暑假作业(二元一次方程与一元不等式)
- 格式:doc
- 大小:589.00 KB
- 文档页数:4
七年级暑假作业之五:《二元一次方程组》一.基础知识:1、下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.4 2、下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-3、下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩4、二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解5、方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩6、若│x-2│+(3y+2)2=0,则3y—1的值是()A.-1 B.-2 C.-3 D.3 27、方程组43235x y kx y-=⎧⎨+=⎩的解x与y的值相等,则k等于()8、某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩9、已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10、在二元一次方程-12x +3y =2中,当x =4时,y =_______;当y =-1时,x =______. 11、若x 3m -3-2y n -1=5是二元一次方程,则m =_____,n =______.12、已知2,3x y =-⎧⎨=⎩是方程x -ky =1的解,那么k =_______.13、已知│x -1│+(2y +1)2=0,且2x -ky =4,则k =_____. 14、二元一次方程x +y =5的正整数解有______________. 15、以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16、已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m =_______,n =______. 17、若x 、y 互为相反数,且x +3y =4,,3x -2y =_____________.18、.明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?二.用二元一次方程解决实际问题1、根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )(A )0.8元/支,2.6元/本 (B )0.8元/支,3.6元/本 (C )1.2元/支,2.6元/本(D )1.2元/支,3.6元/本哦……我忘了!只记得先后买了两次,第一次买了5支笔和10本笔记本花了42元钱,第二次买了10支笔和5本笔记本花了30元钱.小红,你上周买的笔和笔记本的价格是多少啊?2、甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是 ( )A .⎩⎨⎧+⨯=-++=+)201(100)401()101(100000000y x y x B .⎩⎨⎧⨯=++-=+00000020100401()101(100y x y x C .⎩⎨⎧+⨯=++-=+)201(100)401()101(100000000y x y x D .⎩⎨⎧⨯=-++=+0000020100)401()101(100y x y x 3、某年全国废水(含工业废水和城镇生活污水)排放总量约为572亿吨,排放达标率约为72%,其中工业废水排放达标率约为92%,城镇生活污水排放达标率约为57%.这一年全国工业废水与城镇生活污水的排放量分别是多少亿吨?(结果精确到1亿吨) (注:废水排放达标率是指废水排放达标量占废水排放总量的百分比)4、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价) (1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.甲 乙 进价(元/件) 15 35 售价(元/件)2045。
二元一次方程组⑴1、下列方程:①xy+3x-y=5②3x+2=x-y ③y=5x ④x+y 1=3⑤xy=2⑥x 2-y 2=1⑦x+y+z=1中,二元一次方程有 (填序号).2、已知x a+b -3y a-1=2是关于x 、y 的二元一次方程,则a= ,b= . 3、已知x 、y 的值:①⎩⎨⎧==22x y ②⎩⎨⎧==23y x ③⎩⎨⎧-==21x y ④⎩⎨⎧-=-=23y x ,其中是二元一次方程2x-y=4的解是 (填序号).4、已知⎩⎨⎧==12x y 是方程3x+ay=4的一个解,则a= .5、方程5x-2y=1,当x= -2时,y= ;当y= -3时,x= .6、若方程x-ky=6的一个解是⎩⎨⎧==32y x ,则k 的值是 .7、若⎩⎨⎧-=-=121m y mx ,则x 与y 的关系是8、把下列方程化成用含x 的式子表示y 的形式:(1)x+3y=4 (2)3x-5y=29、判断⎩⎨⎧==13y x 是否是方程组⎩⎨⎧=-=+43252y x y x 的解?为什么?1、在下列二元一次方程中,有无数个正整数的解的是( )A 、x+3y=2008B 、x-y=3C 、2x+4y=7D 、x+2y=12、方程x-my=y+3是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠0B 、m ≠1C 、m ≠-1D 、m ≠33、下列方程组中不是二元一次方程组的是( )A 、⎩⎨⎧==32y xB 、⎩⎨⎧=-=+21y x y xC 、⎩⎨⎧==+15xy y xD 、⎩⎨⎧=-=12y x x y 4、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧-=-=21y xB 、⎩⎨⎧==12y xC 、⎩⎨⎧-==12y xD 、⎩⎨⎧==21y x 5、在方程3x+4y=6中,如果2y=3,那么x= .6、某人只带了面值2元和5元的两种货币,他要买一件27元的商品,则他在不需要找钱的情况下可以有几种付款方式.7、解方程组(1)⎩⎨⎧=+=-74823y x y x (2)⎩⎨⎧=+-=-33225y x y x1、已知方程12(x+1)=7(y-1),写出用x 表示y 的式子得 ,当x=2时,y= .2、将x=23-y-1代入方程4x-9y=8中,可得到一元一次方程的解是 . 3、若方程3x+y=51的一个解中的两个数互为相反数,则这个解是 . 4、用代入法解方程组⎩⎨⎧=-=+1472x y x y 由②得y= ③,把③代入①, 得 ,解得x= ,再把求得的x 值代入③得,y= ;所以方程组的解为 .5、已知⎩⎨⎧==32x y 是方程组⎩⎨⎧=-=-7253ny x y mx 的解,则2m+3n= .6、解方程组(1)⎩⎨⎧=--=52332b a b a (2)⎩⎨⎧=+=-15255s 3t s t7、已知关于x 、y 的方程mx+ny=8的两个解分别为⎩⎨⎧-==13y x 和⎩⎨⎧=-=21y x ,求m 、n 的值.二元一次方程组⑷1、若(2x-3y+5)2+︱x+y-2︱=0,则x= ,y= .2、已知3x 3m+5n+9+9y 4m-2n+3=5是二元一次方程,则n m 的值是 . 3、如果x+y=-4,x-y=8,那么多项式x 2-y 2的值是 .4、已知方程组⎩⎨⎧=+=-24by ax by ax 的解为⎩⎨⎧==12y x 则2a-3b= . 5、已知⎩⎨⎧=-=+32423t y t x ,则x 与y 之间的关系式是 .6、解方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x7、已知(3x-2y+1)2与︱4x-3y-3︱互为相反数,求x-y 的值.1、某电视机厂第一季度和第二季度共生产液晶电视机144000台,已知第一季度的产量是第二季度的80%,设第一季度的产量为x 台,第二季度的产量为y 台,则列出方程组是 .2、一艘轮船顺水航行104km,需要2h ;逆水航行3h 的路程为96km ;则轮船在静水中航2h 的路程是多少千米.