2015年高考数学真题分类汇编专题05平面向量理
- 格式:doc
- 大小:770.50 KB
- 文档页数:9
平面向量1.【2015高考新课标1,理7】设D 为ABC ∆所在平面内一点3BC CD =u u u r u u u r,则( )(A )1433AD AB AC =-+u u u r u u ur u u u r (B)1433AD AB AC =-u u u r u u u r u u u r(C )4133AD AB AC =+u u u u u r u u u r u u u r (D)4133AD AB AC =-u u u u u u u ru u u r u u u r【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r =1433AB AC -+u u ur u u u r ,故选A.2.【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=o,则BD CD ⋅=u u u r u u u r ( )(A )232a -(B )234a - (C ) 234a 错误!未找到引用源。
(D )232a 错误!未找到引用源。
【答案】D【解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()22223cos 602BA BC BA a a a +⋅=+=o u u u r u u u r u u u r .故选D.3.【2015高考陕西,理7】对任意向量,a b r r,下列关系式中不恒成立的是( )A .||||||a b a b ⋅≤r r r rB .||||||||a b a b -≤-r r r rC .22()||a b a b +=+r r r r D .22()()a b a b a b +-=-r r r r r r【答案】B【解析】因为cos ,a b a b a b a b ⋅=≤r r r r r r r r ,所以选项A 正确;当a r 与b r方向相反时,a b a b -≤-r r r r 不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C 正确;()()22a b a b a b +-=-r r r r r r ,所以选项D 正确.故选B .4.【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB =u u u r ,4AD =u u u r .若点M ,N 满足3BM MC =u u u u r u u u u r ,2DN NC =u u u r u u u r ,则AM NM ⋅=u u u u r u u u u r( )(A )20 (B )15 (C )9 (D )6 【答案】C【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+u u u u r u u u ru u u r u u u u r u u u u r u u u r u u ur u u u r ,所以 221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯=u u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g ,选C.5.【2015高考重庆,理6】若非零向量a ,b 满足|a ||b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为 ( ) A.4πB.2πC.34πD.π【答案】A6.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r,C 2a b A =+u u u r rr ,则下列结论正确的是( )(A )1b =r (B )a b ⊥r r (C )1a b ⋅=r r (D )()4C a b +⊥B u u u r rr【答案】D【解析】如图,由题意,(2)2BC AC AB a b a b =-=+-=u u u r u u u r u u u r r r r r ,则||2b =r ,故A 错误;|2|2||2a a ==r r ,所以||1a =r,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=ou u u r u u u r r r r r r r ,所以1a b ⋅=-r r ,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=u u u r u u u r u u u r ,且AD BC ⊥u u u r u u u r ,而22(2)4AD a a b a b =++=+u u u r r r r r r,所以()4C a b +⊥B u u u r rr ,故选D.7.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥==u u u r u u u r u u u r u u u r,若P 点是ABC ∆ 所在平面内一点,且4AB ACAP AB AC=+u u u r u u u ru u u r u u u r u u u r ,则PB PC ⋅u u u r u u u r 的最大值等于( )A .13B .15C .19D .21【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =u u u r (,0)+4(0,1)=(1,4),即1P (,4),所以11PB t-u u u r =(,-4),1PC -u u u r =(,t-4),因此PB PC ⋅u u u r u u u rxy BCAP11416t t =--+117(4)t t =-+,因为114244t t t t +≥⋅=,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t=,即12t =时取等号. 8.【2015高考北京,理13】在ABC △中,点M ,N 满足2AM MC =u u u u r u u u u r ,BN NC =u u u r u u u r .若MN xAB y AC =+u u u u r u u u r u u u r,则x = ;y = .【答案】11,26-9.【2015高考湖北,理11】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r,则OA OB •=u u u r u u u r .【答案】9【解析】因为OA AB ⊥u u u r u u u r ,||3OA =u u u r,所以OA OB •=u u u r u u u r 93||||)(222===•+=+•OA OB OA OA AB OA OA .10.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=o,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的最小值为 .【答案】2918【解析】因为1,9DF DC λ=u u u r u u ur 12DC AB =u u u r u u u r ,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,AE AB BE AB BC λ=+=+u u u r u u u r u u u r u u u r u u u r ,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r 19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒211721172929218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅u u u r u u u r 的最小值为2918. BAD C E11.【2015高考浙江,理15】已知12,e e r r 是空间单位向量,1212e e ⋅=r r ,若空间向量b r 满足1252,2b e b e ⋅=⋅=r r r r ,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈r u r u u r r u r u u r u u u u r ,则0x = ,0y = ,b =r.【答案】1,2,22.12.【2015高考新课标2,理13】设向量a r ,b r 不平行,向量a b λ+r r 与2a b +r r 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+r r 与2a b +r r 平行,所以2a b k a b λ+=+r r r r (),则12,k k λ=⎧⎨=⎩,所以12λ=.13.【2015江苏高考,14】设向量a k (cos ,sin cos )(0,1,2,,12)666k k k k πππ=+=L ,则11k =∑(a k g a k+1)的值为【答案】93 【解析】 a k g a k+1(1)(1)(1)(cos ,sin cos )(cos ,sin cos )666666k k k k k k ππππππ+++=+⋅+ (1)(1)(1)coscos (sin cos )(sin cos )666666k k k k k k ππππππ+++=++⋅+(1)(1)(1)(1)(1)(coscos sin sin )(sin cos cos sin )cos cos 6666666666k k k k k k k k k k ππππππππππ+++++=++++22(1)3231cos sincos cos sin cos cos sin66662626266k k k k k k k ππππππππππ+++=++=++- 3231sin (1cos )sin 264343k k k ππππ+=+++-3321(21)sin cos4626k k πππ++=++ 因为21(21)sin cos 626k k πππ++,的周期皆为6,一个周期的和皆为零, 因此11k =∑(a k g a k+1)3312934=⨯=. 14.【2015江苏高考,6】已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), 则n m -的值为______. 【答案】3-【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=-15.【2015高考湖南,理8】已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++u u u r u u u r u u u r的最大值为( )A.6B.7C.8D.9 【答案】B.。
第五章 平面向量
1.【2015高考新课标1,文2】已知点,向量,则向量( )
(A) (B) (C) (D)
2.【2015高考广东,文9】在平面直角坐标系中,已知四边形是平行四
边形,,,则( )
A. B. C. D.
3.【2015高考重庆,文7】已知非零向量满足则的夹角为( )
(A) (B) (C) (D)
4.【2015高考新课标1,文8】函数的部分图像如图所示,则的单调递减
区间为( )
(A)
(B)
(C)
(D)
5.【2015高考福建,文7】设,,.若,则实数的值等于( )
A. B. C. D.
6.【2015高考北京,文6】设,是非零向量,“”是“”的( )
A.充分而不必要条件 B.必要而不充
分条件
C.充分必要条件 D.既不充分也
不必要条件
7.【2015高考陕西,文8】对任意向量,下列关系式中不恒成立的是( )
A. B. C. D.
8.【2015高考湖北,文11】.已知向量,,则_________.
9.【2015高考安徽,文15】是边长为2的等边三角形,已知向量满
足,,则下列结论中正确的是 .(写出所有正确结论得序号)
①为单位向量;②为单位向量;③;④;⑤。
10. 【2015高考山东,文13】 过点作圆
的两条切线,切点分别为,则
= .
11.【2015高考天津,文13】在等腰梯形ABCD中,已知, 点E和点F分别在
线段BC和CD上,且 则的值为 .
