略.。
《反比例函数的图象和性质》(第1课时)教案教学目标:1、知识目标:(1)会用描点法画反比例函数图象;(2)理解反比例函数的性质。
2、能力目标:通过观察反比例函数图象,分析|、探究反比例函数的性质,培养学生的探究|、归纳及概括能力。
3、情感目标:在探究反比例函数的过程中,让学生初步感知反比例函数图象的对称性。
教学重点:画反比例函数图象,理解反比例函数性质。
教学难点:理解反比例函数性质,并能灵活应用。
教具准备:多媒体课件,三角板。
教学方法:师生互动,合作交流,情感激励。
教学过程:一,创设情境引入新课教师提出问题(出示多媒体课件):1、一次函数y=k x+b(k、b是常数,k≠0)的图象是什么形状?其性质有哪些?6的图象会是什么形状呢?请大家猜猜看,我2、反比例函数y =x们可以采用什么方法画?学生思考、交流,回答问题,教师根据学生活动情况进行补充和完善。
由此引入新课。
这时教师重点对下列两方面进行点拨和提示:(1) 能否正确使用“描点”方法画函数图象;(2) 能否说出用“描点”方法画函数图象的基本步骤;列表、描点、连线。
二、 类比联想 探究新知1、探究活动1教师提出问题(出示多媒体课件):画出反比例函数y =x 6与y =-x 6的图象。
教师先引导学生思考,示范画出反比例函数y=x 6的图象,再让学生尝试画出反比例函数y =-x6的图象。
师生互动,鼓励学生类比一次函数图象的画法,探索画出反比例函数图象。
这时要重点强调;(1) 列表;自变量x 取哪些值?x 的取值不能为零。
但可以以零为基准,左右均匀,正、负各一半,且互为相反数,两边对称取值,同时,自变量的取值还要有一定的代表性,对应的函数值不能太大或太小,便于描点和全面反映出图象的特征。
(2) 一般情况下,描出的点越多,图象越精确。
(3) 连线时,要按照自变量从小到大或从大到小的顺序,并用平滑曲线连接,不能画成折线。
2、探究活动2教师提出问题(出示多媒体课件):比较y=x 6与y=-x 6的图象,它们有什么共同特征?它们之间有什么关系?学生观察思考,回答问题,让学生了解反比例函数的图象是一种双曲线。
6.2 反比例函数的图象与性质第1课时 反比例函数的图象教学目标(一)教学知识点1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.3.逐步提高从函数图象小获取信息的能力,探索并掌握反比例函数的主要性质. (二)能力训练要求通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力. (三)情感与价值观要求让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.教学重点:画反比例函数的图象;并从函数图象中获取信息,探索并研究反比例函数的主要性质. 教学难点:反比例函数的图象特点及性质的探究. 教学方法:教师引导学生探究法. 教具准备:多媒体课件 教学过程:Ⅰ.创设问题情境,引入新课[师]我们在前面学习了正比例函数和一次函数的图象,知道它们的图象都是一条直线,正比例函数的图象是过原点的一条直线,在画图象时需找(1,k)点即可,一次函数的图象也是一条直线,是不过原点的一条直线.画图象时只需找(0,b)和(-kb ,0),过这两点作直线即可.那么反比例y =xk (k≠0)的图象是直线呢?还是曲线,这就需要我们动手去做一做,才能得出结论.本节课就让我们一齐来实践吧.Ⅱ.新课讲解1.画反比例函数的图象[师]大家还记得画图象的步骤吗? [生]记得.是列表,描点,连线.[师]下面大家试着作反比例函数y =x4的图象,在列表时x 取值仿照以前,且要多取几点.[生甲]列表: x -8 -4 -3 -2 -1 -21 21 12 34 8y=x4-21 -1-34-2-4-884234 121 描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:用光滑的曲线顺次连结各点,即可得到函数y=x4的图象(如上图).[生乙]我作出的图象和他不一样,是这样的[生丙]我作出的图象和他们都不一样.(如下图)[师]现在出现三种不同类型的图象,请大家认真思考后选出正确的图象是哪一个?[生]第一种正确.第二种也正确,只不过取的点较少,又没有对称地取数,所以画出的图象好象不正确.第三种是错误的,因为应用光滑的曲线连接,而不是用折线连接.[师]很好.可见大家是动脑子思考过的,这种钻研精神值得表扬. 2.议一议你认为作反比例函数图象时应注意哪些问题?与同伴进行交流.[生]其实刚才两位同学所画的图象已给出我们答案了,在列表时,自变量的值可以任意选,但如果选取绝对值相等而符号相反的一对一对的数值,这样既可以简化计算,又便于描点;列表、描点时,要尽量多取一些数值.多描一些点,这样方便连线;在连线时要用“光滑的曲线”,不能用折线. 3.做一做请大家用同样的方法作反比例函数y =x4-的图象.(让学生自己作图,然后出示正确的图象让学生参考) [生]列表 x -8 -4 -3-2 -1 -21 21 1234 8y=x4-21 134 248-8-4-2-341-21描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:用光滑的曲线顺次连接各点,即可得到函数y =x4-的图象,如下图.[师]很好,大家基本上已经掌握了画反比例函数的步骤,以及反比例函数的图象的大致形状. 