2018年上海市嘉定区高考数学第二次模拟试卷-含答案解析
- 格式:doc
- 大小:696.30 KB
- 文档页数:20
2019年嘉定区高三年级第二次质量调研一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果1.已知集合{}1,2,3,4A =,{}25,B x x x R =<<∈,则AB =2.已知复数z 满足34zi i =+(i 是虚数单位),则||z =3.若线性方程组的增广矩阵为2012m n ⎛⎫⎪⎝⎭,则m n +=4. 在41x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项的值为5.已知一个圆锥的主视图(如右图所示)是边长分别为5,5,4的三角形,则该圆锥的侧面积为6.已知实数x ,y 满足011x y y x ≥⎧⎪≤⎨⎪≥-⎩,则2x y +的最小值为7.设函数()f x =其中a 为常数)的反函数为()1f x -,若函数()1f x -的图像经过点()0,1,则方程()12f x -=的解为8.学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,则选出的2人中至少有1名女同学的概率为(结果用数值表示)9.已知直线1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)与抛物线24y x =相交于A 、B 两点,若线段AB 中点的坐标为(m ,2),线段AB 的长为10.在ABC 中,已知2CD DB =,P 为线段AD 上的一点,且满足12CP CA mCB =+,若△ABC的面积为3ACB π∠=,则CP 的最小值为11.已知有穷数列{}n a 共有m 项,记数列{}n a 的所有项和为S(1),第二项及以后所有项和为S(2),… …第n (1n m ≤≤)项及以后所有项和为S(n),若S(n)是首项为1,公差为2的等差数列的前n 项和,则当1n m ≤<时,n a =12. 已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当01x ≤≤时,()()2log f x x a =+,若对于x 属于[]0,1都有2211log 32()f x tx -++≥-,则实数t 的取值范围为二、选择题(本题共有4题,满分20分,每题5分)13.已知x R ∈,则“11x>”是“1x <”的( ) A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件14.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标,下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图 (%)在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较:环比是指本期统计数据与上期统计数据相比较,例如2015二季度与2015年第一季度相比较根据上述信息,下列结论中正确的是( )(A)2015年第三季度环比有所提高 (B)2016年第一季度同比有所提高(C)2017年第三季度同比有所提高 (D)2018年第一季度环比有所提高15.已知圆()2229x y -+=的圆心为C ,过点()2,0M -且与x 轴不重合的直线l 交圆A 、B 两点,点A 在点M 与点B 之间。
宝山2018届高三二模数学卷一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1. 设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= .2. 设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 3. 某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).4. 函数()x x x f 4cos 4sin 2=的最小正周期为 .5. 已知球的俯视图面积为π,则该球的表面积为 .6. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 7. 在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示)8. 设无穷数列{}n a 的公比为q ,则2a ()n n a a a +⋅⋅⋅++=∞→54lim ,则=q .9. 若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 10. 设奇函数()f x 定义为R ,且当0x >时,2()1m f x x x=+-(这里m 为正常数). 若()2f x m ≤-对一切0x ≤成立,则m 的取值范围是 .11. 