可采取间接设的方法.设轮船在静水中航行的速度为xkm/h ,水流速度为ykm/h ,则列出方程组为 .3、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?4、甲乙二人从相距20千米的两地同时出发,若同向而行甲5小时可追上乙;若相向而行35小时相遇,求甲乙二人的速度各是多少.5、已知甲、乙两种商品的原价和为200元.因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价和比原单价和提高了5%.求甲、乙两种商品的原单价各是多少元.1、要把一张面值为10元的人民币换成零钱,现在只有面值1元和5元的人民币,数量足够多,那么不同的换法共有种.2、某校运动员进行分组训练,若每组5人,则余2人;若每组6人,则缺少3人;设运动员人数共有x人,组数为y人,则列出方程组为 .3、某文具商店星期一共售出毛笔和签字笔200支,其中毛笔的数量是签字笔数量的3倍多8支,设售出毛笔x支,售出签字笔y支,则列出方程组为 .4、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?5、已知一艘轮船载重量是500吨,容积是1000立方米.现有甲乙两种货物等待装运,甲种货物每吨体积是7立方米,乙种货物每吨体积是2立方米,求怎样装货才能最大限度的利用船的载重量和体积?6、用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用多少张铁皮制作盒身,用多少张铁皮制作盒底,正好全部配套.1、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.2、一张方桌是由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条.现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张?3、加工某种产品需要经过两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人加工这种产品,问应怎样安排人力,才能使每天第一道工序、第二道工序所完成的产品件数相等?不等式⑴1、用不等式表示:(1) x 是负数;___________ (2) x 是非负数;____________(3) x 的一半小于-1;__________ (4) x 与4的和大于0.5;_________(5)a 与1的和是正数;__________ (6)x 的21与y 的31的差是非负数;__________ 2、当实数a <0时,6+a 6-a (填“<”或“>”).3、不等式2x ﹣1>3的解集为 .4、不等式2x+9≥3(x+2)的正整数解是 .5、下列各式中,是一元一次不等式的是( ).A.5+4>8 B.12-x C.x 2+3≤5D.x y 3-≥06、下列命题中正确的是( ).A.若m ≠n,则|m|≠|n| B.若a+b=0,则ab >0C.若ab <0,且a <b,则|a|<|b| D.互为倒数的两数之积必为正.7、无论x 取什么数,下列不等式总成立的是( ).A.x+5>0; B.x+5<0; C.-(x+5)2<0; D. (x-5)2≥0.8、若,a a -则a 必为( ).A 、负整数 B、 正整数 C、负数 D、正数9、下列说法,错误的是( ).A.33- x 的解集是1- x B.-10是102- x 的解C.2 x 的整数解有无数多个 D.2 x 的负整数解只有有限多个 10、下列按要求列出的不等式中正确的是 ( ).A.a 不是负数,则a>0B.b 是不大于0的数,则b<0C.m 不小于-1,则m>-1D.a+b 是负数,则a+b<011、不等式2-x<1的解集是( ).A.x>1B.x>-1C.x<1D.x<-1不等式⑵1、不等式6(x +1)-3x >3x +3的解集为( ).A .x >1B .无解C .x >-1D .任意数2、不等式4x -7≥5(x -1)的解集是( ).A .x ≥ 2B .x ≥-2C .x ≤-2D .x ≤23、若不等式(m -2)x >n 的解集为x <1,则m ,n 满足的条件是( ).A .m=n -2且m >2B .m=n -2且m <2C .n=m -2且m >2D .n=m -2且m <24、当k _____时,3k 与k 的差小于1. 5、不等式0823≤--x 的解集是____________. 6、解下列不等式,并把它们得解集在数轴上表示出来.(1) 7x+5>8x+6 (2)2x-1>5x+5(3)3(x +2)-1>8-2(x -1) (4)2[x -3(x -1)]≥5x不等式⑶1、若∣x -2∣=2-x ,则x 应满足( ).A .x ≥ 2B .x >2C .x <2D .x ≤22、如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( ).A .9 ≤m <12B .9 <m ≤12C .m <12D .m ≥ 93、不等式3x -k ≤0的正整数解是1,2,那么k 的取值范围是___________.4、不等式3x -2≥4(x -1)的所有非负整数解的和等于___________.5、关于x 的不等式3x -2a ≤-2的解集是x ≤1,则a 的值是_________.6、若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.7、解不等式,并在数轴表示不等式的解集.(1))4(410--x ≤1)-x (2 (2)145261≥--+y y(3)612131-≥--+x x x (4)12162312----+x x x >不等式⑷1、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )..13.31.22.22 A m B m C m D m-<≤-≤<-≤<-<≤2、满足-1<x≤2的数在数轴上表示为().3、不等式45111x-<的正整数解为( ).A.1个B.3个C.4个D.5个4、已知不等式组2113xx m-⎧>⎪⎨⎪>⎩的解集为2x>,则m满足条件为( )..2.2.2.2 A m B m C m D m><=≤5、(1)不等式组21xx>-⎧⎨>⎩的解集是(2)不等式组12xx<⎧⎨>-⎩的解集是;6、解下列不等式组:(1)()4321213x xxx-<-⎧⎪⎨++>⎪⎩(2)()2 1.55261x xx x≤+⎧⎪⎨->-⎪⎩不等式⑸7、在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个正确,要求学生把正确答案选出,每道题选对的4分,不选或错选倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对多少道题?8、某商店要选购甲、乙两种零件,若购进甲种零件10件,乙种12件,共需要2100元,若购进甲种零件5件,乙种零件8件,共需要1250元.(1)求甲、乙两种零件每件分别为多少元?(2)若每件甲种零件的销售价格为108元,每件乙种销售价格为140元,根据市场需求,商店决定,购进甲种零件的数量比购进乙种的数量3倍多2件,这样零件的全部售出后,要是总获利超过976元,至少应购进乙种零件多少件?1、用不等式表示图中的解集,其中正确的是 ( )A. x≥-2B. x >-2C. x <-2D. x≤-22、不等式2-x>1的解集是____________3、方程2x +3y =10中,当3x -6=0时,y =_________4、若方程组⎩⎨⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围.5、某商店欲购进A,B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元,若购进A 种商品6件和B 种商品8件共需440元;(1)求A,B 两种商品每件的进价分别为多少元?