12.【2015高考浙江,文13】已知,是平面单位向量,且.若平面向量满足,则 .。
2015年全国各地高考数学试题及解答分类大全(平面向量)一、选择题:1.(2015安徽理)C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB = ,C 2a b A =+,则下列结论正确的是()(A)1b = (B)a b⊥ (C)1a b ⋅= (D)()4Ca b +⊥B2、(2015北京文)设a ,b是非零向量,“a b a b ⋅= ”是“//a b ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】试题分析:||||cos ,a b a b a b ∙=∙<> ,由已知得cos ,1a b <>= ,即,0a b <>= ,//a b .而当//a b时,,a b <> 还可能是π,此时||||a b a b ∙=- ,故“a b a b ⋅= ”是“//a b”的充分而不必要条件.考点:充分必要条件、向量共线.3.(2015福建文)设(1,2)a = ,(1,1)b = ,c a kb =+ .若b c ⊥,则实数k 的值等于()A.32-B.53-C.53D.32【答案】A考点:平面向量数量积.4.(2015福建理)已知1,,AB AC AB AC t t⊥==,若P 点是ABC ∆所在平面内一点,且4AB AC AP AB AC=+ ,则PB PC ⋅的最大值等于()A.13B.15C.19D.21【答案】A考点:1、平面向量数量积;2、基本不等式.5.(2015广东文)在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A = ()A .2B .3C .4D .5【答案】D 【解析】试题分析:因为四边形CD AB 是平行四边形,所以()()()C D 1,22,13,1A =AB +A =-+=-,所以()D C 23115A ⋅A =⨯+⨯-=,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.6、(2015湖南文)已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC,若点P 的坐标为(2,0),则PA PB PC ++的最大值为()A、6B、7C、8D、9【答案】B【解析】试题分析:由题根据所给条件不难得到该圆221x y +=是一AC 位直径的圆,然后根据所给条件结合向量的几何关系不难得到24PA PB PC PO PB PB ++++==,易知当B 为(-1,0)时取得最大值.由题意,AC 为直径,所以24PA PB PC PO PB PB ++++== ,已知B 为(-1,0)时,4PB+取得最大值7,故选B.考点:直线与圆的位置关系、平面向量的运算性质7.(2015湖南理)已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++的最大值为()A.6B.7C.8D.9【答案】B.【考点定位】1.圆的性质;2.平面向量的坐标运算及其几何意义.【名师点睛】本题主要考查向量的坐标运算,向量的几何意义以及点到圆上点的距离的最值问题,属于中档题,结合转化思想和数形结合思想求解最值,关键是把向量的模的最值问题转化为点与圆上点的距离的最值问题,即圆221x y +=上的动点到点)0,6(距离的最大值.8、(2015全国新课标Ⅰ卷文)已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = ()(A)(7,4)--(B)(7,4)(C)(1,4)-(D)(1,4)9.(2015全国新课标Ⅰ卷理)设D 为ABC 所在平面内一点3BC CD =,则()(A )1433AD AB AC =-+(B)1433AD AB AC=-(C )4133AD AB AC=+ (D)4133AD AB AC =-【答案】A【解析】试题分析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A.考点:平面向量运算10.(2015全国新课标Ⅱ卷文)已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ()A .1-B .0C .1D .2【答案】C【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.11.(2015山东理)已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=()(A)232a -(B)234a -(C)234a (D)232a【答案】D【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题.12.(2015陕西文、理)对任意向量,a b,下列关系式中不恒成立的是()A .||||||a b a b ∙≤B .||||||||a b a b -≤- C .22()||a b a b +=+ D .22()()a b a b a b +-=- 【答案】B考点:1.向量的模;2.数量积.13.(2015四川理)设四边形ABCD 为平行四边形,6AB = ,4AD = .若点M,N 满足3BM MC =,2DN NC = ,则AM NM ⋅= ()(A)20(B)15(C)9(D)6【答案】C【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB = ,4AD = 故可选,AB AD作为基底.14、(2015四川文)设向量a =(2,4)与向量b =(x ,6)共线,则实数x =()(A )2(B )3(C )4(D )6【答案】B【考点定位】本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.【名师点睛】平面向量的共线、垂直以及夹角问题,我们通常有两条解决通道:一是几何法,可以结合正余弦定理来处理.二是代数法,特别是非零向量的平行与垂直,一般都直接根据坐标之间的关系,两个非零向量平行时,对应坐标成比例(坐标中有0时单独讨论);两个向量垂直时,对应坐标乘积之和等于0,即通常所采用的“数量积”等于0.属于简单题.15.(2015重庆理)若非零向量a ,b 满足|a |=3|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为()A、4πB、2πC、34πD、π【答案】A【考点定位】向量的夹角.16.(2015重庆文)已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为()(A)3π(B)2π(C)32π(D)65π【答案】C考点:向量的数量积运算及向量的夹角.二、填空题:1.(2015安徽文)ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4( 。
2015年高考数学理一轮复习精品资料【新课标版】预测卷第五章 平面向量 第四节 平面向量的应用一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.【2013-2014学年广东省云浮市云浮中学高一5月】如图所示,向量OA a OB b OC c === ,A 、B 、C 在一条直线上,且 3 AC BC =,则( ).A 、1322c a b =-+ B 、31 22c a b =-C 、 2 b a c +-=D 、 2 b a c +=2. 【2013-2014学年广东省云浮市云浮中学高一5月】如图所示,D 是ABC ∆的边AB 上的中点,记BC a =,BA c =,则向量CD =( ).A .12a c --B .12a c -+ C .12a c - D .12a c +【答案】B【解析】1111()()2222CD CA CB BA BC BC BA BC a b =+=--=-=-+. 3.【2014届四川绵阳高中高三第二次诊断性考试】已知△ABC 的外接圆的圆心为O ,半径为1,若345OA OB OC ++=0,则△AOC 的面积为( )A .25 B .12 C .310 D .654.【2014年高考数学人教版评估检测】如图所示,非零向量=a,=b,且BC ⊥OA,C 为垂足,若=λa(λ≠0),则λ=( )5. 【2013-2014学年辽宁省抚顺市六校联合体高一下学期期末】已知)0,3(-A ,)2,0(B ,O 为坐标原点,点C 在∠AOB 内,且45=∠AOC ,设(1),()OC OA OB R λλλ=+-∈,则λ的值为( )A.51 B.31C.52D.32【答案】C.6. 【2014届浙江省绍兴市第一中学高三上学期期中考试】已知1e 和2e 是平面上的两个单位向量,且121e e +≤,12,OP me OQ ne ==,若O 为坐标原点,,m n 均为正常数,则()2OP OQ +的最大值为( )A .22m n mn +-B .22m n mn ++C .2()m n + D .2()m n -7.【2014年高考数学(理)二轮复习】如图,在直角梯形ABCD 中,AD ⊥AB ,AB ∥DC ,AD =DC =1,AB =2,动点P 在以点C 为圆心,且与直线BD 相切的圆上或圆内移动,设AP =λAD +μAB (λ,μ∈R),则λ+μ的取值范围是 ( ).A .(1,2)B . (0,3)C .[1,2]D .[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),8.【2014届四川绵阳高中高三第二次诊断性考试】已知O是锐角△ABC的外心,若OC=xOA yOB+(x,y ∈R),则()A.x+y≤-2 B.-2≤x+y<-1 C.x+y<-1 D.-1<x+y<09.【2014届山西省太原市太原五中高三12月月考】△ABC的外接圆的圆心为O,半径为2,且OA AB AC++=,则向量CA在CB方向上的投影为( )A.3 C..-310.【2014届浙江省建人高复高三上学期第二次月考】在ABC ∆中,2,2AB BC A π==∠=,如果不等式BA tBC AC -≥恒成立,则实数t 的取值范围是( ) A.[)1,+∞ B.1,12⎡⎤⎢⎥⎣⎦ C.[)1,1,2⎛⎤-∞+∞ ⎥⎝⎦D.(][),01,-∞+∞11.【2014届天津市蓟县高三上学期期中考试】如图A 是单位圆与x 轴的交点,点P 在单位圆上,(0)AOP θθπ∠=<<,OQ OA OP =+,四边形OAQP 的面积为S ,当OA OP S ⋅+取得最大值时θ的值和最大值分别为( )A.6π3π,1 C.4π2π12.【改编自2013年辽宁五校联考】设函数()f x 的定义域为D ,如果存在正实数k ,使对任意x D ∈,都有x k D ∈+,且()()f x k f x >+恒成立,则称函数()f x 为D 上的“k 型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的“2 013型增函数”,则实数a 的取值范围是( ) A. 671,2⎛⎫-∞ ⎪⎝⎭ B. (),300-∞ C. (300,)+∞ D. 671,2⎛⎫+∞ ⎪⎝⎭【答案】D二、填空题(本大题共4小题,每小题5分,共20分。
