二元一次方程和不等式
- 格式:doc
- 大小:166.00 KB
- 文档页数:4
二元一次方程组及解不等式组1、二元一次方程:含有两个未知数,且含未知数的项的次数为1, 二元一次方程有无数多个解.2、二元一次方程组:有一个解,可以用代入消元法和加减消元法解.3、三元一次方程组:先转化为二元一次方程组.4、应用题:解、设、列、解、验、答5、典型例题:①二元一次方程满足的条件:系数≠0,次数=1②平方+绝对值= 0③已知方程(组)的解,求其它未知数的值4、解不等式组的步骤:(1)先求出各个不等式的解集(2)将这些解集表示在同一个数轴上(3)在数轴上找出这些解集的公共部分,就是这个不等式组的解集。
5、典型例题:①已知解集求未知数范围:看解集不等号方向是否改变,不变则系数>0,改变则系数<0 ②已知不等式(组)的解求未知数的值:令所求解集等于已知解集③已知不等式(组)的整数解求未知数的值:先求出解集,令解集满足一定条件解法:消元法1)代入消元法用代入消元法的一般步骤是:1.选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;2.将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;3.解这个一元一次方程,求出x 或y 值;4.将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;5。
把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
[1]例:解方程组:x+y=5①6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89得y=59/7把y=59/7代入③,得x=5-59/7得x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
2)加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
二元一次方程(组)与一元一次不等式(组)的应用【相遇追及问题】1.甲乙两地相距160km,一辆汽车和一辆拖拉机同时两地相向而行,1小时20分钟后相遇;相遇后,拖拉机继续前行,汽车在相遇处停留1小时后调转车头按原路返回,汽车再次出发1小时后追上了拖拉机,这时,汽车拖拉机各自走了多少千米?2.甲、乙二人同时绕400m的环形跑道行走,如果他们同时从同一起点背向而行,2分30秒后首次相遇;如果他们同时由同一地点同向而行,甲12分30秒后超过乙一圈,甲、乙两人每分钟各走多少米?3.甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
二人的平均速度各是多少?4.A、B两地间的路程为360千米,甲车从A地出发开往B地,每小时72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,乙车出发多少小时后两车相遇?14.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.15.某铁桥长1000米,有一列火车从桥上通过,测得火车开始上桥到完全过桥用1分钟,整列火车完全在桥上时间为40秒,求火车的速度和车长各是多少?16.一个两位数,十位数字与个位数字之和为8,若十位数字与个位数字对调后,所得新两位数比原两位数小36,求原两位数,17.张先生是集邮爱好者,他带一定数量的钱到邮市上去购买邮票,发现两种较为喜欢的纪念邮票,面值分别为10元和6元。
(1)经盘算发现所带的钱全部用来买面值为10远的邮票,钱数正好不多不少。
若全部钱数用来购买面值为6元的邮票可以多买6张,但余下4元,你知道张先生带了多少钱?(2)若张先生所带的钱全部购进这两种邮票,有多少种购买方案?(3)经估测,这两种邮票都会升值,其中面值为10元的可以上涨100%,面值为6元的邮票会上涨150%,张先生决定把集邮当成一种投资,准备2000元全部投入,请设计最大盈利购邮方案,并作说明。
二元一次方程组和不等式应用题专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二元一次方程组和不等式应用题专题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二元一次方程组和不等式应用题专题的全部内容。
班级姓名二元一次方程组和不等式(二)1。
(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?2。
某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支5的进价是第一次进价的倍,购进数量比第一次少了30支.4(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?3。
为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4。