如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅u u u r u u u r 的值为 .12. 将实数z y x 、、中的最小值记为{}z y x ,,m in ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,m in ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S . 二.选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上将代表答案的小方格涂黑,选对得 5分,否则一律得零分.13. “1sin 2x =”是“6x π=”的 ( ) )(A 充分不必要条件. )(B 必要不充分条件. )(C 充要条件. )(D 既不充分也不必要条件.14.在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于 ( ))(A 160- )(B 160 )(C 150- )(D 15015.若函数()()f x x R ∈满足()1f x -+、()1f x +均为奇函数,则下列四个结论正确的是( ))(A ()f x -为奇函数 )(B ()f x -为偶函数 )(C ()3f x +为奇函数 )(D ()3f x +为偶函数16. 对于数列12,,,x x L 若使得0n m x ->对一切n N *∈成立的m 的最小值存在,则称该最小值为此数列的“准最大项”。
2018年上海市长宁区、嘉定区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)已知集合A={1,2,3,4},B={2,4,5},则A∩B=.2.(4分)不等式的解集为.3.(4分)已知,则=.4.(4分)=.5.(4分)已知球的表面积为16π,则该球的体积为.6.(4分)已知函数f(x)=1+log a x,y=f﹣1(x)是函数y=f(x)的反函数,若y=f﹣1(x)的图象过点(2,4),则a的值为.7.(5分)若数列{a n}为等比数列,且a5=3,则=.8.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a﹣b+c)=ac,则B=.9.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为.10.(5分)已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,,则的值为.11.(5分)已知数列{a n}的前n项和为S n,且a1=1,2S n=a n?a n+1(n∈N*).若b n=(﹣1)n,则数列{b n}的前n项和T n=.12.(5分)若不等式x2﹣2y2≤cx(y﹣x)对任意满足x>y>0的实数x、y恒成立,则实数c的最大值为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设角α的始边为x轴正半轴,则“α的终边在第一、二象限”是“sinα>0”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件D.既非充分又非必要条件14.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交15.(5分)对任意两个非零的平面向量和,定义,其中θ为和的夹角,若两个非零的平面向量和满足:①;②和的夹角;③和的值都在集合中,则的值为()A.B.C.1 D.16.(5分)已知函数,且f1(x)=f(x),f n(x)=f(f n﹣1(x)),n=1,2,3,….则满足方程f n(x)=x的根的个数为()A.2n个B.2n2个C.2n个D.2(2n﹣1)个三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,设长方体ABCD﹣A1B1C1D1中,AB=BC=3,AA1=4.(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1C所成角的大小.(结果用反三角函数值表示)18.(14分)已知复数z满足,z2的虚部为2.(1)求复数z;(2)设z、z2、z﹣z2在复平面上的对应点分别为A、B、C,求△ABC的面积.19.(14分)一根长为L的铁棒AB欲通过如图所示的直角走廊,已知走廊的宽AC=BD=2m.(1)设∠BOD=θ,试将L表示为θ的函数;(2)求L的最小值,并说明此最小值的实际意义.20.(16分)已知函数f(x)=2x+2﹣x.(1)求证:函数f(x)是偶函数;(2)设a∈R,求关于x的函数y=22x+2﹣2x﹣2af(x)在x∈[0,+∞)时的值域g (a)表达式;(3)若关于x的不等式mf(x)≤2﹣x+m﹣1在x∈(0,+∞)时恒成立,求实数m的取值范围.21.