5.2平面向量的数量积及平面向量的应用考点一平面向量的数量积1.(2015课标Ⅱ,4,5分)向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.2答案C2.(2015北京,6,5分)设a,b是非零向量.“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案A3.(2015重庆,7,5分)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()A.π3B.π2C.2π3D.5π6答案C10.(2015浙江,13,4分)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=.答案23311.(2015天津,13,5分)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.点E和F分别在线段BC和DC上,且BE=23BC,DF=16DC,则AE·AF的值为.答案291812.(2015湖北,11,5分)已知向量OA⊥AB,|OA|=3,则OA·OB=.答案9考点二向量的应用3.(2015安徽,15,5分)△ABC是边长为2的等边三角形,已知向量a,b满足AB=2a,AC=2a+b,则下列结论中正确的是.(写出所有正确结论的编号) ①a为单位向量;②b为单位向量;③a⊥b;④b∥BC;⑤(4a+b)⊥BC.答案①④⑤。
数 学F 单元 平面向量F1 平面向量的概念及其线性运算 2.F1[2015·四川卷] 设向量a =(2,4)与向量b =(x ,6)共线,则实数x =( ) A .2 B .3 C .4 D .62.B [解析] 由向量a ,b 共线,得2×6-4x =0,解得x =3,选B.2.F1、F2[2015·全国卷Ⅰ] 已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)2.A [解析] AB →=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).2.F1[2015·四川卷] 设向量a =(2,4)与向量b =(x ,6)共线,则实数x =( ) A .2 B .3 C .4 D .62.B [解析] 由向量a ,b 共线,得2×6-4x =0,解得x =3,选B.F2 平面向量基本定理及向量坐标运算 6.F2[2015·江苏卷] 已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.6.-3 [解析] 因为m a +n b =(2m +n ,m -2n )=(9,-8),所以⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =-3.2.F1、F2[2015·全国卷Ⅰ] 已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)2.A [解析] AB →=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).4.F2、F3[2015·全国卷Ⅱ] 向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .24.C [解析] 2a +b =2(1,-1)+(-1,2)=(1,0),所以(2a +b )·a =(1,0)·(1,-1)=1. 9.F2、F4[2015·湖南卷] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( )A .6B .7C .8D .99.B [解析] 方法一:因为A ,B ,C 均在单位圆上,且AB ⊥BC ,所以A ,C 为直径的端点,故P A →+PC →=2PO →=(-4,0),|P A →+PB →+PC →|=|2PO →+PB →|≤2|PO →|+|PB →|,又|PB →|≤|PO →|+1=3,所以|P A →+PB →+PC →|≤4+3=7,故最大值为7,选B.方法二:因为A ,B ,C 均在单位圆上,且AB ⊥BC ,所以A ,C 为直径的端点,令A (cos x ,sin x ),B (cos (x +α),sin (x +α)),C (-cos x ,-sin x ),0<α<π,则P A →+PB →+PC →=(cos(x +α)-6,sin(x +α)), |P A →+PB →+PC →|=[cos (x +α)-6]2+sin 2(x +α)=37-12cos (x +α)≤7,故选B. F3 平面向量的数量积及应用 4.F2、F3[2015·全国卷Ⅱ] 向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .24.C [解析] 2a +b =2(1,-1)+(-1,2)=(1,0),所以(2a +b )·a =(1,0)·(1,-1)=1. 6.A2,F3[2015·北京卷] 设a ,b 是非零向量.“a·b =|a||b|”是“a ∥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.A [解析] 根据数量积的定义,a ·b =||a ·||b cos θ,由a ·b =||a ·||b 可得cos θ=1,根据向量所成角的范围得到θ=0,所以a ∥b ;若a ∥b ,可得向量a 与向量b 共线,即所成的角为0或π,所以a ·b =±||a ·||b ,故选A. 13.H4、F3[2015·山东卷] 过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________.13.32 [解析] 如图所示,|P A |=|PB |=3,|OP |=2,|OA |=1,且P A ⊥OA ,∴∠APO =π6,即∠APB =π3,∴P A →·PB →=|P A →||PB →|cos ∠APB =3×3×cos π3=32.8.F3[2015·陕西卷] 对任意平面向量a ,b ,下列关系式中不恒成立....的是( ) A .|a ·b|≤|a||b| B .|a -b|≤||a|-|b|| C .(a +b )2=|a +b|2 D .(a +b )·(a -b )=a 2-b 2 8.B [解析] 根据数量积的定义知a·b =|a||b|cos 〈a ,b 〉,所以|a·b|=||a||b|cos 〈a ,b 〉|≤|a||b |,选项A 中的关系式一定成立;如果选项B 中的关系式成立,则|a -b|2≤||a|-|b||2,可得a·b ≥|a||b|,此式只可能在a ,b 共线且同向时成立;根据向量的运算法则可知,选项C,D 中的关系式是恒成立的.20.F3,H5,H8[2015·四川卷] 如图1-3,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程.(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.图1-320.解:(1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2.所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.从而OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以,当λ=1时,-λ-12k 2+1-λ-2=-3.此时,OA →·OB →+λP A →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.13.F3[2015·浙江卷] 已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.13.233 [解析] 令b =x e 1+y e 2(x ,y ∈R ),b ·e 1=x e 1·e 1+y e 2·e 1=x +12y =1,b ·e 2=x e 1·e 2+y e 2·e 2=12x +y =1,解得x =y =23,则b =23(e 1+e 2),所以b 2=49(e 1+e 2)2=49(e 21+2e 1·e 2+e 22)=43,故|b |=2 33. 7.F3[2015·重庆卷] 已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a +b ),则a 与b 的夹角为( )A.π3B.π2C.2π3D.5π67.C [解析] 由已知得a ·(2a +b )=2a 2+a ·b =0,即a ·b =-2a 2,所以cos 〈a ,b 〉=a ·b|a ||b |=-2a 24a 2=-12,所以〈a ,b 〉=2π3. 9.F3[2015·广东卷] 在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=( )A .5B .4C .3D .29.A [解析] 因为四边形ABCD 是平行四边形,所以AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),所以AD →·AC →=2×3+1×(-1)=5,故选A.11.F3[2015·湖北卷] 已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 11.9 [解析] 根据题意作出图形,如图所示.设向量OA →,OB →的夹角为θ,则OA →·OB →=||OA →||OB→cos θ.因为OA →⊥AB →,所以||OB →cos θ=||OA →,所以OA →·OB →=||OA →2=9. 