二元一次方程●知识点1:基本定义二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
一般地,使二元一次方程两边的值相等的两个未知数的值叫做二元一次方程的解,二元一次方程有解。
二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。
解只有一组。
练习:●知识点2:二元一次方程组的解法思路:未知数由多变少,将二元一次方程组转化成元一次方程。
代入消元法把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
练习:加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
基本步骤:练习: 解方程组⎩⎨⎧-=-=+5352y x y x ⎩⎨⎧=+-=+3162443y x y x ⎪⎩⎪⎨⎧=+-=+1312423y x y x综合练习:知识点3:列方程解应用题题型1:生产中的配套问题1服装厂生产某种款式的秋装一批,已知2米的某种布料可做上衣的衣身3个或衣袖5只.现计划用132米这种布料生产这批秋装(不考虑布料的耗损),应分别用多少米布料才能使做的衣身和衣袖配套?题型2:行程问题2甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?(画行程图)3一轮船从甲地到乙地顺流航行需4小时,从乙地到甲地逆流航行需6小时,那么一个木筏由甲地漂流到乙地需多长时间?题型3:商品问题4在“十一”旅游黄金周期间,某超市打折促销.已知甲商品7.5折销售,乙商品8折销售.买20件甲商品与10件乙商品,打折后比打折前少花460元.打折后买10件甲商品与10件乙商品共用1090元.求甲乙两种商品打折前得价格各是多少?题型4:增长问题5某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,这所学校现在的初中在校生和高中在校生人数分别是多少?题型5:工程问题6某城市为了缓解缺水状况,实施了一项饮水工程,就是把200千米以外的的一条大河的水引到城市中来,把这个工程交给了甲乙两个施工队,工期50天甲乙两队合作了30天后,乙队因另有任务需要离开10天,于是甲队加快速度,每天多修了0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队也比原来多修0.4千米,结果如期完成.问甲乙两队原计划每天各修多少千米?综合练习:一元一次不等式组●知识点1:不等式的基本性质基本性质1:不等式的两边都加上或减去同一个数(或式子),不等式仍然成立,不等号方向不变 基本性质2:不等式的两边都乘以或除以同一个正数,不等式仍然成立,不等号方向不变基本性质3:不等式的两边都乘以或除以同一个负数,不等号方向改变互逆性:若a<b, 则b>a 传递性:若a<b, b<c,则a<c●解一元一次不等式组练习:●知识点2:一元一次不等式组的整数解例题:练习:●知识点3:一元一次不等式的应用一般步骤:○1审:审题,分析题中已知什么、求什么,明确各数量之间的关系○2找:找出能够表示应用题全部③设:设未知数(一般求什么,就设什么为x④列:根据这个不等关系列出需要的代数式,从而列出不等式(组)含义的一个不等关系⑤解:解所列出的不等式(组)○6答:检验所求解是否符合题意,写出答案(包括单位),写出未知数的值或范围例题:练习:。
. (•湖州)为进一步建设秀美、宜居地生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树地价格之比为::,甲种树每棵元,现计划用元资金,购买这三种树共棵.()求乙、丙两种树每棵各多少元?文档收集自网络,仅用于个人学习()若购买甲种树地棵树是乙种树地倍,恰好用完计划资金,求这三种树各能购买多少棵?()若又增加了元地购树款,在购买总棵树不变地前提下,求丙种树最多可以购买多少棵?文档收集自网络,仅用于个人学习.某商店第一次用元购进铅笔若干支,第二次又用元购进该款铅笔,但这次每支地进价是第一次进价地倍,购进数量比第一次少了支.文档收集自网络,仅用于个人学习()求第一次每支铅笔地进价是多少元?()若要求这两次购进地铅笔按同一价格全部销售完毕后获利不低于元,问每支售价至少是多少元?.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表地部分信息:文档收集自网络,仅用于个人学习(说明:①每户产生地污水量等于该户自来水用水量;②水费自来水费用污水处理费用)已知小王家年月份用水吨,交水费元;月份用水吨,交水费元.()求、地值;()随着夏天地到来,用水量将增加.为了节省开支,小王计划把月份地水费控制在不超过家庭月收入地.若小王家地月收入为元,则小王家月份最多能用水多少吨?文档收集自网络,仅用于个人学习计划购置一批电子白板和一批笔记本电脑,经投标,购买块电子白板比买台笔记本电脑多元,购买块电子白板和台笔记本电脑共需元.()求购买块电子白板和一台笔记本电脑各需多少元?文档收集自网络,仅用于个人学习()根据该校实际情况,需购买电子白板和笔记本电脑地总数为,要求购买地总费用不超过元,该校最多能购买多少台电脑?文档收集自网络,仅用于个人学习.