(18分)已知数列{a n}满足:a1=1,,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为S n,且满足,试确定b1的值,使得数列{b n}为等差数列;(3)将数列中的部分项按原来顺序构成新数列{c n},且c1=5,求证:存在无数个满足条件的无穷等比数列{c n}.2018年上海市长宁区、嘉定区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)已知集合A={1,2,3,4},B={2,4,5},则A∩B={2,4} .【解答】解:∵集合A={1,2,3,4},B={2,4,5},∴A∩B={2,4}.故答案为:{2,4}.2.(4分)不等式的解集为(﹣1,0] .【解答】解:∵,∴或,解得:﹣1<x≤0,故答案为(﹣1,0].3.(4分)已知,则=.【解答】解:∵sinα=,﹣.∴cos(+α)=﹣sinα=故答案为:﹣4.(4分)=.【解答】解:==,∴=,故答案为:.5.(4分)已知球的表面积为16π,则该球的体积为.【解答】解:一个球的表面积是16π,所以球的半径为:2,所以这个球的体积为:=.故答案为:.6.(4分)已知函数f(x)=1+log a x,y=f﹣1(x)是函数y=f(x)的反函数,若y=f ﹣1(x)的图象过点(2,4),则a的值为4.【解答】解:∵y=f﹣1(x)的图象过点(2,4),∴函数y=f(x)的图象过点(4,2),又f(x)=1+log a x,∴2=1+log a4,即a=4.故答案为:4.7.(5分)若数列{a n}为等比数列,且a5=3,则=18.【解答】解:根据题意,=a2?a8﹣a3?(﹣a7)=a2?a8+a3?a7,又由数列{a n}为等比数列,且a5=3,则有a2?a8=a3?a7=9,则=9+9=18;故答案为:18.8.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a﹣b+c)=ac,则B=.【解答】解:△ABC的内角A,B,C的对边分别为a,b,c,∵(a+b+c)(a﹣b+c)=ac,即a2+c2﹣b2=﹣ac,又cosB==﹣,∴B=,故答案为:.9.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为1120.【解答】解:由题意可知,2n=256,解得n=8.∴=,其展开式的通项=,令8﹣2r=0,得r=4.∴该展开式中常数项的值为.故答案为:1120.10.(5分)已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,,则的值为.【解答】解:∵函数f(x)是定义在R上且周期为4的偶函数,∴,又当x∈[2,4]时,,∴f()=f()=.故答案为:.11.(5分)已知数列{a n}的前n项和为S n,且a1=1,2S n=a n?a n+1(n∈N*).若b n=(﹣1)n,则数列{b n}的前n项和T n=﹣1+.【解答】解:∵2S n=a n?a n+1(n∈N*).当n≥2时,2S n﹣1=a n﹣1?a n,∴2a n=2S n﹣2S n﹣1=a n(a n+1﹣a n﹣1),∵a1=1,∴a n≠0∴a n+1﹣a n﹣1=2,∴(a n+1﹣a n)+(a n﹣a n﹣1)=2,∴a n﹣a n﹣1=1,∴数列{a n}是以1为首项,以1为公差的等差数列,∴a n=1+(n﹣1)=n,∴b n=(﹣1)n=(﹣1)n?=(﹣1)n?(+),数列{b n}的前n项和T n=﹣(1+)+(+)﹣(+)+…+(﹣1)n?(+),当n为偶数时,T n=﹣1+,当n为奇数时,T n=﹣1+﹣(+)=﹣1﹣,综上所述T n=﹣1+,故答案为:﹣1+.12.(5分)若不等式x2﹣2y2≤cx(y﹣x)对任意满足x>y>0的实数x、y恒成立,则实数c的最大值为2﹣4.【解答】解:∵不等式x2﹣2y2≤cx(y﹣x)对任意满足x>y>0的实数x、y恒成立,∴c≤=,令,∴=f(t),f′(t)==,当t时,f′(t)>0,函数f(t)单调递增;当1<t<时,f′(t)<0,函数f(t)单调递减.∴当t=2+时,f(t)取得最小值,=2﹣4.∴实数c的最大值为2﹣4.故答案为:﹣4.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设角α的始边为x轴正半轴,则“α的终边在第一、二象限”是“sinα>0”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件D.既非充分又非必要条件【解答】解:∵角α的始边为x轴正半轴,>0”,∴“α的终边在第一、二象限”?“sinα>0”?“α的终边在第一、二象限或α的终边在x轴正半轴”,“sinα>0”的充分非必要条件.∴“α的终边在第一、二象限”是“sinα故选:A.14.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选D.15.