14.C7、F3[2015·江苏卷] 设向量a k =⎝⎛⎭⎫cos k π6,sin k π6+cos k π6(k =0,1,2,…,12),则k =011(a k ·a k +1)的值为________.14.93 [解析] 因为a k ·a k +1=cosk π6cos (k +1)π6+⎝⎛⎭⎫sin k π6+cos k π6⎣⎡⎦⎤sin (k +1)π6+cos (k +1)π6=2cosk π6cos (k +1)π6+sin k π6sin (k +1)π6+sin k π6cos (k +1)π6+cos k π6sin (k +1)π6=cos k π6cos (k +1)π6+cos π6+sin (2k +1)π6=12cos (2k +1)π6+sin (2k +1)π6+334,所以k =011(a k ·a k +1)=12×334+12k =011c os (2k +1)π6+k =011s in (2k +1)π6=9 3.F4 单元综合7.F4[2015·福建卷] 设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53 C.53 D.327.A [解析] c =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =1×(1+k )+1×(2+k )=3+2k =0,所以k =-32.9.F2、F4[2015·湖南卷] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( )A .6B .7C .8D .99.B [解析] 方法一:因为A ,B ,C 均在单位圆上,且AB ⊥BC ,所以A ,C 为直径的端点,故P A →+PC →=2PO →=(-4,0),|P A →+PB →+PC →|=|2PO →+PB →|≤2|PO →|+|PB →|,又|PB →|≤|PO →|+1=3,所以|P A →+PB →+PC →|≤4+3=7,故最大值为7,选B.方法二:因为A ,B ,C 均在单位圆上,且AB ⊥BC ,所以A ,C 为直径的端点,令A (cos x ,sin x ),B (cos (x +α),sin (x +α)),C (-cos x ,-sin x ),0<α<π,则P A →+PB →+PC →=(cos(x +α)-6,sin(x +α)), |P A →+PB →+PC →|=[cos (x +α)-6]2+sin 2(x +α)=37-12cos (x +α)≤7,故选B. 13.F4[2015·天津卷] 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE →=23BC →,DF →=16DC →,则AE →·AF →的值为________.13.2918 [解析] 根据题意,AE →·AF →=(AB →+BE →)·(AD →+DF →)=AB →+23BC →·AD →+16DC →=AB →·AD →+16AB →·DC →+23BC →·AD →+19BC →·DC →=1+13+13-118=2918. 15.F4[2015·安徽卷] △ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出所有正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.15.①④⑤ [解析] 由AB →=2a ,AC →=2a +b ,得a =12AB →,b =AC →-2a =BC →,④正确;|a |=12|AB→|=1,①正确;|b |=|BC →|=2,②错误;且a 与b 的夹角为120°,故a ·b =1×2×cos 120°=-1,③错误;(4a +b )·b =4a ·b +b 2=-4+4=0,⑤正确.10.[2015·泉州五校联考] 在直角梯形ABCD 中,AB ∥DC ,AD ⊥AB ,AD =DC =2,AB =3,点M 是梯形ABCD 内(包括边界)的一个动点,点N 是CD 边的中点,则AM →·AN →的最大值是________.10.6 [解析] 以A 为原点,分别以AB →,AD →所在的方向为x 轴、y 轴的正方向,建立平面直角坐标系,可得A (0,0),B (3,0),C (2,2),D (0,2),N (1,2),则直线BC 的方程为y =-2x +6.由题易知,当AM →·AN →取得最大值时,点M 在线段BC 上,故设M (λ,-2λ+6)(2≤λ≤3),可得AM →=(λ,-2λ+6),AN →=(1,2),∴AM →·AN →=λ+2×(-2λ+6)=12-3λ.∵2≤λ≤3,∴当λ=2时,AM →·AN →取得最大值6.7.[2015·丽水一模] 已知P 是边长为2的正方形ABCD 内的点,若△P AB ,△PBC 的面积均不大于1,则AP →·BP →的取值范围是( )A .(-1,2)B .(-1,1)C .0,12 D.12,327.B [解析]以A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系(如图所示),则B (2,0),C (2,2).设P (x ,y ),0<x <2,0<y <2.由△P AB ,△PBC 的面积均不大于1,得0<y ≤1,1≤x <2,则AP →·BP →=x (x -2)+y 2=(x -1)2+y 2-1.又(x -1)2+y 2表示平面区域0<y ≤1,1≤x <2内的点P (x ,y )与点(1,0)间的距离的平方,所以AP →·BP →的取值范围是(-1,1). 9.[2015·辽宁师大附中模拟] 已知a ,b 是单位向量,且a·b =0.若向量c 满足|c -a -b|=1,则|c|的取值范围是________.9.[2-1,2+1] [解析] 由a ,b 是单位向量,且a·b =0,可设a =(1,0),b =(0,1),c =(x ,y ). ∵向量c 满足|c -a -b|=1,∴(x -1)2+(y -1)2=1,即(x -1)2+(y -1)2=1.该方程表示圆心为(1,1),半径为1的圆,∴2-1≤|c |=x 2+y 2≤2+1,∴|c |的取值范围是[2-1,2+1].4.[2015·湛江调研] 在平面直角坐标系中,O 为坐标原点,设向量OA →=a ,OB →=b ,其中a =(3,1),b =(1,3).若OC →=λOA →+μOB →,且0≤λ≤μ≤1,则点C 所有可能的位置区域用阴影表示正确的是( )4.D [解析] 当λ=μ=1时,OC →=λa +μb =a +b =(4,4),故可以排除C.当λ=μ=0时,OC→=λa +μb =(0,0),故可以排除 B.当μ=13,λ=12时,OC →=λa +μb =12a +13b =116,32,故可以排除A.故选D.。
第五章 平面向量考点1 平面向量的概念及坐标运算1.(2015·新课标全国Ⅰ,7)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC → B.AD →=13AB →-43AC → C.AD →=43AB →+13AC → D.AD →=43AB →-13AC →1.A [∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →),即4AC →-AB →=3AD →, ∴AD →=-13AB →+43AC →.]2.(2015·湖南,8)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A.6 B.7 C.8 D.92.B [由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.]3.(2014·福建,8)在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2) B.e 1=(-1,2),e 2=(5,-2) C.e 1=(3,5),e 2=(6,10) D.e 1=(2,-3),e 2=(-2,3)3.B [法一 若e 1=(0,0),e 2=(1,2),则e 1∥e 2,而a 不能由e 1,e 2表示,排除A ;若e 1=(-1,2),e 2=(5,-2),因为-15≠2-2,所以e 1,e 2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.法二 因为a =(3,2),若e 1=(0,0),e 2=(1,2),不存在实数λ,μ,使得a =λe 1+μe 2,排除A ;若e 1=(-1,2),e 2=(5,-2),设存在实数λ,μ,使得a =λe 1+μe 2,则(3,2)=(-λ+5μ,2λ-2μ),所以⎩⎪⎨⎪⎧3=-λ+5μ,2=2λ-2μ,解得⎩⎪⎨⎪⎧λ=2,μ=1.所以a =2e 1+e 2,故选B.]4.(2014·安徽,10)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b cos θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A.1<r <R <3B.1<r <3≤RC.r ≤1<R <3D.1<r <3<R4.A [由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π},即C :x 2+y 2=1,区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与圆P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示,要使C ∩Ω为两段分离的曲线,只有1<r <R <3.]5.(2017•浙江,15)已知向量 、 满足| |=1,| |=2,则| + |+| ﹣ |的最小值是________,最大值是________. 5. 4;记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:| + |=,| ﹣ |=,则x 2+y 2=10(x 、y≥1),其图象为一段圆弧MN ,如图,令z=x+y ,则y=﹣x+z ,则直线y=﹣x+z 过M 、N 时z 最小为z min =1+3=3+1=4,当直线y=﹣x+z 与圆弧MN 相切时z 最大,由平面几何知识易知z max 即为原点到切线的距离的倍,也就是圆弧MN 所在圆的半径的倍,所以z max =×=.综上所述,| + |+| ﹣ |的最小值是4,最大值是 .故答案为:4、.6.(2017•江苏,12)如图,在同一个平面内,向量,,的模分别为1,1,, 与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m ,n ∈R ),则m+n=________.6. 3 如图所示,建立直角坐标系.A (1,0).由与的夹角为α,且tanα=7.∴cosα= ,sinα= .∴C .cos (α+45°)=(cosα﹣sinα)= .sin (α+45°)= (sinα+cosα)= .∴B.∵ =m +n (m ,n ∈R ),∴=m ﹣n ,=0+n ,解得n=,m=.则m+n=3.故答案为:3.7.(2016·全国Ⅰ,13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 7.-2[由|a +b |2=|a |2+|b |2,得a ⊥b ,所以m ×1+1×2=0,得m =-2.]8.