为了解决农民工子女就近入学问题,我市第一小学计划年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买地课桌凳与办公桌椅地数量比为,购买电脑地资金不超过元.已知一套办公桌椅比一套课桌凳贵元,用元恰好可以买到套课桌凳和套办公桌椅.(课桌凳和办公桌椅均成套购进)文档收集自网络,仅用于个人学习()一套课桌凳和一套办公桌椅地价格分别为多少元?()最多能买多少办公桌和课桌凳..为奖励在文艺汇演中表现突出地同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买个笔记本和支钢笔,则需要元;如果买个笔记本和支钢笔,则需要元.文档收集自网络,仅用于个人学习()求购买每个笔记本和每支钢笔各多少元?()班主任给小亮地班费是元,需要奖励地同学是名(每人奖励一件奖品),若购买地钢笔数不少于笔记本数,小亮最多能买多少个笔记本?文档收集自网络,仅用于个人学习班级姓名.为了抓住梵净山文化艺术节地商机,某商店决定购进、两种艺术节纪念品.若购进种纪念品件,种纪念品件,需要元;若购进种纪念品件,种纪念品件,需要元.文档收集自网络,仅用于个人学习()求购进、两种纪念品每件各需多少元?()若该商店决定购进这两种纪念品共件,考虑市场需求和资金周转,用于购买这件纪念品地资金不少于元,,那么该商店至少能购进多少件种纪念品?文档收集自网络,仅用于个人学习. 我市某校为了创建书香校园,去年购进一批图书.经了解,科普书地单价比文学书地单价多元,用元购进地科普书与用元购进地文学书本数相等.今年文学书和科普书地单价和去年相比保持不变,该校打算用元再购进一批文学书和科普书,问购进文学书本后至多还能购进多少本科普书?文档收集自网络,仅用于个人学习.商城经销甲、乙两种商品,甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.()若商城同时购进甲、乙两种商品共件恰好用去元,求能购进甲、乙两种商品各多少件?按上述优惠条件,若小王第一天只购买甲种商品一次性付款元,第二天只购买乙种商品打折后一次性付款元,那么这两天他在商城购买甲、乙两种商品一共多少件?文档收集自网络,仅用于个人学习.一批货物要运往某地,货主准备租用汽车运输公司地甲、乙两种货车,已知过去租用这两种货现租用该公司地辆甲种货车与辆乙种货车一次刚好运完这批货物,如果按每吨付运费元计算,问:货主应付运费多少元.文档收集自网络,仅用于个人学习.某商场用元购进甲、乙两种商品,销售完后共获利元.其中甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.文档收集自网络,仅用于个人学习()该商场购进甲、乙两种商品各多少件?()商场第二次以原进价购进甲、乙两种商品.购进乙种商品地件数不变,而购进甲种商品地件数是第一次地倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于元,乙种商品最低售价为每件多少元?文档收集自网络,仅用于个人学习. 同庆中学为丰富学生地校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球地价格相同,每个篮球地价格相同),若购买个足球和个篮球共需元.购买个足球和个篮球共需元.文档收集自网络,仅用于个人学习()购买一个足球、一个篮球各需多少元?()根据同庆中学地实际情况,需从军跃体育用品商店一次性购买足球和篮球共个.要求购买足球和篮球地总费用不超过元,这所中学最多可以购买多少个篮球?文档收集自网络,仅用于个人学习。
二元一次方程组⑴1、下列方程:①xy+3x-y=5②3x+2=x-y ③y=5x ④x+y 1=3⑤xy=2⑥x 2-y 2=1⑦x+y+z=1中,二元一次方程有 (填序号).2、已知x a+b -3y a-1=2是关于x 、y 的二元一次方程,则a= ,b= . 3、已知x 、y 的值:①⎩⎨⎧==22x y ②⎩⎨⎧==23y x ③⎩⎨⎧-==21x y ④⎩⎨⎧-=-=23y x ,其中是二元一次方程2x-y=4的解是 (填序号).4、已知⎩⎨⎧==12x y 是方程3x+ay=4的一个解,则a= .5、方程5x-2y=1,当x= -2时,y= ;当y= -3时,x= .6、若方程x-ky=6的一个解是⎩⎨⎧==32y x ,则k 的值是 .7、若⎩⎨⎧-=-=121m y mx ,则x 与y 的关系是8、把下列方程化成用含x 的式子表示y 的形式:(1)x+3y=4 (2)3x-5y=29、判断⎩⎨⎧==13y x 是否是方程组⎩⎨⎧=-=+43252y x y x 的解?