(5分)对任意两个非零的平面向量和,定义,其中θ为和的夹角,若两个非零的平面向量和满足:①;②和的夹角;③和的值都在集合中,则的值为()A.B.C.1 D.【解答】解:∵=cosθ=,=cosθ=,m∈N,由与的夹角θ∈(0,),知cos2θ=∈(,1),故mn=3,m,n∈N,∵,∴0<=<1,∴m=1,n=3,∴=,故选:B.16.(5分)已知函数,且f1(x)=f(x),f n(x)=f(f n﹣1(x)),n=1,2,3,….则满足方程f n(x)=x的根的个数为()A.2n个B.2n2个C.2n个D.2(2n﹣1)个【解答】解:当x∈[0,]时,f1(x)=f(x)=2x=x,解得x=0;当x∈(,1]时,f1(x)=f(x)=2﹣2x=x,解得x=,∴f的1阶根的个数是2.当x∈[0,]时,f1(x)=f(x)=2x,f2(x)=4x=x,解得x=0;当x∈(,]时,f1(x)=f(x)=2x,f2(x)=2﹣4x=x,解得x=;当x∈(,]时,f1(x)=2﹣2x,f2(x)=﹣2+4x=x,解得x=;当x∈(,1]时,f1(x)=2﹣2x,f2(x)=4﹣4x=x,解得x=.∴f的2阶根的个数是22.依此类推∴f的n阶根的个数是2n.故选C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,设长方体ABCD﹣A1B1C1D1中,AB=BC=3,AA1=4.(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1C所成角的大小.(结果用反三角函数值表示)【解答】解:(1)∵A1到平面ABCD的距离d=AA1=4,长方体ABCD﹣A1B1C1D1中,AB=BC=3,∴S正方体ABCD=AB×BC=3×3=9,∴四棱锥A1﹣ABCD的体积V==.(2)∵A1B∥D1C,∴∠D1CB1是异面直线A1B与B1C所成角(或所成角的补角),∵B1D1==3,B1C=D1C==5,∴cos∠D1CB1===,∴∠D1CB1=arccos.∴异面直线A1B与B1C所成角为.18.(14分)已知复数z满足,z2的虚部为2.(1)求复数z;(2)设z、z2、z﹣z2在复平面上的对应点分别为A、B、C,求△ABC的面积.【解答】解:(1)设z=a+bi(a,b∈R),由已知可得:,即,解得或.∴z=1+i或z=﹣1﹣i;(2)当z=1+i时,z2=2i,z﹣z2=1﹣i,∴A(1,1),B(0,2),C(1,﹣1),故△ABC的面积S=×2×1=1;当z=﹣1﹣i时,z2=2i,z﹣z2=﹣1﹣3i,∴A(﹣1,﹣1),B(0,2),C(﹣1,﹣3),故△ABC的面积S=×2×1=1.∴△ABC的面积为1.19.(14分)一根长为L的铁棒AB欲通过如图所示的直角走廊,已知走廊的宽AC=BD=2m.(1)设∠BOD=θ,试将L表示为θ的函数;(2)求L的最小值,并说明此最小值的实际意义.【解答】解:(1)∵走廊的宽AC=BD=2m.∠BOD=∠BAC=θ,∴;(2)∵∴.∵θ∈(0,),L′<0,L为减函数;θ∈(,),L′>0,L为增函数;∴θ=时,L取最小值4,该最小值表示:超过则无法通过.20.(16分)已知函数f(x)=2x+2﹣x.(1)求证:函数f(x)是偶函数;(2)设a∈R,求关于x的函数y=22x+2﹣2x﹣2af(x)在x∈[0,+∞)时的值域g (a)表达式;(3)若关于x的不等式mf(x)≤2﹣x+m﹣1在x∈(0,+∞)时恒成立,求实数m的取值范围.【解答】证明:(1)∵函数f(x)=2x+2﹣x的定义域关于原点对称,且f(﹣x)=2﹣x+2x=2x+2﹣x=f(x),故函数f(x)是偶函数;解:(2)令t=f(x)=2x+2﹣x.则t≥2,22x+2﹣2x=t2﹣2y=22x+2﹣2x﹣2af(x)=t2﹣2at﹣2,当a≤2时,当t=2时,函数取最小值2﹣4a,无最大值;此时函数的值域为[2﹣4a,+∞),a>2时,当t=a时,函数取最小值﹣a2﹣2,无最大值;此时值域为[﹣a2﹣2,+∞);(3)若关于x的不等式mf(x)≤2﹣x+m﹣1在x∈(0,+∞)时恒成立即m(2x+2﹣x)≤2﹣x+m﹣1在x∈(0,+∞)时恒成立即m≤=1﹣=1﹣在x∈(0,+∞)时恒成立当x=1时,2﹣x=,此时(2﹣x)2﹣2﹣x+1取最小值,故取最大值,故1﹣取最小值﹣故.21.(18分)已知数列{a n}满足:a1=1,,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为S n,且满足,试确定b1的值,使得数列{b n}为等差数列;(3)将数列中的部分项按原来顺序构成新数列{c n},且c1=5,求证:存在无数个满足条件的无穷等比数列{c n}.【解答】解:(1),则﹣=4,n∈N*∴数列{}是以1为首项,以4为公差的等差数列,则=1+4(n﹣1)=4n﹣3,∴,∴数列{a n}的通项公式;(2)由(1)可得,∵,∴(4n﹣3)S n+1=(4n+1)S n+16n2﹣8n﹣3,∴﹣=1,∴数列{}是等差数列,首项为S1,公差为1.