(2015·新课标全国Ⅱ,13)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.8.12[∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则得⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.]9.(2015·北京,13)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.9.12 -16 [MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.]10.(2015·江苏,6)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.10.-3 [∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.]11.(2014·新课标全国Ⅰ,15)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC→的夹角为________.11.90°[由AO →=12(AB →+AC →)可知O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90.]12.(2014·湖南,16)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.12.1+7 [设D (x ,y ),由|CD →|=1,得(x -3)2+y 2=1,向量OA →+OB →+OD →=(x -1,y +3),故|OA →+OB →+OD →|=(x -1)2+(y +3)2的最大值为圆(x -3)2+y 2=1上的动点到点(1,-3)距离的最大值,其最大值为圆(x -3)2+y 2=1的圆心(3,0)到点(1,-3)的距离加上圆的半径,即(3-1)2+(0+3)2+1=1+7.]考点2 平面向量的数量积及其应用1.(2017•北京,6)设 , 为非零向量,则“存在负数λ,使得 =λ ”是 • <0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件1. A , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相反,可得 • <0.反之不成立,非零向量 , 的夹角为钝角,满足 • <0,而 =λ 不成立.∴ , 为非零向量,则“存在负数λ,使得 =λ ”是 • <0”的充分不必要条件.故选A .2.(2017•新课标Ⅲ,12)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ的最大值为( )A.3B.2C.D.22. A 如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD= = ,∴BC•CD= BD•r,∴r= ,∴圆的方程为(x﹣1)2+(y﹣2)2= ,设点P的坐标为(cosθ+1,sinθ+2),∵=λ +μ ,∴(cosθ+1,sinθ﹣2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ= cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选A.3.(2017•浙江,10)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD 交于点O,记I1= •,I2= •,I3= •,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I33. C ∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2 ,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选C.4.(2017•新课标Ⅱ,12)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+ )的最小值是()A.﹣2B.﹣C.﹣D.﹣14. B 建立如图所示的坐标系,以BC 中点为坐标原点,则A (0, ),B (﹣1,0),C(1,0),设P (x ,y ),则=(﹣x ,﹣y ),=(﹣1﹣x ,﹣y ),=(1﹣x ,﹣y ),则 •( + )=2x 2﹣2y+2y 2=2[x 2+(y ﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣ )=﹣ ,故选B.5.(2016·四川,10)在平面内,定点A ,B ,C ,D 满足|DA →|=|DB →|=|DC →|,DA →·DB →=DB →·DC →=DC →·DA →=-2,动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( ) A.434 B.494 C.37+634 D.37+23345.B[由题意,|DA →|=|DB →|=|DC →|,所以D 到A ,B ,C 三点的距离相等,D 是△ABC 的外心; DA →·DB →=DB →·DC →=DC →·DA →=-2⇒DA →·DB →-DB →·DC →=DB →·(DA →-DC →)=DB →·CA →=0,所以DB ⊥AC , 同理可得,DA ⊥BC ,DC ⊥AB ,从而D 是△ABC 的垂心,∴△ABC 的外心与垂心重合,因此△ABC 是正三角形,且D 是△ABC 的中心. DA →·DB →=|DA →||DB →|cos ∠ADB =|DA →||DB →|×⎝ ⎛⎭⎪⎫-12=-2⇒|DA →|=2,所以正三角形ABC 的边长为23;我们以A 为原点建立直角坐标系,B ,C ,D 三点坐标分别为B (3,-3),C (3,3),D (2,0),由|AP →|=1,设P 点的坐标为(cos θ,sin θ),其中θ∈[0,2π),而PM →=MC →,即M 是PC 的中点,可以写出M 的坐标为M ⎝⎛⎭⎪⎫3+cos θ2,3+sin θ2 则|BM →|2=⎝ ⎛⎭⎪⎫cos θ-322+⎝ ⎛⎭⎪⎫33+sin θ22=37+12sin ⎝ ⎛⎭⎪⎫θ-π64≤37+124=494,当θ=23π时,||2取得最大值494.故选B.6.(2016·山东,8)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A.4B.-4C.94D.-946.B[∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.]7.(2016·全国Ⅲ,3)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°7.A [|BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.]8.(2016·全国Ⅱ,3)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8 B.-6 C.6 D.88.D[由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D.]9.(2015·山东,4)已知菱形ABCD 的边长为a ,∠ABC =60° ,则BD →·CD →=( ) A.-32a 2B.-34a 2C.34a 2D.32a29.D [如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝ ⎛⎭⎪⎫-12=3a 2,∴BD =3a .∴BD →·CD →=|BD →|·|CD →|cos 30°=3a 2×32=32a 2.]10.(2015·安徽,8)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A.|b |=1B.a ⊥bC.a ·b =1D.(4a +b )⊥BC →10.D [由于△ABC 是边长为2的等边三角形;∴(AB →+AC →)·(AB →-AC →)=0,即(AB →+AC →)·CB →=0,∴(4a +b )⊥CB →,即(4a +b )⊥BC →,故选D.]11.(2015·四川,7)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( ) A.20 B. 15 C.9 D.611.C[AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9,选C.]12.(2015·福建,9)已知AB →⊥AC →,|AB →|=1t,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( )A.13B.15C.19D.2112.A [建立如图所示坐标系,则B⎝ ⎛⎭⎪⎫1t ,0,C (0,t ),AB →=⎝ ⎛⎭⎪⎫1t ,0,AC →=(0,t ),AP →=AB →|AB →|+4AC →|AC →|=t ⎝ ⎛⎭⎪⎫1t ,0+4t (0,t )=(1,4),∴P (1,4),PB →·PC→=⎝ ⎛⎭⎪⎫1t-1,-4·(-1,t -4)=17-⎝ ⎛⎭⎪⎫1t+4t ≤17-21t·4t =13,故选A.]13.(2015·重庆,6)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b的夹角为( )A.π4B.π2C.3π4D.π 13.A [由题意(a -b )·(3a +2b )=3a 2-a·b -2b 2=0,即3|a |2-|a |·|b |cos θ-2|b |2=0,所以3×⎝ ⎛⎭⎪⎫2232-223cos θ-2=0,cos θ=22,θ=π4,选A.]14.(2015·陕西,7)对任意向量a ,b ,下列关系式中不恒成立的是( )A.|a ·b |≤|a ||b |B.|a -b |≤||a |-|b ||C.(a +b )2=|a +b |2D.(a +b )(a -b )=a 2-b214.B [对于A ,由|a ·b |=||a ||b |cos<a ,b >|≤|a ||b |恒成立;对于B ,当a ,b 均为非零向量且方向相反时不成立;对于C 、D 容易判断恒成立.故选B.]15.(2014·新课标全国Ⅱ,3)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( ) A.1 B.2 C.3 D.515.A [由向量的数量积运算可知,∵|a +b |=10,∴(a +b )2=10,∴a 2+b 2+2a ·b =10,① 同理a 2+b 2-2a ·b =6,② ① -②得4a ·b =4,∴a ·b =1.]16.