为什么?1、在下列二元一次方程中,有无数个正整数的解的是( )A 、x+3y=2008B 、x-y=3C 、2x+4y=7D 、x+2y=12、方程x-my=y+3是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠0B 、m ≠1C 、m ≠-1D 、m ≠33、下列方程组中不是二元一次方程组的是( )A 、⎩⎨⎧==32y xB 、⎩⎨⎧=-=+21y x y xC 、⎩⎨⎧==+15xy y xD 、⎩⎨⎧=-=12y x x y 4、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧-=-=21y xB 、⎩⎨⎧==12y xC 、⎩⎨⎧-==12y xD 、⎩⎨⎧==21y x 5、在方程3x+4y=6中,如果2y=3,那么x= .6、某人只带了面值2元和5元的两种货币,他要买一件27元的商品,则他在不需要找钱的情况下可以有几种付款方式.7、解方程组(1)⎩⎨⎧=+=-74823y x y x (2)⎩⎨⎧=+-=-33225y x y x1、已知方程12(x+1)=7(y-1),写出用x 表示y 的式子得 ,当x=2时,y= .2、将x=23-y-1代入方程4x-9y=8中,可得到一元一次方程的解是 . 3、若方程3x+y=51的一个解中的两个数互为相反数,则这个解是 . 4、用代入法解方程组⎩⎨⎧=-=+1472x y x y 由②得y= ③,把③代入①, 得 ,解得x= ,再把求得的x 值代入③得,y= ;所以方程组的解为 .5、已知⎩⎨⎧==32x y 是方程组⎩⎨⎧=-=-7253ny x y mx 的解,则2m+3n= .6、解方程组(1)⎩⎨⎧=--=52332b a b a (2)⎩⎨⎧=+=-15255s 3t s t7、已知关于x 、y 的方程mx+ny=8的两个解分别为⎩⎨⎧-==13y x 和⎩⎨⎧=-=21y x ,求m 、n 的值.二元一次方程组⑷1、若(2x-3y+5)2+︱x+y-2︱=0,则x= ,y= .2、已知3x 3m+5n+9+9y 4m-2n+3=5是二元一次方程,则n m 的值是 . 3、如果x+y=-4,x-y=8,那么多项式x 2-y 2的值是 .4、已知方程组⎩⎨⎧=+=-24by ax by ax 的解为⎩⎨⎧==12y x 则2a-3b= . 5、已知⎩⎨⎧=-=+32423t y t x ,则x 与y 之间的关系式是 .6、解方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x7、已知(3x-2y+1)2与︱4x-3y-3︱互为相反数,求x-y 的值.1、某电视机厂第一季度和第二季度共生产液晶电视机144000台,已知第一季度的产量是第二季度的80%,设第一季度的产量为x 台,第二季度的产量为y 台,则列出方程组是 .2、一艘轮船顺水航行104km,需要2h ;逆水航行3h 的路程为96km ;则轮船在静水中航2h 的路程是多少千米.可采取间接设的方法.设轮船在静水中航行的速度为xkm/h ,水流速度为ykm/h ,则列出方程组为 .3、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?4、甲乙二人从相距20千米的两地同时出发,若同向而行甲5小时可追上乙;若相向而行35小时相遇,求甲乙二人的速度各是多少.5、已知甲、乙两种商品的原价和为200元.因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价和比原单价和提高了5%.求甲、乙两种商品的原单价各是多少元.1、要把一张面值为10元的人民币换成零钱,现在只有面值1元和5元的人民币,数量足够多,那么不同的换法共有种.2、某校运动员进行分组训练,若每组5人,则余2人;若每组6人,则缺少3人;设运动员人数共有x人,组数为y人,则列出方程组为 .3、某文具商店星期一共售出毛笔和签字笔200支,其中毛笔的数量是签字笔数量的3倍多8支,设售出毛笔x支,售出签字笔y支,则列出方程组为 .4、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?5、已知一艘轮船载重量是500吨,容积是1000立方米.现有甲乙两种货物等待装运,甲种货物每吨体积是7立方米,乙种货物每吨体积是2立方米,求怎样装货才能最大限度的利用船的载重量和体积?6、用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用多少张铁皮制作盒身,用多少张铁皮制作盒底,正好全部配套.1、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.2、一张方桌是由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条.现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张?3、加工某种产品需要经过两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人加工这种产品,问应怎样安排人力,才能使每天第一道工序、第二道工序所完成的产品件数相等?不等式⑴1、用不等式表示:(1) x 是负数;___________ (2) x 是非负数;____________(3) x 的一半小于-1;__________ (4) x 与4的和大于0.5;_________(5)a 与1的和是正数;__________ (6)x 的21与y 的31的差是非负数;__________ 2、当实数a <0时,6+a 6-a (填“<”或“>”).3、不等式2x ﹣1>3的解集为 .4、不等式2x+9≥3(x+2)的正整数解是 .5、下列各式中,是一元一次不等式的是( ).A.5+4>8 B.12-x C.x 2+3≤5D.x y 3-≥06、下列命题中正确的是( ).A.