4.想一想观察y =x4和y =x4-的图象,它们有什么相同点和不同点?[师]上面是函数y =x4和y =x4-的图象,请大家对比着探索他们的异同点.[生]相同点:(1)图象都是由两支曲线组成; (2)它们都不与坐标轴相交; (3)它们都不过原点; 不同点:它们所在的象限不同.y =x4的两支曲线在第一和第三象限;y =x4-的两支曲线在第二和第四象限.[师]很好,完全正确.大家再仔细观察一下每个函数图象是否为对称图形. [生]是轴对称图形,也是中心对称图形.[师]由此看来,反比例函数的图象是两支双曲线,它们要么在第一、三象限,要么在第二、四象限,究竟什么时候在一、三象限,什么时候在二、四象限,大家能肯定吗?[生]可以,当k>0时,图象的两支曲线在第一、三象限内;当k<0时,两支曲线分别位于第二、四象限.[师]大家的观察能力和分析能力很了不起哟,继续努力.Ⅲ.课堂练习 P 153随堂练习 补充练习1.面积是常数S 时,三角形的底y 与高x 的函数关系是什么函数.图象.2. 画出反比例函数y=x5 或y=x5-的图象Ⅳ.课时小结一、本节课我们学习了画反比例函数的步骤为:列表、描点、连线.进一步巩固了画函数图象的步骤,同时在画反比例函数图象时要注意以下几点:1.列表时自变量的取值应取绝对值相等而符号相反的一对一对的数值,这样既可以简化计算.又便于描点;2.列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线;3.在连线时要用“光滑的曲线”,不能用折线.二、在画出函数y =x4和y =x4-的图象后.比较它们的异同点.相同点:(1)图象都是由两支曲线组成: (2)它们都不与坐标轴相交; (3)它们都不过原点;(4)它们都是轴对称图形,也是中心对称图形.不同点:它们所在的象限不同,当k>0时,图象的两支曲线分别在第一、三象限内;当k<0时,图象的两支曲线分别位于第二、四象限.Ⅴ.课后作业 习题6.2Ⅵ.活动与探究已知y=y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且当x=2与x=3时,y 的值都等于19.y 与x 间的系数关系式,并求x =4时y 的值. 解:设y 1=k 1x,y 2=22xk . ∴y=y 1+y 2=k 1x+22xk .当x =2时,y =19; 当x =3时,y =1.9. 2k 1+42k =19,∴3k 1+92k =19.k 1=5.解得k 2=36. ∴关系式为y =5x+236x .当x =4时,y =5×4+1636=20+49=2241。
6.2 反比例函数的图象与性质第1课时 反比例函数的图象 课 题 第1课时 反比例函数的图象 课型 新授课教学目标 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数图象的主要特征。
教学重点掌握反比例函数的作图。
教学难点反比例函数图象的特征 教学方法自主探究法 教学后记教 学 内 容 及 过 程备注 一、回顾交流、问题牵引回顾:1.一次函数的图象是怎样的呢?你能画出y =-2x-1的图象吗?2.什么叫做反比例函数:3.你能提供一个生活情境来表现反比例函数中两个变量之间的相依关系吗?与同伴交流。
学生思考、交流、回答。
迁移:同学们,请你们猜一猜,反比例函数的图象是什么样的呢?你能画出xy 4=的图象吗? 学生动手画图,相互观摩。
议一议(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?(4)曲线都分布在哪个象限内?学生先分四人小组进行讨论,而后小组汇报做一做作反比例函数xy 4-=的图象。
学生动手画图,相互观摩。
想一想观察x y 4=和xy 4-=的图象,它们有什么相同点和不同点? 学生小组讨论,弄清上述两个图象的异同点。
交流讨论反比例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习[探索与交流]对于函数xy 2=,两支曲线分别位于哪个象限内?对于函数xy 2-=,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。
学生分四人小组全班探索。
三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索。
《反比例函数》第1课时教案教学目标:1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学过程:一、创设情景 探究问题(3)速度v 是时间t 的函数吗?为什么?随着速度的变化,全程所用时间发生怎样的变化?情境1: 当路程一定时,速度与时间成什么关系?(s =vt )当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy =m (m 为一个定值),则x 与y 成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km ),全程所用时间t (h )随速度v (km/h )的变化而变化.问题:(1)你能用含有v 的代数式表示t 吗?