(2014·大纲全国,4)若向量a 、b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A.2 B. 2 C.1 D.2216.B [由题意得⎩⎪⎨⎪⎧(a +b )·a =a 2+a ·b =0,(2a +b )·b =2a ·b +b 2=0⇒-2a 2+b 2=0,即-2|a |2+|b |2=0,又|a |=1,∴|b |= 2.故选B.]17.(2014·天津,8)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.71217.C [如图所示,以菱形ABCD 的两条对角线所在直线为坐标轴,建立平面直角坐标系xOy ,不妨设A (0,-1),B (-3,0),C (0,1),D (3,0),由题意得CE →=(1-λ)·CB →=(3λ-3,λ-1),CF →=(1-μ)CD →=(3-3μ,μ-1).因为CE →·CF →=-23,所以3(λ-1)·(1-μ)+(λ-1)(μ-1)=-23,即(λ-1)(μ-1)=13.因为AE →=AC →+CE →=(3λ-3,λ+1).AF →=AC →+CF →=(3-3μ,μ+1),又AE →·AF →=1,所以(λ+1)(μ+1)=2.由⎩⎪⎨⎪⎧(λ-1)(μ-1)=13.(λ+1)(μ+1)=2,整理得λ+μ=56.选C.]18.(2017•新课标Ⅰ,13)已知向量 , 的夹角为60°,| |=2,| |=1,则| +2 |=________. 18. ∵向量 , 的夹角为60°,且| |=2,| |=1,∴=+4 • +4=22+4×2×1×cos60°+4×12=12,∴| +2 |=2 .故答案为:2.19.(2017•山东,12)已知 ,是互相垂直的单位向量,若﹣与 +λ的夹角为60°,则实数λ的值是________.19. , 是互相垂直的单位向量,∴| |=||=1,且 • =0; 又 ﹣ 与 +λ 的夹角为60°,∴(﹣)•( +λ)=| ﹣|×|+λ|×cos60°,即 +( ﹣1) •﹣λ= ××,化简得﹣λ=×× ,即 ﹣λ= ,解得λ= .故答案为:. 20.(2017·天津,13)在△ABC 中,∠A=60°,AB=3,AC=2.若 =2,=λ﹣ (λ∈R ),且 =﹣4,则λ的值为________.20.如图所示,△ABC 中,∠A=60°,AB=3,AC=2,=2 , ∴ = += += + ( ﹣ )= + , 又 =λ﹣ (λ∈R ), ∴ =( + )•(λ ﹣ ) =( λ﹣ )•﹣+λ=( λ﹣ )×3×2×cos60°﹣ ×32+ λ×22=﹣4,∴λ=1,解得λ= .故答案为:.21.(2016·浙江,15)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.21.12 [由已知可得:6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e | 由于上式对任意单位向量e 都成立.∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b .即6≥5+2a ·b ,∴a ·b ≤12.]22.(2015·天津,14)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则|AE →|·|AF →|的最小值为________.22.2918 [在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.]23.(2015·浙江,15)已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+ye 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.23.1 2 2 2 [∵e 1·e 2=|e 1|·|e 2|cos 〈e 1,e 2〉=12,∴〈e 1,e 2〉=π3.不妨设e 1=⎝ ⎛⎭⎪⎫12,32,0,e 2=(1,0,0),b =(m ,n ,t ). 由题意知⎩⎪⎨⎪⎧b ·e 1=12m +32n =2,b ·e 2=m =52,解得n =32,m =52,∴b =⎝ ⎛⎭⎪⎫52,32,t .∵b -(x e 1+y e 2)=⎝ ⎛⎭⎪⎫52-12x -y ,32-32x ,t ,∴|b -(x e 1+y e 2)|2=⎝ ⎛⎭⎪⎫52-x 2-y 2+⎝ ⎛⎭⎪⎫32-32x 2+t 2=x 2+xy +y 2-4x -5y +t 2+7=⎝ ⎛⎭⎪⎫x +y -422+34(y -2)2+t 2.由题意知,当x =x 0=1,y =y 0=2时,⎝⎛⎭⎪⎫x +y -422+34(y -2)2+t 2取到最小值.此时t 2=1,故|b |=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫322+t 2=2 2.] 24.(2017•江苏,16)已知向量 =(cosx ,sinx ), =(3,﹣ ),x ∈[0,π].(Ⅰ)若 ∥ ,求x 的值; (Ⅱ)记f (x )=,求f (x )的最大值和最小值以及对应的x 的值.24.(Ⅰ)∵ =(cosx ,sinx ), =(3,﹣), ∥ ,∴﹣ cosx+3sinx=0, ∴tanx=,∵x ∈[0,π], ∴x=,(Ⅱ)f (x )= =3cosx ﹣ sinx=2 ( cosx ﹣ sinx )=2 cos (x+ ),∵x ∈[0,π],∴x+ ∈[ , ],∴﹣1≤cos(x+ )≤ ,当x=0时,f (x )有最大值,最大值3,当x= 时,f (x )有最小值,最大值﹣225.(2015·广东,16)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cosx ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值. (2)若m 与n 的夹角为π3,求x 的值.25.解 (1)因为m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0,所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝ ⎛⎭⎪⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.26.(2014·北京,10)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.26. 5 [∵|a |=1,∴可令a =(cos θ,sin θ),∵λa +b =0,∴⎩⎪⎨⎪⎧λcos θ+2=0,λsin θ+1=0,即⎩⎪⎨⎪⎧cos θ=-2λ,sin θ=-1λ,由sin 2θ+cos 2θ=1得λ2=5,得|λ|=5.]27.(2014·江西,14)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________. 27.223[因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3,b 2=(3e 1-e 2)2=9-2×3×1×cos α+1=8,所以|b |=22,a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a |·|b |=83×22=223.]28.(2014·湖北,11)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.28.±3 [(a +λb )⊥(a -λb )⇒(a +λb )·(a -λb )=a 2-λ2b 2=0⇒18-2λ2=0⇒λ=±3.]29.(2014·江苏,12)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.29.22 [因为AP →=AD →+DP →=AD →+14AB →,BP →=BC →+CP →=AD →-34AB →,所以AP →·BP →=(AD →+14AB →)·(AD→-34AB →)=|AD →|2-316|AB →|2-12AD →·AB →=2,将AB =8,AD =5代入解得AB →·AD →=22.]。
A.考点7 平面向量的概念及其运算【1】(A ,新课标I ,文2)已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =A 。
(7,4)--B 。
(7,4) C.(1,4)- D.(1,4)【2】(A ,新课标I,理7)设D 为ABC ∆所在平面内一点,3BC CD =,则A 。
1433AD AB AC =-+ B 。
1433AD AB AC =- C 。
4133AD AB AC =+ D 。
4133AD AB AC =- 【3】(A ,新课标Ⅱ,文4)向量(1,1)=-a ,b (1,2)=-,则(2)+⋅a b a =A.1-B.0 C 。
1 D.2【4】(A ,重庆,文7)已知非零向量,a b 满足||b 4||a =,且(2)a a b ⊥+,则a b 与的夹角为(A )3π (B )2π (C )32π (D)56π 【5】(A,四川,文2)设向量)4,2(=a 与向量)6,(x b =共线,则实数=xA 。
2B 。
3C 。
4 D.6【6】(A ,广东,文9)在平面直角坐标系xoy 中,已知四边形ABCD 是平行四边形,()1,2AB =-,()2,1AD =,则AD AC ⋅=A.5B.4 C 。
3 D 。
2【7】(A ,山东,文4理3)要得到函数sin(4)3y x π=-的图象,只需要将函数sin 4y x =的图象A.向左平移12π个单位 B 。
向右平移12π个单位 C 。
向左平移3π个单位 D.向右平移3π个单位 【8】(A,山东,理4)已知菱形ABCD 的边长为a ,60ABC ︒∠=,则BD CD ⋅= A 。
232a - B.234a - C.234a D.232a【9】(A ,福建,文7)设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于A .32-B .53-C .53D .32【10】(B ,重庆,理6)若非零向量b a ,,满足||322||b a =且),23()(b a b a +⊥-,则a 与b 的夹角为A 。