(2)若该商品每销售1件A 种商品可获利8元,每销售1件B 种商品可获利6元,且商店将购进A,B 共50件的商品全部售出后,要获得的利润超过348元,问A 种商品至少购进多少件?1、下列方程中的二元一次方程组的是()A.32141x yy z-=⎧⎨=+⎩B.3232ab a=⎧⎨-=⎩C.13124yxxy⎧+=⎪⎪⎨⎪+=⎪⎩D.13mnm n=-⎧⎨+=⎩2、不等式4(x-2)>2(3x + 5)的非负整数解的个数为( )A.0个B.1个C.2个D.3个3、庐城出租车的收费标准:起步价4元(即行使距离不超过3千米都须付4元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人乘出租车从甲地到乙地共付车费18元,那么甲地到乙地路程是( )A.9.5千米B.10千米C.至多10千米D.至少9千米4、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为.5、某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?6、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?。
二元一次方程组计算50题二元一次方程组计算50题1.解方程组:.2.解方程组:.3.解方程组:.4.解方程组:.5.解方程组:.6.解方程组:.7.解方程组:8.解方程组:.9.解方程组:.10.解方程组:.11.解方程组:.12.解方程组:.13.解方程组:.14.解方程组:.15.解方程组:.二元一次方程组计算50题16.解方程组:.17.解方程组:.18.解方程组:19.解方程组:.20.解方程组:.21.解方程组:22.解方程组:.23.解方程组:.24.解方程组:.25.解方程组:.26.解方程组:.27.解方程组:.28.解方程组:.29.解方程组:.30.解方程组:31.解方程组:.32.解方程组:.二元一次方程组计算50题33.解方程组:.34.解方程组:35.解方程组:.36.解方程组:.37.解方程组:.38.解方程组:.39.解方程组:.40.解方程组:.41.解方程组:.42.解方程组:.43.解方程组:.44.解方程组:.45.解方程组:.46.解方程组:⎪⎩⎪⎨⎧=--+-=+--3y x 22y x 31214y x 3y x 2)()()(47.解方程组:⎪⎪⎪⎨⎧=---=+--11y 3x 042y 31x二元一次方程组计算50题48.解方程组:.49.解方程组:.50.解方程组:4yx 610y 2x 32y x ++=-=+。
初一数学下册暑假作业不管是大小朋友,放假都是一件非常开心的事情呢!放假可以快乐的玩耍,但是各位同学们千万不要忘记写作业啦!温故而知新,可以为师矣。
右面是给大家整理的一些汇编初一数学下册暑假作业的学习资料,希望对大家有所帮助。
七年级数学下册暑假作业练习下列整式:― x , (a+b)c,3xy,0,,―5a +a中,是单项式的有,是多项式的有 .2.多项式― a b―7ab―6ab +1是次项式,它项的系数是 .3.温度由10℃上升了t℃后是℃.4.如图1,已知直线AB、DE相交于B,DE、AC相交于C,∠4=90°,那么:(1)∠1与∠3是角,∠1=∠ ;(2)∠1+∠2=度,∠1与∠2是角;(3)∠5= 度;(4)∠2与∠3是角,∠3与∠A互为角,∠1与∠A互为角.图1 图25.如图2,若∠1=∠2=55°,则∠3= ,直线AB、CD平行吗?( ____ ),理由是 .6.用科学记数法表示下列计数法各数.(1)某项生物细胞的直径约为2微米=________米.(2)某种动物细胞近似看成圆,它的直径约为1.30×10-6米,则它的周长约为________米(保留三位位数)(3)100张面值为100元的新版人民币大约厚0.9厘米,则1张人民币厚约为________米.(4)一位出纳员数钱的速度是2.5×104张/时,则这位出纳员数一张人民币用________小时.(5)已知光的速度为300000000米/秒,则太阳光照射1米所用的时间约为________秒(保留3位有效数字).(6)某市有50000名学生,如果所有人的学生都在学校用午餐,每次都使用纸制筷子,假定每次消耗木材0.05立方米,则每位学生一次蓄积木材________立方米.7.正方形的面积是2a2+2a+ (a>- )的一半,则该正方形的边长为________.每星期轻松做一做暑假作业(2)完成日期月日家长检查1.若(m-1)xyn+1是关于x、y的系数为-2的三次单项式,则m=________,n=________.2.请写出一个关于x的二次三项式,或使二次项的系数为1,一次项的系数为-3,常数项是2,则这个二次三项式是________.3.如图是某大桥下一地下通道,其上部是一个梯形,下面是一个圆形,猜测它的面积是________.4.用四舍五入法,按括号中的要求,对所列各数取近似值.①0.85417(精确到千分位)=_______________;②47.6(精确到个位)=_____________________;③2.4976(精确到0.01)=__________________;④0.03467(保留3位有效数字)=________________;⑤75326(保留1位有效数字)=__________________;⑥73524(保留2位有效数字)=________________.3.回答①0.03086精确到________位有________个有效数字.②2.4万精确到________位,有________个有效数字.5.小明身高1.7米,如果保留3个有效数字应写为________米.6.初一年级共有112名同学想租用45座的客车外出旅游,因为112÷45=2.488…,所以应租用________辆客车.7.小亮称得体重为46千克,这个数是________.东风汽车厂2021年生产汽车14500这个数是________.8、如图,按图填空:(1)由∠1=∠E,可以得到________∥______,理由是:__________________________.(2)由∠3=_______,可以得到AB∥CD,理由是:______________________________.每日轻松做一做暑假作业(3)完成日期月日家长检查1.下列计算正确是 ( )(A)a2n÷an= a2 (B)a2n÷a2=an (C)(xy)5÷xy3=(xy)2(D)x10÷(x4÷x2)=x82.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于( )(A)30° (B)35°(C)20° (D) 40°3. 在一个暗箱里放入除颜色外填入其它都相同的3个红球和11个黄球,搅拌均匀后多次重复搅拌任取一个球,取到是红球的概率是( )(A)311 (B)811 (C)314 (D)11144、下列各题的数,是准确数的是( )A、初一年级有800名同学B、金星离地球的距离为38万千米C、小明同学身高148cmD、今天气温估计28℃5.下列计算中,正确的是 ( )A. B.C. D.6. 请你将下式化简,再求值:(x+2)(x-2)-(x-2)2-(x-4)(x-1),其中x=-1.7.如图,如果AD//BC,∠B=∠C,那么AD是∠EAC的平分线吗?请说明你判别的理由.每日轻松自如做一做暑假作业(4)完成日期月日家长检查1.下列语句正确的是 ( )A、近似数0.009精确到百分位.B、近似数800精确到个位,有一个有效数字.C、近似数56.7万精确到千位,有三个有效数字.D、近似数精确千分位.2.如图,已知AB=AC,E是角平分线AD上任意一点,则图中全等三角形有( )A、4对B、3对C、2对D、1对3.下列说法中,正确的个数是( )①斜边和一直几个角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角三角形全等;③一锐角和对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等 (A) 1个 (B)2 个 (C)3个 (D)4个4.某地区植树造林2021年达到2万公顷,预计从2021年开始以后两年每年比前一年多植树1万公顷(2021年为第一年),则年植树面积y(万亩)与年数x(年)的关系是( )(A) y=2+0.5x (B)y=2+x (C)y=2+2x (D) y=2x5.下列四个图案中是直线型图形的是( )(A)(1)(2)(3) (B)(1)(3)(4) (C)(2)(3)(4) (D)(1)(2)(4)6.如图(1),A,B两个建物分别位于河的分别两岸,要测得它们之间的距离,可以从B出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E,C,A在同一条直线上,则DE的长就是A,B之间的距离。