[说明](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s =vt ,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m 2的长方形的长a (m )随宽b (m )的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y (万元)随还款年限x (年)的变化而变化;(3)游泳池的容积为5000m 3,向池内注水,注满水所需时间t (h )随注水速度v (m 3/h )的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗? 一般地,形如y =k x(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数.[说明]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x 位于分母,且其次数是1.(2)常量k ≠0.(3)自变量x 的取值范围是x ≠0的一切实数.(4)函数值y 的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y =kx -1(k 为常数,k ≠0)的形式,并结合旧知验证其正确性.二、例题教学例1:下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少? (1)y =x 15 ;(2)y =2x -1 ;(3)y =- 3x ;(4)y =1x -3;(5)y = 2+1x ;(6)y =x 3+2;(7)y 反比例函数的自变量x 的取值范围是不等于0的一切实数.=-12x . [说明]这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成y =k x或y =kx +b 的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)与(4)也是反比例函数,而(2)式等号右边的分母是x -1,不是x ,(2)式y 与x -1成反比例,它不是y 与x 的反比例函数. 对于(4),等号右边不能化成 k x 的形式,它只能转化为1-3x x 的形式,此时分子已不是常数,所以(4)不是反比例函数. 而(7)中右边分母为2x ,看上去和(2)类似,但它可以化成- 12x ,即k =-12,所以(7)是反比例函数. 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力. 例2:在函数y =2x -1,y =2x+1 ,y =x -1,y =12x中,y 是x 的反比例函数的有 个. [说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y =kx -1的形式. 还有y =2x -1通分为y =2-x x ,y 、x 都是变量,分子不是常量,故不是反比例函数,但变为y +1=2x可说成(y +1)与x 成反比例. 例3:若y 与x 成反比例,且x =-3时,y =7,则y 与x 的函数关系式为 .[说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k 的值.(1)底边为5cm 的三角形的面积y (cm 2)随底边上的高x (cm )的变化而变化;(2)某村有耕地面积200ha ,人均占有耕地面积y (ha )随人口数量x (人)的变化而变化;(3)一个物体重120N ,物体对地面的压强p (N/m 2)随该物体与地面的接触面积S (m 2)的变化而变化.2、下列哪些关系式中的y 是x 的反比例函数?如果是,比例系数是多少? (1)y =23 x ; (2)y =23x ; (3)xy +2=0; (4)xy =0; (5)x =23y. 3、已知函数y =(m +1)x 22 m 是反比例函数,则m 的值为 .第3题要引导学生从反比例函数的变式y =kx -1入手,注意隐含条件k ≠0,求出m 值.[说明]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)第一页。
第九章 反比例函数
第一节 反比例函数的意义
授课人:刘玉诚
教学目标:
1.知识和技能:理解反比例函数的概念,能根据实际问题中的条件用待定系数法求反比
例函数的解析式及对应量的值,体会函数的模型思想。
2.过程和方法:让学生经历从实际问题中抽象出反比例函数模型的过程,理解反比例函
数的意义,通过对实际问题的分析、类比、归纳,培养学生分析问题的能力。
3.情感、态度与价值观:经历反比例函数概念的形成过程体会数学学习的重要性,提
高学生学习数学的兴趣;通过学习反比例函数,培养学生合作交流意识和探索精神。
重、难点:
1.重点:理解反比例函数的概念,能根据反比例函数的三种等价形式判定反比例函 数,并能掌握比例系数的值,最后学会利用待定系数法求出函数解析式。
2.难点:利用等价形式中的第三种形式来确定比例系数或反比例函数幂的值。
教学过程:
一、创设情境,导入新知
引导学生回顾函数、正比例函数、一次函数以及他们的解析式。
最后利用出示幻灯片总结。
(师生共同复习回顾,为本课时的函数模型思想作铺垫)
生活中的已知事例引入(让学生体验数学源于生活,服务于生活)(幻灯片):
思考1:我们知道,电流I 、电阻R 、电压U 之间满足关系式U=IR 。
当U=220V 时,
(1)你能用含有R 的代数式表示I 吗?