专题五 平面向量1.【2015高考新课标1,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+(B)1433AD AB AC =-(C )4133AD AB AC =+ (D)4133AD AB AC =-【答案】A【博雅解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A.【考点定位】平面向量的线性运算【名师点睛】本题以三角形为载体考查了平面向量的加法、减法及实数与向量的积的法则与运算性质,是基础题,解答本题的关键是结合图形会利用向量加法将向量AD表示为AC CD + ,再用已知条件和向量减法将CD 用,AB AC表示出来.2.【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( )(A )232a - (B )234a - (C ) 234a (D ) 232a 【答案】D【博雅解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅ ()22223cos 602BA BC BA a a a +⋅=+=故选D.【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题.3.【2015高考陕西,理7】对任意向量,a b,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【博雅解析】因为cos ,a b a b a b a b ⋅=≤ ,所以选项A 正确;当a 与b方向相反时,a b a b -≤-不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C 正确;()()22a b a b a b +-=- ,所以选项D 正确.故选B .【考点定位】1、向量的模;2、向量的数量积.【名师点晴】本题主要考查的是向量的模和向量的数量积,属于容易题.解题时一定要抓住重要字眼“不”,否则很容易出现错误.解本题需要掌握的知识点是向量的模和向量的数量积,即cos ,a b a b a b ⋅=,22a a = .4.【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB = ,4AD =.若点M ,N 满足3BM MC = ,2DN NC = ,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【博雅解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯= ,选C.【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB = ,4AD = 故可选,AB AD作为基底.5.【2015高考重庆,理6】若非零向量a ,b 满足|a ||b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为 ( ) A 、4πB 、2π C 、34π D 、π 【答案】A【考点定位】向量的夹角.【名师点晴】本题考查两向量的夹角,涉及到向量的模,向量的垂直,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.6.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB = ,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B【答案】D【博雅解析】如图,由题意,(2)2BC AC AB a b a b =-=+-= ,则||2b = ,故A 错误;|2|2||2a a == ,所以||1a =,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥ ,而22(2)4AD a a b a b =++=+,所以()4C a b +⊥B,故选D.【考点定位】1.平面向量的线性运算;2.平面向量的数量积.【名师点睛】平面向量问题中,向量的线性运算和数量积是高频考点.当出现线性运算问题时,注意两个向量的差OA OB BA -= ,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点).另外,要选好基底向量,如本题就要灵活使用向量,AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.7.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥==,若P 点是ABC ∆ 所在平面内一点,且4AB ACAP AB AC=+,则PB PC ⋅ 的最大值等于( )A .13B .15C .19D .21 【答案】A【博雅解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以11PB t- =(,-4),1PC - =(,t-4),因此PB PC ⋅11416t t =--+117(4)t t=-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【考点】1、平面向量数量积;2、基本不等式.【名师点睛】本题考查平面向量线性运算和数量积运算,通过构建直角坐标系,使得向量运算完全代数化,实现了数形的紧密结合,同时将数量积的最大值问题转化为函数的最大值问题,本题容易出错的地方是对AB AB的理解不到位,从而导致解题失败. 8.【2015高考湖北,理11】已知向量OA AB ⊥ ,||3OA =,则OA OB ∙= .【答案】9【博雅解析】因为OA AB ⊥ ,||3OA =,所以OA OB ∙= 93||||)(222===∙+=+∙OA OB OA OA AB OA OA .【考点定位】 平面向量的加法法则,向量垂直,向量的模与数量积.【名师点睛】平面向量是新教材新增内容,而且由于向量的双重“身份”是研究一些数学问题的工具.这类问题难度不大,以考查基础知识为主.9.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=,动点E和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ== 则AE AF ⋅ 的最小值为 . 【答案】2918【博雅解析】因为1,9DF DC λ= 12DC AB= ,119199918CF DF DC DC DC DC AB λλλλλ--=-=-== ,AE AB BE AB BC λ=+=+ ,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ,()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅ 的最小值为2918.BAD C EF【考点定位】向量的几何运算、向量的数量积与基本不等式.【名师点睛】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现.11.【2015高考新课标2,理13】设向量a ,b 不平行,向量a b λ+ 与2a b +平行,则实数λ=_________.【答案】12【博雅解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则12,k k λ=⎧⎨=⎩,所以12λ=.【考点定位】向量共线.【名师点睛】本题考查向量共线,明确平面向量共线定理,利用待定系数法得参数的关系是解题关键,属于基础题.12.【2015江苏高考,14】设向量a k (cos ,sin cos )(0,1,2,,12)666k k k k πππ=+= ,则11k =∑(a k a k+1)的值为【答案】【博雅解析】 a k a k+1(1)(1)(1)(cos ,sin cos )(cos ,sin cos )666666k k k k k k ππππππ+++=+⋅+ (1)(1)(1)coscos (sin cos )(sin cos )666666k k k k k k ππππππ+++=++⋅+(1)(1)(1)(1)(1)(coscos sin sin )(sin cos cos sin )cos cos 6666666666k k k k k k k k k k ππππππππππ+++++=++++22(1)21cos sincos cos sin cos sin666666266k k k k k k k ππππππππππ+++=++=-21sin cos )sin 6343k k k ππππ+=+++-21(21)sin cos626k k πππ++=+ 因为21(21)sin cos 626k k πππ++,的周期皆为6,一个周期的和皆为零, 因此11k =∑(a k a k+1)12==.【考点定位】向量数量积,三角函数性质【名师点晴】向量数量积在本题中仅是一个表示,实质是三角函数化简求和,首先根据角之间的差别与联系,对通项进行重新搭配,对不可搭配的项再一次展开,重新配角搭配,这样将通项化为一次式,利用三角函数周期性进行求和.作为压轴题,主要考查学生基础题型的识别与综合应用.13.【2015江苏高考,6】已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), 则n m -的值为______. 【答案】3-【博雅解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 【考点定位】向量相等【名师点晴】明确两向量相等的充要条件,它们的对应坐标相等.其实质为平面向量基本定理应用. 向量共线的充要条件的坐标表示:若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-.向量垂直的充要条件的坐标表示:若1122()()a x y b x y ==,,,,则a b ⊥⇔1212+0x x y y =.14.【2015高考湖南,理8】已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++的最大值为( )A.6B.7C.8D.9 【答案】B. 【博雅解析】【考点定位】1.圆的性质;2.平面向量的坐标运算及其几何意义.【名师点睛】本题主要考查向量的坐标运算,向量的几何意义以及点到圆上点的距离的最值问题,属于中 档题,结合转化思想和数形结合思想求解最值,关键是把向量的模的最值问题转化为点与圆上点的距离的 最值问题,即圆221x y +=上的动点到点)0,6(距离的最大值.。
专题五 平面向量1.【2015高考新课标1,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+(B)1433AD AB AC =-(C )4133AD AB AC =+ (D)4133AD AB AC =-【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A.【考点定位】平面向量的线性运算【名师点睛】本题以三角形为载体考查了平面向量的加法、减法及实数与向量的积的法则与运算性质,是基础题,解答本题的关键是结合图形会利用向量加法将向量AD表示为AC CD + ,再用已知条件和向量减法将CD 用,AB AC表示出来.2.【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( ) (A )232a - (B )234a - (C ) 234a 错误!未找到引用源。