若m ≠n,则|m|≠|n| B.若a+b=0,则ab >0C.若ab <0,且a <b,则|a|<|b| D.互为倒数的两数之积必为正.7、无论x 取什么数,下列不等式总成立的是( ).A.x+5>0; B.x+5<0; C.-(x+5)2<0; D. (x-5)2≥0.8、若,a a -则a 必为( ).A 、负整数 B、 正整数 C、负数 D、正数9、下列说法,错误的是( ).A.33- x 的解集是1- x B.-10是102- x 的解C.2 x 的整数解有无数多个 D.2 x 的负整数解只有有限多个 10、下列按要求列出的不等式中正确的是 ( ).A.a 不是负数,则a>0B.b 是不大于0的数,则b<0C.m 不小于-1,则m>-1D.a+b 是负数,则a+b<011、不等式2-x<1的解集是( ).A.x>1B.x>-1C.x<1D.x<-1不等式⑵1、不等式6(x +1)-3x >3x +3的解集为( ).A .x >1B .无解C .x >-1D .任意数2、不等式4x -7≥5(x -1)的解集是( ).A .x ≥ 2B .x ≥-2C .x ≤-2D .x ≤23、若不等式(m -2)x >n 的解集为x <1,则m ,n 满足的条件是( ).A .m=n -2且m >2B .m=n -2且m <2C .n=m -2且m >2D .n=m -2且m <24、当k _____时,3k 与k 的差小于1. 5、不等式0823≤--x 的解集是____________. 6、解下列不等式,并把它们得解集在数轴上表示出来.(1) 7x+5>8x+6 (2)2x-1>5x+5(3)3(x +2)-1>8-2(x -1) (4)2[x -3(x -1)]≥5x不等式⑶1、若∣x -2∣=2-x ,则x 应满足( ).A .x ≥ 2B .x >2C .x <2D .x ≤22、如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( ).A .9 ≤m <12B .9 <m ≤12C .m <12D .m ≥ 93、不等式3x -k ≤0的正整数解是1,2,那么k 的取值范围是___________.4、不等式3x -2≥4(x -1)的所有非负整数解的和等于___________.5、关于x 的不等式3x -2a ≤-2的解集是x ≤1,则a 的值是_________.6、若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.7、解不等式,并在数轴表示不等式的解集.(1))4(410--x ≤1)-x (2 (2)145261≥--+y y(3)612131-≥--+x x x (4)12162312----+x x x >不等式⑷1、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )..13.31.22.22 A m B m C m D m-<≤-≤<-≤<-<≤2、满足-1<x≤2的数在数轴上表示为().3、不等式45111x-<的正整数解为( ).A.1个B.3个C.4个D.5个4、已知不等式组2113xx m-⎧>⎪⎨⎪>⎩的解集为2x>,则m满足条件为( )..2.2.2.2 A m B m C m D m><=≤5、(1)不等式组21xx>-⎧⎨>⎩的解集是(2)不等式组12xx<⎧⎨>-⎩的解集是;6、解下列不等式组:(1)()4321213x xxx-<-⎧⎪⎨++>⎪⎩(2)()2 1.55261x xx x≤+⎧⎪⎨->-⎪⎩不等式⑸7、在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个正确,要求学生把正确答案选出,每道题选对的4分,不选或错选倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对多少道题?8、某商店要选购甲、乙两种零件,若购进甲种零件10件,乙种12件,共需要2100元,若购进甲种零件5件,乙种零件8件,共需要1250元.(1)求甲、乙两种零件每件分别为多少元?(2)若每件甲种零件的销售价格为108元,每件乙种销售价格为140元,根据市场需求,商店决定,购进甲种零件的数量比购进乙种的数量3倍多2件,这样零件的全部售出后,要是总获利超过976元,至少应购进乙种零件多少件?1、用不等式表示图中的解集,其中正确的是 ( )A. x≥-2B. x >-2C. x <-2D. x≤-22、不等式2-x>1的解集是____________3、方程2x +3y =10中,当3x -6=0时,y =_________4、若方程组⎩⎨⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围.5、某商店欲购进A,B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元,若购进A 种商品6件和B 种商品8件共需440元;(1)求A,B 两种商品每件的进价分别为多少元?