(2)利用写出的关系式完成下表:
当R 越来越大时,I 怎样变化?当R 越来越小呢?
(3)变量I 是R 的函数吗?为什么?
思考2: 烟台市-龙口市高速公路全长约为110km ,汽车沿高速公路从烟台驶往龙口, 汽车行完全程所需的时间t (h )与行驶的平均速度v(km/h)之间有怎样的关系?变量t 是v
的函数吗?为什么? 以上二个思考,师生共同分析完成并列出其关系式。
答案分别为:)0(220>=
R R I 、 )0(110>=v v
t
二、新知探究,形成概念
师问:观察以上思考题得出的二个关系式,它们有什么共同特征呢?
(学生讨论交流后师作出归纳)
反比例函数定义:一般地,形如y=(k 为常数,k•≠0)•的函数称为反比例函数。
师再问:关系式中的x 也不等于0,为什么?
三、形式变换,深入探究
师问:(幻灯片)判断
(学生讨论交流出正确答案并能归纳出三种等价形式)
师强调并解释反比例函数的三种基本形式:y=x k ,xy k =,1y kx -=。
随堂练习(幻灯片):
1.下列函数中y 与x 成反比例函数有哪些,并指出相应k 的值?
x y 3= 22x
y = x y 1= 32x y = 13-=x y x y 1-= x y 31= x y 23= 5=xy 2
3
-=x y
(师生共同互动合作完成,解答见多媒体)
对于最后一个判断,教师可根据实际情况拓展延伸,例如:y 与2x 成反比例解析式如何 列……
2、拓展练习(题目及解答见多媒体)略)
四、熟练掌握,灵活运用(课本P102做一做)
完成后同桌交换对照幻灯片订正答案,第三题的第一问让学生到黑板上板书, 发现步骤问题,详细讲解。
(详细步骤见幻灯片)
第三题第一问分析:因为y 是x 的反比例函数,所以设)0(≠=
k x
k y 把x=2和y=6代入上式就可求出常数k 的值.
解:(1)设反比例函数关系式为k x y =(0)k ≠, (设) 因为当2x =时6y =,所以有 26k = (代) 解得 12k = (解) ∴ 12x
y = (写) 的反比例函数吗?
是中,x y xy 4=的反比例函数吗?是中,x y x y 13-=
x y 4)1(=x y 21)2(-=x y -=1)3(1)4(=xy 2
)5(x y = (2)把4x =代入12x y =
,得 1234
y == 五、课堂小结
1、这节课你学到了什么知识?
归纳收获:1.反比例函数的定义及其形式;2.并利用其进行判别和计算;
3.学会待定系数法求其解析式;
4.用函数的观点解决实际问题。
六、课堂检测,夯实双基
课堂检测
1.下列等式中,是y 与x 成反比例函数有( )
2
5)6(+=x y 13)7(--=x y
3.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为
4.矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为
5.已知y 是x 的反比例函数,当x=2时,y=
6.
①写出y 与x 的函数解析式;
②求当x=4时y 的值.
能力提升
七、能力展示、激发兴趣
1、值?是反比例函数,求已知:m )2(122-++=m m x m m y
2、若函数 是反比例函数,则m 必须满足( ) A 、m≠1 B 、m≠0或m≠1 C 、m≠0 D 、m≠0且m≠1 ()1
m m y x -=已知 是反比例函数,求k 值。
5
2)2(--=k x k y
(学习成绩优异的学生可以给他一个展示的舞台,课前可以准备一道或几道难度稍大的题,优异学生再学习新课的同时,随时可以到黑板前板书解出来,以证明自己学习数学的实力,更能激发学生的兴趣。
)
八、课外漫步
幻灯片有两道课外习题,对数学感兴趣的同学可以进一步探讨研究。