(D )232a 错误!未找到引用源。
【答案】D 【解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅ ()22223cos 602BA BC BA a a a +⋅=+=故选D.【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题.3.【2015高考陕西,理7】对任意向量,a b,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【解析】因为cos ,a b a b a b a b ⋅=≤ ,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C 正确;()()22a b a b a b +-=- ,所以选项D 正确.故选B .【考点定位】1、向量的模;2、向量的数量积.【名师点晴】本题主要考查的是向量的模和向量的数量积,属于容易题.解题时一定要抓住重要字眼“不”,否则很容易出现错误.解本题需要掌握的知识点是向量的模和向量的数量积,即cos ,a b a b a b ⋅= ,22a a = .4.【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB = ,4AD =.若点M ,N 满足3BM MC = ,2DN NC = ,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯= ,选C.【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB = ,4AD = 故可选,AB AD作为基底.5.【2015高考重庆,理6】若非零向量a ,b 满足|a ||b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为 ( )A 、4πB 、2πC 、34πD 、π 【答案】A【考点定位】向量的夹角.【名师点晴】本题考查两向量的夹角,涉及到向量的模,向量的垂直,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.6.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B【答案】D 【解析】如图,由题意,(2)2BC AC AB a b a b =-=+-= ,则||2b = ,故A 错误;|2|2||2a a ==,所以||1a = ,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥ ,而22(2)4AD a a b a b =++=+ ,所以()4C a b +⊥B,故选D.【考点定位】1.平面向量的线性运算;2.平面向量的数量积.【名师点睛】平面向量问题中,向量的线性运算和数量积是高频考点.当出现线性运算问题时,注意两个向量的差OA OB BA -= ,这是一个易错点,两个向量的和2OA OB OD +=(D点是AB 的中点).另外,要选好基底向量,如本题就要灵活使用向量,AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.7.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥==,若P 点是ABC ∆ 所在平面内一点,且4AB ACAP AB AC=+,则PB PC ⋅ 的最大值等于( )A .13B .15C .19D .21【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP = (,0)+4(0,1)=(1,4),即1P (,4),所以11PB t- =(,-4),1PC - =(,t-4),因此PB PC ⋅11416t t =--+117(4)t t=-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【考点】1、平面向量数量积;2、基本不等式.【名师点睛】本题考查平面向量线性运算和数量积运算,通过构建直角坐标系,使得向量运算完全代数化,实现了数形的紧密结合,同时将数量积的最大值问题转化为函数的最大值问题,本题容易出错的地方是对ABAB的理解不到位,从而导致解题失败.8.【2015高考北京,理13】在ABC △中,点M ,N 满足2AM MC = ,BN NC =.若MN x AB y AC =+ ,则x = ;y = .【答案】11,26-【考点定位】本题考点为平面向量有关知识与计算,利用向量相等解题.【名师点睛】本题考查平面向量的有关知识及及向量运算,利用向量相等条件求值,本题属于基础题.利用坐标运算要建立适当的之间坐标系,准确写出相关点的坐标、向量的坐标,利用向量相等,列方程组,解出未知数的值.9.【2015高考湖北,理11】已知向量OA AB ⊥ ,||3OA =,则OA OB ∙= .【答案】9【解析】因为OA AB ⊥ ,||3OA =,所以OA OB ∙= 93||||)(222===∙+=+∙OA OB OA OA AB OA OA .【考点定位】 平面向量的加法法则,向量垂直,向量的模与数量积.【名师点睛】平面向量是新教材新增内容,而且由于向量的双重“身份”是研究一些数学问题的工具.这类问题难度不大,以考查基础知识为主. 10.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ== 则AE AF ⋅ 的最小值为 .【答案】2918【解析】因为1,9DF DC λ= 12DC AB=,119199918CF DF DC DC DC DC AB λλλλλ--=-=-== ,AE AB BE AB BCλ=+=+ ,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅ 的最小值为2918. BAD C EF【考点定位】向量的几何运算、向量的数量积与基本不等式.【名师点睛】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现.11.【2015高考浙江,理15】已知12,e e 是空间单位向量,1212e e ⋅= ,若空间向量b 满足1252,2b e b e ⋅=⋅= ,且对于任意,x y R∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y =,【答案】1,2,22.【考点定位】1.平面向量的模长;2.函数的最值【名师点睛】本题主要考查了以平面向量模长为背景下的函数最值的求解,属于较难题,分析题意可得问题等价于12()b xe ye -+当且仅当0x x =,0y y =时取到最小值1,这是解决此题的关键突破口,也是最小值的本质,两边平方后转化为一个关于x ,y 的二元二次函数的最值求解,此类函数最值的求解对考生来说相对陌生,此时需将其视为关于某个字母的二次函数或利用配方的方法求解,关于二元二次函数求最值的问题,在14年杭州二模的试题出现过类似的问题,在复习时应予以关注.12.【2015高考新课标2,理13】设向量a ,b 不平行,向量a b λ+ 与2a b +平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则12,k k λ=⎧⎨=⎩,所以12λ=.【考点定位】向量共线.【名师点睛】本题考查向量共线,明确平面向量共线定理,利用待定系数法得参数的关系是解题关键,属于基础题.13.【2015江苏高考,14】设向量a k (cos ,sin cos )(0,1,2,,12)666k k k k πππ=+= ,则11k =∑(a k a k+1)的值为【答案】【解析】 a k a k+1(1)(1)(1)(cos ,sin cos )(cos ,sin cos )666666k k k k k k ππππππ+++=+⋅+ (1)(1)(1)coscos (sin cos )(sin cos )666666k k k k k k ππππππ+++=++⋅+(1)(1)(1)(1)(1)(coscos sin sin )(sin cos cos sin )cos cos 6666666666k k k k k k k k k k ππππππππππ+++++=++++22(1)21cos sincos cos sin cos sin666666266k k k k k k k ππππππππππ+++=++=+-21sin cos )sin 6343k k k ππππ+=++-21(21)sin cos626k k πππ++=++ 因为21(21)sin cos 626k k πππ++,的周期皆为6,一个周期的和皆为零,因此11k =∑(a k a k+1)12==【考点定位】向量数量积,三角函数性质【名师点晴】向量数量积在本题中仅是一个表示,实质是三角函数化简求和,首先根据角之间的差别与联系,对通项进行重新搭配,对不可搭配的项再一次展开,重新配角搭配,这样将通项化为一次式,利用三角函数周期性进行求和.作为压轴题,主要考查学生基础题型的识别与综合应用.14.【2015江苏高考,6】已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), 则n m -的值为______. 【答案】3-【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 【考点定位】向量相等【名师点晴】明确两向量相等的充要条件,它们的对应坐标相等.其实质为平面向量基本定理应用. 向量共线的充要条件的坐标表示:若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-.向量垂直的充要条件的坐标表示:若1122()()a x y b x y ==,,,,则a b ⊥⇔1212+0x x y y =.15.【2015高考湖南,理8】已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++的最大值为( )A.6B.7C.8D.9 【答案】B. 【解析】【考点定位】1.圆的性质;2.平面向量的坐标运算及其几何意义.【名师点睛】本题主要考查向量的坐标运算,向量的几何意义以及点到圆上点的距离的最值问题,属于中档题,结合转化思想和数形结合思想求解最值,关键是把向量的模的最值问题转化为点与圆上点的距离的最值问题,即圆221x y +=上的动点到点)0,6(距离的最大值.。