第08练二元一次方程组及其解法知识点一、二元一次方程:(1)二元一次方程的定义含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程(2)二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.(3)二元一次方程有无数解.求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.知识点二、二元一次方程组的定义:(1)二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.(2)二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.知识点三、二元一次方程组的解法:(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x (或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.一、单选题1.方程组34225x yx y+=⎧⎨-=⎩的解是()A.23xy=⎧⎨=⎩B.21xy=⎧⎨=-⎩C.11xy=⎧⎨=⎩D.11xy=⎧⎨=-⎩【答案】B【解析】【分析】由2x-y=5可得y=2x-5,将方程y=2x-5代入方程3x+4y=2进行求解,得到x的值,再将x 的值代入y=2x-5求解即可.【详解】解:由2x-y=5可得y=2x-5将方程y=2x-5代入方程3x+4y=2得:3x+4(2x-5)=2,解得:x=2,将x=2代入方程y=2x-5得:y=2×2-5=-1,∴该方程组的解为21x y =⎧⎨=-⎩故选:B . 【点睛】此题考查了二元一次方程组的求解能力,关键是能根据题目选择合适的消元方法进行计算.2.已知关于x ,y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为24x y =⎧⎨=⎩,则关于方程组111222(1)2(1)3(1)2(1)3a x b y c a x b y c ++-=⎧⎨++-=⎩的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩【答案】A 【解析】 【分析】将方程组变形,结合题意得出()()11232143x y ⎧+=⎪⎪⎨⎪-=⎪⎩,即可求出x ,y 的值.【详解】解:方程组()()()()11122212131213a x b y c a x b y c ⎧++-=⎪⎨++-=⎪⎩变形为()()()()111222121133121133a x b y c a x b y c⎧++-=⎪⎪⎨⎪++-=⎪⎩,设()()113213x m y n ⎧+=⎪⎪⎨⎪-=⎪⎩则111222a m b n c a m b n c +=⎧⎨+=⎩,x 和y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,∴24m n =⎧⎨=⎩,∴()()11232143x y ⎧+=⎪⎪⎨⎪-=⎪⎩, 解得57x y =⎧⎨=⎩,故A 正确.故选:A .【点睛】本题主要考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.3.若二元一次联立方程式2143221x yx y+=⎧⎨-+=⎩的解为,x a y b==,则a b+之值()A.192B.212C.7 D.13【答案】D【解析】【分析】先求出二元一次方程组的解,然后代入代数式求解即可.【详解】解:解方程组214 3221x yx y+=⎧⎨-+=⎩得112 xy=⎧⎨=⎩因为二元一次方程组2143221x yx y+=⎧⎨-+=⎩的解为x ay b=⎧⎨=⎩,所以a=1,b=12,所以a+b=13.故选D.【点睛】题目主要考查解二元一次方程组,求代数式的值,熟练掌握解二元一次方程组的方法是解题关键.4.已知关于x,y的方程组34754x yx y m+=⎧⎨-=⎩的解互为相反数,则m的值为()A.63 B.7 C.-7 D.-63【答案】D【解析】【分析】根据相反数的定义得到x=-y,代入第一个方程求出x、y的值,再代入第二个方程求出m.【详解】解:∵方程组34754x yx y m+=⎧⎨-=⎩的解互为相反数,∴x=-y,∵3x +4y =7,∴-3y +4y =7,得y =7, ∴x =-7,∴m =5x -4y =-35-28=-63, 故选:D . 【点睛】此题考查了解二元一次方程组的解法,正确理解题意得到x=-y 是解题的关键.5.已知关于x ,y 的方程组1427x y ax y a +=+⎧⎨-=--⎩,则下列结论中正确的是:①当0a =时方程组的解是方程1x y +=的解;②当x y =时,52a =-;③当1y x =,则a 的值为1或3-;④不论a 取什么实数,3x y -的值始终不变.( ) A .①②③ B .①②④C .②③④D .①③④【答案】B 【解析】 【分析】①把a 看作已知数表示出方程组的解,把0a =代入求出x 与y 的值,代入方程检验即可; ②令x y =求出a 的值,即可作出判断;③把x 与y 代入3x y -中计算得到结果,判断即可; ④令23x y =求出a 的值,判断即可. 【详解】解:1427x y a x y a +=+⎧⎨-=--⎩,据题意得:336x a =-, 解得:2=-x a ,把2=-x a 代入方程14x y a +=+得:33y a =+, 当0a =时,2x =-,3y =,把2x =-,3y =代入1x y +=得:左边231=-+=,右边1=, 所以2x =-,3y =是方程的解,故①正确; 当x y =时,233a a -=+, 即52a =-,故②正确;当1y x =时,()3321a a +-=,即1a =±或3,故③错误336339x y a a -=---=-,无论a 为什么实数,3x y -的值始终不变为-9,故④正确.∴正确的结论是:①②④,故选:B . 【点睛】本题主要考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.6.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解. 【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,∴321325a b a b -=⎧⎨+=⎩①②,①+②得,a =1, 将a =1代入①得,b =1, ∴a 2008+2b 2008=1+2=3, 故选:C . 【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题7.对于实数,x y ,规定新运算:1x y ax by *=+-,其中,a b 是常数.若124*=,()2*310-=,则a b *= ___________. 【答案】9 【解析】 【分析】先根据题意得到关于a 、b 的二元一次方程组21423110a b a b +-=⎧⎨-+-=⎩,求出a 、b 的值,然后根据221a b a b *=+-进行求解即可. 