(2)若该商品每销售1件A 种商品可获利8元,每销售1件B 种商品可获利6元,且商店将购进A,B 共50件的商品全部售出后,要获得的利润超过348元,问A 种商品至少购进多少件?1、下列方程中的二元一次方程组的是()A.32141x yy z-=⎧⎨=+⎩B.3232ab a=⎧⎨-=⎩C.13124yxxy⎧+=⎪⎪⎨⎪+=⎪⎩D.13mnm n=-⎧⎨+=⎩2、不等式4(x-2)>2(3x + 5)的非负整数解的个数为( )A.0个B.1个C.2个D.3个3、庐城出租车的收费标准:起步价4元(即行使距离不超过3千米都须付4元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人乘出租车从甲地到乙地共付车费18元,那么甲地到乙地路程是( )A.9.5千米B.10千米C.至多10千米D.至少9千米4、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为.5、某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?6、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?。
二元一次方程组和不等式组在数学中,方程组和不等式组是两个很常见的概念。
在解决各种实际问题时,它们是不可或缺的工具。
本文将着重探讨二元一次方程组和不等式组的概念和方法。
一、二元一次方程组1. 定义二元一次方程组是由两个形如ax+by=c的方程所组成的方程组。
其中a、b、c分别为已知常数,而x和y是未知量。
2. 解法为了解决二元一次方程组,我们可以采取以下两种方法。
(1) 相减法若方程组为:⑴ax+by=c⑵dx+ey=f则方程两边相减,得到(b-e)y = c-f 。
进而可以解出y的值。
将y的值代入其中一方程,即可求出x的值。
(2) 代入法若方程组为:⑴ax+by=c⑵dx+ey=f则可以将其中一个方程中的一个未知量表示成另一个方程相应未知量的函数。
例如,将⑴式中的x表示成y的函数,则:x = (c-by)/a将其代入⑵式中,就可得到只含有y的方程。
二、不等式组1. 定义不等式组是含有形如ax+b<y和cx+d>z的不等式的方程组。
其中a、b、c和d是已知常数,而x、y和z是未知量。
2. 解法为了解决不等式组,我们可以采取以下两种方法。
(1) 图像法不等式组可以通过对其图像进行研究来解决。
例如:ax+b<y则可以绘制出y = ax+b的函数图像。
从而可以确定该不等式组的解集。
(2) 替换法替换法是将不等式组中的一个不等式代入另一个不等式中,从而得到一个只含有一个未知量的不等式。
例如:ax+b<ycan+d>z可将第一个不等式中的y替换成can+d,从而得到ax+b<can+d。
从而得到只含有x和z的一个不等式。
二次函数与二元一次方程、不等式的解的对应关系二次函数与二元一次方程、不等式的解的对应关系在数学领域中,二次函数与二元一次方程、不等式的解之间存在着密切的对应关系。
本文将从简单到复杂的角度,全面评估这一主题,并据此撰写一篇有价值的文章,以便读者更深入地理解这一关系。
一、二次函数的基本形式我们首先来了解二次函数的基本形式。
二次函数通常具有以下标准形式:f(x) = ax^2 + bx + c。
其中,a、b、c分别代表二次项系数、一次项系数和常数项。
1. 二次函数图像的特点二次函数的图像是一个抛物线,其开口方向由二次项系数a的正负决定。
当a > 0时,图像开口向上;当a < 0时,图像开口向下。
二次函数的顶点坐标为:(-b/2a, f(-b/2a))。
2. 二次函数的零点二次函数的零点即为方程f(x) = 0的解,也就是函数图像与x轴的交点。
要求出二次函数的零点,可以使用求根公式或配方法,进而得到对应的解。
二、二元一次方程、不等式的基本形式接下来,我们将了解二元一次方程和不等式的基本形式,以及它们与二次函数解之间的联系。
1. 二元一次方程的一般形式二元一次方程一般可表示为:ax + by = c。
在解二元一次方程时,通常采用代入、相消、加减消元法等方法,最终得到方程的解。
2. 二元一次不等式的一般形式二元一次不等式的一般形式为:ax + by > c或ax + by < c。
解二元一次不等式时,同样可以通过代入法等方式,最终得到不等式的解集合。
三、二次函数与二元一次方程、不等式解的对应关系了解了二次函数和二元一次方程、不等式的基本形式后,接下来我们来探讨它们之间的对应关系。
1. 二次函数的解与二元一次方程的关系对于二次函数f(x) = ax^2 + bx + c,其解即为方程f(x) = 0的解。
而方程f(x) = 0可以化为ax^2 + bx + c = 0的形式,与一元二次方程的形式一致。
二元一次方程组及其不等式组二元一次方程组1、二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做 方程,一般形式是 ax+by=c(a ≠0,b ≠0)。