【详解】解:由题意得:21423110a b a b +-=⎧⎨-+-=⎩,解得13a b =-⎧⎨=⎩,∴()222211319a b a b *=+-=-+-=, 故答案为:9. 【点睛】本题主要考查了新定义下的实数运算,解二元一次方程组,正确理解题意求出a 、b 的值是解题的关键.8.若x =a ,y =b 是方程组342,25x y x y +=⎧⎨-=⎩的解,则22a b -=______.【答案】3 【解析】 【分析】先解方程组求出x 和y 的值,然后代入计算即可. 【详解】解:34225x y x y +=⎧⎨-=⎩①②,①+②×4,得 11x =22, ∴x =2. 把代入②,得 4-y =5, ∴y =-1,∵x =a ,y =b 是方程组342,25x y x y +=⎧⎨-=⎩的解,∴a =2,b =-1, ∴22a b -=4-1=3. 故答案为:3. 【点睛】本题考查了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式. 9.若()22x y -与25x y +-互为相反数,则()2021x y -=______.【答案】1- 【解析】 【分析】由题意,得到()22250x y x y -++-=,然后利用非负数的性质,求出x 、y 的值,再代入计算,即可得到答案. 【详解】解:∵()22x y -与|25|x y +-互为相反数, ∴()22250x y x y -++-=, ∴20x y -=,250x y +-=,联合两个方程,解得12x y =⎧⎨=⎩,∴()20212021 (12)1x y -=-=-故答案为:-1. 【点睛】本题考查了相反数的定义,绝对值的非负性,解题的关键是熟练运用非负数的性质进行解题. 10.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(0m >,0n >),得到正方形A B C D ''''及其内部的点,其中点A ,B 的对应点分别为A ',B ',则=a ______,m =______,n =______.若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,则点F 的坐标为______.【答案】12,12,2,(1,4) 【解析】 【分析】首先根据点A 到A ',B 到B '的点的坐标可得方程组3102a m a n -+=-⎧⎨⨯+=⎩,3202a m a n +=⎧⎨⨯+=⎩,解可得a 、m 、n 的值,设F 点的坐标为(x ,y ),点F '、点F 重合可列出方程组,再解可得F 点坐标. 【详解】解:将点A (-3,0)的横、纵坐标都乘以实数a ,再将得到的点向右平移m 个单位,向上平移n 个单位后的坐标为:(- 3a + m , n ), 又知点A '的坐标为(-1,2), ∴3102a m a n -+=-⎧⎨⨯+=⎩①, 解得2n =,将点B (3,0)的横、纵坐标都乘以实数a ,再将得到的点向右平移m 个单位,向上平移n 个单位后的坐标为:(3a + m ,n ), 又知点B '的坐标为(2,2), ∴3202a m a n +=⎧⎨⨯+=⎩②,①+②得:2m = 1, 解得12m =,将12m =代入②得:1322a +=,解得12a =, ∴正方形进行的操作为:把每个点的横、纵坐标都乘以实数12,再将得到的点向右平移12个单位,向上平移2个单位,设点F 的坐标为(x ,y ),依题意得1122122x y y y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14x y =⎧⎨=⎩,∴点F 的坐标为(1,4). 故答案为:12,12,2,(1,4). 【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组. 11.对于x 、y 定义一种新运算“※”:x y ax by =+※,其中a 、b 为常数,等式右边是通常的加法和乘法的运算,已知5227=※,3419=※,那么23=※_______. 【答案】13 【解析】 【分析】利用题中的新定义化简已知等式求出a 与b 的值,即可确定出所求. 【详解】解:根据题中的新定义得:52273419a b a b +=⎧⎨+=⎩①②,①×2﹣②得:7a =35, 解得:a =5,把a =5代入①得:b =1, 则23=※2×5+3×1=13. 故答案为13. 【点睛】本题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解答本题的关键.12.已知关于x ,y 的二元一次方程组3226x y kx y k +=⎧⎨-=+⎩有下列说法:①当x 与y 相等时,解得k =﹣4;②当x 与y 互为相反数时,解得k =3;③若4x •8y =32,则k =11;④无论k 为何值,x 与y 的值一定满足关系式x +5y +12=0,其中正确的序号是_____. 【答案】①②③④ 【解析】 【分析】用代入消元法先求出方程组的解,①根据x =y 列出方程,求出a 即可判断;②根据互为相反数的两个数的和为0,列出方程,求出a 即可判断;③把底数统一化成a ,等式左右两边的底数相同时,指数也相同,得到x ,y 的方程,把方程组的解代入求出a ;④在原方程中,我们消去a ,即可得到x ,y 的关系. 【详解】解:3226x y k x y k +=⎧⎨-=+⎩①②,由②得:x =2y +k +6③, 把③代入①中,得:y =187k --④,把④代入③中,得:x =567k +,∴原方程组的解为567187k x k y +⎧=⎪⎪⎨--⎪=⎪⎩.①当x 与y 相等时,x =y , 即567k +=187k --,解得:k =﹣4,∴①正确;②∵方程的两根互为相反数,∴x +y =0, 即567k ++187k --=0,解得:k =3,∴②正确;③4x •8y =32,∴(22)x •(23)y =25,∴22x •23y =25,∴22x +3y =25,∴2x +3y =5,将方程组的解代入得: 2×567k ++3×187k --=5,解得:k =11,∴③正确;④3226x y k x y k +=⎧⎨-=+⎩①②,①﹣②×2得x +5y =﹣12,即x +5y +12=0.∴④正确.综上所述,①②③④都正确.故答案为:①②③④.【点睛】本题考查二元一次方程组的解,解二元一次方程组,解一元一次方程,熟练掌握用加减法求解二元一次方程组是解题的关键.三、解答题13.解二元一次方程组:3324x y x y -=⎧⎨+=⎩. 【答案】21x y =⎧⎨=-⎩【解析】【分析】利用加减消元法即可求解.【详解】3324x y x y -=⎧⎨+=⎩①②, ①×2+②得:5x =10,解得x =2;将x =2代入①中,得y =-1,∴方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组的知识,掌握加减消元法、代入消元法是解答本题的关键. 14.解方程组:(1)11912435x y x y -=⎧⎨-+=-⎩(2)()()22341312x y x y y ⎧+=⎪⎨⎪--=--⎩【答案】(1)373x y =⎧⎪⎨=⎪⎩(2)23x y =⎧⎨=⎩【解析】【分析】利用两个整式加减消元或者代入消元来解二元一次方程组;(1)11912435x y x y -=⎧⎨-+=-⎩①②②式×3+①式得,x =3,将x =3,代入①式得,y =73, 故方程组的解为373x y =⎧⎪⎨=⎪⎩; (2)()()22341312x y x y y ⎧+=⎪⎨⎪--=--⎩①② ②式化简后得,4x -y =5 ③,①式×3+③式得,x =2,将x =2代入①得,y =3,故方程组的解为23x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,熟练掌握整式加减消元或代入消元是解题的关键. 15.北京冬奥会、冬残奥会期间,大批的大学生志愿者参与服务工作,为双奥的成功举办做出巨大贡献.同时,“绿色办奥”是北京冬奥会、冬残奥会四大办奥理念之一.期间,节能与清洁能源车辆占全部赛事保障车辆的84.9%,为历届冬奥会最高.冬奥会开幕式当天,北京大学组织本校全体参与开幕式活动的志愿者统一乘车去国家体育场鸟巢,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?北京大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】(1)计划调配36座新能源客车6辆,北京大学共有218名志愿者;(2)调配36座新能源客车3辆,调配22座新能源客车5辆.【解析】【分析】(1)根据题意,找到等量关系式,列一元一次方程求解即可;(2)由(1)得,志愿者有218人,根据题意,列二元一次方程,找整数解即可.(1)解:设计划调配36座新能源客车x 辆,则调配22座新能源客车(x +4)辆,由题意,得36x +2=22(x +4)-2解得x=6则志愿者的人数为:36x+2=36×6+2=218答:计划调配36座新能源客车6辆,北京大学共有218名志愿者.(2)解:设调配36座新能源客车a辆,则调配22座新能源客车b辆,由题意,得36a+22b=218∴18a+11b=109∵a,b为正整数∴当a=3,b=5时,既保证每人有座,又保证每车不空座答:调配36座新能源客车3辆,调配22座新能源客车5辆.【点睛】本题考查一元一次方程和二元一次方程的实际应用,根据题意找到等量关系式是解决问题的关键.16.将1到2021之间的所有奇数按顺序排成下图:记Pmn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=;(2)若Pmn=2021,则m=,n=;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200若能,求出4个数中的最大数;若不能,请说明理由.【答案】(1)45;(2)169,3;(3)覆盖的4个数之和能等于200【解析】【分析】(1)根据题意可知P45表示第4行第5个数,每行都有6个数,所有的数字都是奇数,然后即可计算出相应的值;(2)根据题意,可以得到2[6(m﹣1)+n]﹣1=2021,然后m为整数,1≤n≤6,即可得到m、n的值;(3)先判断,然后设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,即可列出相应的方程,然后求解即可说明理由.(1)解:(1)由题意可得,P 45=2×(6×3+5)﹣1=45, 故答案为:45;(2)解:∵Pmn =2021,∴2[6(m ﹣1)+n ]﹣1=2021,∴12m +2n ﹣13=2021,∵m 为正整数,1≤n ≤6,∴m =169,n =3,故答案为:169,3;(3)解:所覆盖的4个数之和能等于200,理由:设4个阴影格子中的数分别为2n ﹣3、2n ﹣1、2n +1、2n +11,由题意可得(2n ﹣3)+(2n ﹣1)+(2n +1)+(2n +11)=200,解得:n =24,∴所覆盖的4个数之和能等于200.【点睛】此题考查了数字类规律的运算,有理数的混合运算,解一元一次方程,正确理解数字的排列规律并应用是解题的关键.17.对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※.(1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.【答案】(1)-5(2)a 的值为2,b 的值为2【解析】【分析】(1)根据规定运算“※”,进行计算即可解答;(2)根据题意可得关于a ,b 的二元一次方程组,然后进行计算即可解答.(1)当a =3,b =4时,∴1※(-2)=3×1+4×(-2)=-5,∴1※(-2)的值为-5;(2)∵5※3=16,2※(-3)=-2,∴5316232a b a b +⎧⎨--⎩=①=②, ①+②得:2a +5a=14解得a =2,把a =2代入①得:10+3b =16,解得b =2,∴原方程组的解为22a b ⎧⎨⎩==, ∴a 的值为2,b 的值为2.【点睛】本题考查了实数的运算,解二元一次方程组,熟练掌握解二元一次方程的步骤,以及理解材料中规定的运算是解题的关键.18.备解二元一次方程组4*8x y x y -=⎧⎨+=⎩,现系数“*”印刷不清楚. (1)李宁同学把“*”当成3,请你帮助李宁解二元一次方程组438x y x y -=⎧⎨+=⎩; (2)数学老师说:“你猜错了”,该题标准答案的结果x 、y 是一对相反数,你知道原题中“*”是 .【答案】(1)31x y ==-⎧⎨⎩(2)5【解析】【分析】(1)将方程组中的两个方程相加消掉未知数y ,得到x 的一元一次方程,求出x 的值,把x 的值代入第一个方程,求出y 的值,即得方程组的解;(2)用x -y =4与x +y =0组成方程组,求出x 、y 的值,把x 、y 的值代入*x +y =8,求出*的值.(1)438x y x y -=⎧⎨+=⎩①②, ①+②得,4x =12,把x =3代入①,得,3-y =4,∴y =-1,∴31x y ==-⎧⎨⎩; (2)04x y x y +=⎧⎨-=⎩①②, ①+②,得,2x =4,∴x =2,把x =2代入①,得,2+y =0,∴y =-2,∴22x y =⎧⎨=-⎩, ∴228*-=,∴5*=.故答案为:5.【点睛】本题主要考查了二元一次方程的解,解二元一次方程组,熟练掌握二元一次方程的解的定义,运用加减消元法解二元一次方程组,是解决问题的关键.1.定义新运算:对于任意实数a ,b 都有a ※b =am -bn ,等式右边是通常的减法和乘法运算.若3※2=5,1※(-2)=-1,则(-3)※1的值为( )A .-2B .-4C .-7D .-11 【答案】A【解析】【分析】按照定义新运算的法则,先求出m 和n 的值,再把算式转化为有理数运算即可.解:根据题意,3※2=5,1※(-2)=-1,得,32521m n m n -=⎧⎨+=-⎩, 解得,11m n =⎧⎨=-⎩, 则(-3)※1=(-3)×1-1×(-1)=-2,故选:A .【点睛】本题考查了定义新运算,二元一次方程组和有理数混合计算,解题关键是根据定义新运算法则把两个等式转化为二元一次方程组,求出m 、n 的值.2.已知关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩给出下列结论:正确的有_____.(填序号) ①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为正整数的解有3对【答案】①②【解析】【分析】①将a=1代入方程组的解,求出方程组的解,即可做出判断;②将a 看做已知数求出方程组的解表示出x 与y ,即可做出判断;③将a 看做已知数求出方程组的解表示出x 与y ,即可判断正整数解;【详解】解关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩得2122x a y a =+⎧⎨=-⎩①当1a =时,原方程组的解是30x y =⎧⎨=⎩,此时30x y =⎧⎨=⎩是213x y a +=+=的解,故①正确; ②原方程组的解是2122x a y a =+⎧⎨=-⎩,∴30x y +=≠,即无论a 取何值,x ,y 的值不可能是互为相反数,故②正确;③x ,y 都为正整数,则210220x a y a =+>⎧⎨=->⎩,解得112a -<<,正整数解分别是当10,2a a ==时,故只有两组,故③错误;故答案为①②【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.【答案】(1)见解析;(2)a和b的值分别为2,5.【解析】【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k的值即可;(2)根据加减消元法的过程确定出a与b的值即可.