2、二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3、二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4、二元一次方程组的解:一般地,二元一次方程组的 方程的 解叫做二元一次方程组。
5、消元:将未知数的个数由多化少,逐一解决的想法,叫做 思想。
6、代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7、加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
【例】(1)(2)【1】代入法【2】加减法1、下列方程组中,属于二元一次方程组的是 ( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎩⎨⎧=+=-12382y x y x2、若3243y x b a +与b a yx -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、63、已知⎩⎨⎧=+=+25ay bx by ax 的解是 ⎩⎨⎧==34y x ,则( ) A 、⎩⎨⎧==12b a B 、⎩⎨⎧-==12b a C 、⎩⎨⎧=-=12b a D 、⎩⎨⎧-=-=12b a4、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( )A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y5、若2121350a b a b x y ++--+=是关于字母x 、y 的二元一次方程,则_____,_______a b ==。
一对一辅导教案
学生姓名性别年级初三学科数学
授课教师上课时间课时: 3 课时
教学课题初一数学(下册)基础知识点梳理,重难点巩固。
通过对初中基础知识的梳理与回顾,打牢数学的基础,为学习高中数学做好前提。
教学目标掌握相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组。
教学重点
与难点
二元一次方程组;不等式与不等式组。
第五章相交线与平行线
一、知识概念
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质
对顶角的性质:对顶角相等。
10垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章平面直角坐标系
一.知识概念
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
第七章三角形
一.知识概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有
23)
-
n(n
条对角线。
第八章 二元一次方程组
一、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。
方程,一般形式是 ax+by=c(a ≠0,b ≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
二.练习
1.方程组⎩⎨⎧==+b
xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
2.若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-2
12by x y ax 的解互为倒数,则=-b a 2 。
3.若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )
4.加减消元
(1)⎩⎨⎧=+=-9
24523n m n m (2)⎩⎨⎧=+=-524753y x y x
第九章 不等式与不等式组
一、知识概念
1.用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
6.了一个一元一次不等式组。
7. 不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
二.练习
1.在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为( )
A .x >0
B .x <2
C .0<x <2
D .x >2
2.(2007年福州)解集在数轴上表示为如图1所示的不等式组是( )
A .32x x >-⎧⎨⎩≥
B .32x x <-⎧⎨⎩≤
C .32x x <-⎧⎨⎩≥
D .32x x >-⎧⎨⎩≤
3.已知不等式组2113x x a -⎧>⎪⎨⎪>⎩的解集为2x >,则 ( )
A.2a <
B.2a =
C.2a >
D.2a ≤
4.已知a =23+x ,b =3
2+x ,且a >2>b ,那么求x 的取值范围。
5.若不等式组 x <a 无解,求a 的取值范围。
2
13-x >1
2
3- 图1 0。