【详解】解:(1)选择甲,3274232m n km n+=-⎧⎨+=-⎩①②,①×3﹣②×2得:5m=21k﹣8,解得:m=2185k-,②×3﹣①×2得:5n=2﹣14k,解得:n=2145k-,代入m+n=3得:21821455k k--+=3,去分母得:21k﹣8+2﹣14k=15,移项合并得:7k=21,解得:k=3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m +5n =7k ﹣6,解得:m +n =7-65k , 代入m +n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m +2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程(2)变形:4105x y y ++=,即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=,所以1y =-,将1y =-代入(1)得4x =,所以原方程组的解为41x y =⎧⎨=-⎩.21 [解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩, (2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 【答案】(1)原方程组的解为32x y =⎧⎨=⎩;(2)22420x y += 【解析】【分析】(1)根据题意,利用整体的思想进行解方程组,即可得到答案;(2)根据题意,利用整体的思想进行解方程组,即可得到答案.【详解】解:()13259419x y x y -=⎧⎨-=⎩①② 将方程②变形得:()332219x y y -+=③把方程①代入③得:35219y ⨯+=,所以2,y =将2y =代入①得3x =,所以原方程组的解为32x y =⎧⎨=⎩; ()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②, 把方程①变形,得到223(4)550x xy y xy ++-=③,然后把②代入③,得325550xy ⨯-=,∴5xy =,∴22425520x y +=-=;【点睛】本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数.。
二元一次方程(组)与一元一次不等式(组)的应用【相IfifilRlK]1. 甲乙两地相距160km-«汽车和一阿呃越机同时两地相向而行.1小附20轴后相遇;相遇后•拖竝机继续前行•汽车在相遇业停因1小时后调转车头按原路返回•汽车再次出发1小时后迫上了拖拉机•这时•汽车拖竝HI各自走了多少千米?2. 甲、乙二人同时纽400m的环形随道fii.HD果他111同时从同_起虑背向而行・2什30秒后首次相嚼;如果他m同时由同一地点同向而行•甲12分30枚后也过乙一阖•甲、乙两人每分并各走多少米?3. 甲、乙二人相距6km.二人同向而行•甲3小时可追上乙;相向面『1小时相遇。
二人的平均速厦各是多少?4. A、B两堆间的爵程为360 f米•甲车U Ai|出发开往B地眉小时72千米•甲车出发25分并后Z车从Bit出发开住A地眉小时行驶48干米•乙车出发多少小时后两车相遇?14 •甲、乙二人在上午8臥自A、B两地HWHl向而行•上午10时柑阪36km. ■ Z人加续前fi JJ 12时Jlfflffi 36km. E ill甲毎小时比乙多走2km. $ A.B两地的即离.15•某铁桥长woo米•有一列火车MffilSfl.Hf?火车开始上桥到完全过桥用1分职整列火车完全在桥上时同为40杪•求火车的速度和车长各是多少?16•—个两位数•十位数字与个位数字之和为8•若十位数字与个位数字对iBS.Wg新两位敛比原两也数小36•求原两位数.17.X先生是集邮爱好乱他带一定数量的技到邮市上去购买邮票•发观两种较力喜欢的纪念邮票.面値分别为10元和6元。
(1 )经盘算发现所带的技全部用来买而値为10远的關票俄数正好不务不少。
若全部技数用来剧买面值为6元的U票可以多买6X.E余下4元.你知道X先生带了多少找?(2) 若X先生所带的找全部购票•有多少种啊买方案?(3) 经估測•迪两种邮票都会升値•貝中而値为10元的可以上涨100%.面值为6元的邮票会上涨150%.X先生决定把集邮当ffi-ttg资•旌备2000元全部投人•请设廿最大Sf'JBW方案•并作说明。
暑假作业八年级答案数学精选方程与方程组典型题目1.解关于x的方程:(1)4x+b=ax-8; (2) (3)2.若关于x,y的二元一次方程组的解也是二元一次方程的解,求k的值.3. 符号“ ”称为二阶行列式,规定它的运算法则为:,请你根据上述规定求出下列等式中x的值: .4.设a是方程的一个根,求代数式的值.5.求出二元一次方程2x+3y=20的非负整数解.6.小明计划将今年春节期间得到的压岁钱的一部分作为自己一年内购买课外书籍的费用,其余的钱计划买这些玩具去看望市福利院的孩子们.某周日小明在商店选中了一种小熊玩具,单价是10元,按原计划买了若干个,•结果他的压岁钱还余30%,于是小明又多买了6个小熊玩具,这样余下的钱仅是压岁钱的10%.(1)问小明原计划买几个小熊玩具,小明的压岁钱共有多少元?(2)为了保证小明购书费用不少于压岁钱的20%,•问小明最多可比原计划多买几个玩具?7.某超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元以下部分(包括500元)给予九折优惠,超过500元部分给予八折优惠.小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买同样多的物品,他需付多少元?8.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?9.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?同步练习1、若n( )是关于x的方程的根,则m+n的值为__________.2、已知关于的方程的解是正数,则m的取值范围为____________.3、已知是方程组的解,则a+b的值等于 .4、若与互为相反数,且,则 _________.5、一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为元.6、已知方程组的解x,y,其和x+y=1,则k=_____7、篮球巨星姚明在一场比赛中24投14中,拿下28分,其中三分球三投全中,那么姚明两分球投中球,罚球投中球.8、用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是( )A. B. C. D.9、一条船顺流航行是逆流航行的速度的3倍,则船在静水中航速与水的流速之比为( )A、3:1B、2:1C、1:1D、5:211.方程的解是( )A. B. C. 或 D. 或12.方程4x+y=20的正整数解有( )组.A.2B.3C.4D.5。
二元一次方程组和不等式练习题一、选择题:1.下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x +4y=6D .4x=24y - 2.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333 (2422)x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩ 5.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x +y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+xA .1B .2C .3D .46.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( )A .246246216246...22222222x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩7、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D8、已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A 、x ≥-1B 、x >1C 、-3<x ≤-1D 、x >-39、如果不等式组⎩⎨⎧>-<+n x x x 737的解集是4>x ,则n 的取值范围是( )A 、4≥nB 、4≤nC 、4=nD 、4<n二、解答题1.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .2、已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少?3.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?三、填空题1、不等式7-x >1的正整数解为: 。
二元一次方程(组)与一元一次不等式(组)的应用【相遇追及问题】1.甲乙两地相距160km,一辆汽车和一辆拖拉机同时两地相向而行.1小时20分钟后相遇;相遇后.拖拉机继续前行.汽车在相遇处停留1小时后调转车头按原路返回.汽车再次出发1小时后追上了拖拉机.这时.汽车拖拉机各自走了多少千米?2.甲、乙二人同时绕400m的环形跑道行走.如果他们同时从同一起点背向而行.2分30秒后首次相遇;如果他们同时由同一地点同向而行.甲12分30秒后超过乙一圈.甲、乙两人每分钟各走多少米?3.甲、乙二人相距6km.二人同向而行.甲3小时可追上乙;相向而行.1小时相遇。
二人的平均速度各是多少?4.A、B两地间的路程为360千米.甲车从A地出发开往B地.每小时72千米.甲车出发25分钟后.乙车从B地出发开往A地.每小时行驶48千米.乙车出发多少小时后两车相遇?14.甲、乙二人在上午8时.自A、B两地同时相向而行.上午10时相距36km.?二人继续前行.到12时又相距36km.已知甲每小时比乙多走2km.求A.B两地的距离.15.某铁桥长1000米.有一列火车从桥上通过.测得火车开始上桥到完全过桥用1分钟.整列火车完全在桥上时间为40秒.求火车的速度和车长各是多少?16.一个两位数.十位数字与个位数字之和为8.若十位数字与个位数字对调后.所得新两位数比原两位数小36.求原两位数.17.张先生是集邮爱好者.他带一定数量的钱到邮市上去购买邮票.发现两种较为喜欢的纪念邮票.面值分别为10元和6元。
(1)经盘算发现所带的钱全部用来买面值为10远的邮票.钱数正好不多不少。
若全部钱数用来购买面值为6元的邮票可以多买6张.但余下4元.你知道张先生带了多少钱?(2)若张先生所带的钱全部购进这两种邮票.有多少种购买方案?(3)经估测.这两种邮票都会升值.其中面值为10元的可以上涨100%.面值为6元的邮票会上涨150%.张先生决定把集邮当成一种投资.准备2000元全部投入.请设计最大盈利购邮方案.并作说明。
二元一次方程(组)与一元一次不等式
一、选择题
1.方程2-4x =0的解是
A .21=x
B .2
1-=x C .x =2 D .x =-2 2.下列方程的变形中,正确的是
A. 由2=3-x ,得x =2+3
B. 由6y =4,得y =4-6
C. 由32x =-1,得x =2
3- D. 由4-x =2x ,得2x -x =4 3. 已知方程组2527.x y k x y k +=⎧⎨
-=⎩,的解满足方程1253x y -=,那么k 的值为( ) (A )35 (B )53
(C )5- (D )1 4.下列各对数值是二元一次方程
21x -y =6的解的是 A .⎩⎨⎧=-=108y x B .⎩⎨⎧==28y x C .⎩⎨⎧-==110y x D .⎩⎨⎧==5
2y x
5.若a <b ,则下列不等式一定成立的是
A. a -2>b -2
B. 21a >2
1b C. -b >-a D. a -b <0 6. 要使代数式7-3x 的值小于-2,则x 的取值范围是
A .x >3
B .x <3
C .x >-3
D .x >
3
1 7. 不等式5-x >0的最大整数解是
A. 2
B. 3
C. 4
D. 5 8. 一个不等式组的解集在数轴上表示如图1所示,则该不等式组的解集为
A .x >-2
B .x <-2
C .x <1
D .-2<x <
1
9.如图2,天平两边盘中标有相同字母的物体的质量相同,若A 物体的质量为20克,当天
平处于平衡状态时,B 物体的质量为
A. 5克
B. 10克
C. 15克
D. 30克
10. 方程组⎩⎨⎧=--=②y x ①
x y 6232 ,将①代入②得
A. x -4x -3=6
B. x -4x -6=6
C. x -2x +3=6
D. x -4x +6=6 12. 一种药品现在售价每盒52元,比原来降低了20%,则该药品的原售价是每盒
A .72元 B. 68元 C. 65元 D. 56元
12. 如图3,用一根长40cm 的铁丝围成一个长方形,若长方形
的宽比长少2cm ,则这个长方形的面积为
A .90cm 2
B .96cm 2
C .99cm 2
D .100cm 2 13.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则
其余每人恰好各得6支. 若设该小组学生人数为x ,铅笔支数为y ,则可列方程组
A. ⎩⎨⎧=--=-2)1(645x y x y
B. ⎩
⎨⎧+-==-2)1(645x y y x C. ⎩⎨⎧=-+=2645y x x y D. ⎩⎨⎧--=+=2
)1(645x y x y
14. 已知方程组35204522.x y x y z ax by z -=⎧⎪+-=⎨⎪+-=⎩,,与方程组8523 4.ax by z x y z c x y -+=⎧⎪++=⎨⎪+=-⎩
,,有相同的解,则a 、b 、c 的
值为( ).
(A )231a b c =-⎧⎪=-⎨⎪=⎩ (B )231a b c =-⎧⎪=⎨⎪=⎩ (C )231a b c =⎧⎪=-⎨⎪=-⎩ (D )231a b c =⎧⎪=⎨⎪=-⎩
15.若a +b >0,且b <0,则a ,b ,-a ,-b 的大小关系为( ).
A .-a <-b <b <a
B .-a <b <-b <a
C .-a <b <a <-b
D .b <-a <-b <a
二、填空题
16. 由3x -2y -4=0, 得到用x 表示y 的式子为y = .
17. 已知y 1=3x +2, y 2=4-x ,若y 1-y 2=4,则x 的值为 .
18.小颖准备用21元钱买笔和笔记本. 已知每支笔3元,每个笔记本2元,她买了4个笔
记本,则她最多..还可以买 支笔
. 图3
19.在数轴上表示不等式组,x a x b >⎧⎨>⎩的解集如图所示,则不等式组,x a x b
<⎧⎨≤⎩的解集是________.
20.若不等式组21,23x a x b -<⎧⎨->⎩
的解集为-1<x <1,那么(a +1)(b -1)的值等于________. 三、计算题
21. 解下列方程
(1)4x +3=2(x -1)+1; (2)16
1242=--+y y .
22.解方程组⎩
⎨
⎧=-=+.1424,75y x y x
23.解不等式组⎪⎩⎪⎨⎧-<-<.2231,42x x x 并把它的解集在数轴上表示出来.
24. 已知y =kx +b ,当x =1时,y =-2;当x =-1时,y =-4.
(1)求k 、b 的值;
(2)当x =-2时,求y 的值.
四、解答题
1 2 3 4
-4 -3 -2 -1 0
25.有一批机器零件共400个,若甲先做1天,然后甲乙两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个. 问甲、乙两人每天各做多少个零件?
26.已知不等式5(x-2)+8<6(x-1)+7的最小整数解是方程2x-ax=4的解,求a的值.
27.已知关于x,y的方程组
3,
26
x y
x y a
-=
⎧
⎨
+=
⎩
的解满足不等式x+y<3,求实数a的取值范围.
28.已知一件文化衫价格为18元,一个书包的价格是一件文化衫的2倍还少6元.
(1)求一个书包的价格是多少元?
(2)某公司出资1 800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?。