∴=b1+n﹣1,∴S n=(b1+n﹣1)(4n﹣3),当n≥2时,b n=S n﹣S n﹣1=(b1+n﹣1)(4n﹣3)﹣(b1+n﹣2)(4n﹣7),化为b n=4b1+8n ﹣11,若数列{b n}为等差数列,则上式对于n=1时也成立,∴b1=4b1﹣3,解得b1=1.∴b n=8n﹣7为等差数列.∴b1=1,数列{b n}为等差数列;(3)证明:由(1)可得=4n﹣3.解法1:令等比数列{c n}的公比q=4m(m∈N*),则c n=c1q n﹣1=5×4m(n﹣1),设k=m(n﹣1),因为1+4+42+…+4k﹣1=,所以5×4m(n﹣1)=5×[3(1+4+42+…+4k﹣1)+1],=3[5(1+4+42+…+4k﹣1)+2]﹣1,…(14分)因为5(1+4+42+…+4k﹣1)+2为正整数,所以数列{c n}是数列{a n}中包含的无穷等比数列,因为公比q=4m(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{c n}有无数个.…(16分)解法2:设c2=4k2﹣3(k2≥3),所以公比q=.因为等比数列{b n}的各项为整数,所以q为整数,取k2=5m+2(m∈N*),则q=4m+1,故c n=5?(4m+1)n﹣1,由4k n﹣3=5?(4m+1)n﹣1得,k n=[5(4m+1)n﹣1+3](n∈N*),而当n≥2时,k n﹣k n﹣1=[(4m+1)n﹣1﹣(4m+1)n﹣2]=5m(4m+1)n﹣2,即k n=k n﹣1+5m(4m+1)n﹣2,…(14分)又因为k1=2,5m(4m+1)n﹣2都是正整数,所以k n也都是正整数,所以数列{c n}是数列{a n}中包含的无穷等比数列,因为公比q=4m+1(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{c n}有无数个.…(16分)。
2(2018徐汇二模). 在61()x x +的二项展开式中,常数项是 (结果用数值表示) 2(2018长嘉二模). 1()n x x +的展开式中的第3项为常数项,则正整数n = 3(2018杨浦二模). 若(13)n x +的二项展开式中2x 项的系数是,则 5(2018浦东二模). 91)x+二项展开式中的常数项为 6(2018普陀二模). 若321()n x x-的展开式中含有非零常数项,则正整数n 的最小值为 7(2018崇明二模). 若二项式7(2)a x x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+= 8(2018虹口二模). 若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于 8(2018青浦二模). 621(1)(1)x x++展开式中2x 的系数为 9(2018金山二模). (12)n x +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍,则正整数n =10(2018奉贤二模). 代数式2521(2)(1)x x+-的展开式的常数项是 (用数字作答) 12(2018闵松二模). 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R ,1222[][][]555n n n na a a b =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为14(2018宝山二模). 在62()x x -的二项展开式中,常数项等于( )A. 160-B. 160C. 150-D. 15014(2018黄浦二模).二项式40的展开式中,其中是有理项的项数共有( ) A. 4项 B. 7项 C. 5项 D. 6项16(2018金山二模). 若对任意1(,1)2x ∈-,都有2012212n n x a a x a x a x x x=+++⋅⋅⋅++⋅⋅⋅+-,则23a a +的值等于( )A. 3B. 2C. 1D. 1-54n =。
2017学年长宁、嘉定高三年级第二次质量调研数学试卷参考答案与评分标准一.填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.3 2.4 3.5 4.x y 42= 5.41 6.4 7.π322 8.24 9.167 10.]1,1[- 11.21 12.]4,2( 二.选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.13.A 14.C 15.B 16.D三、解答题(本大题共有5题,满分76分)17.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)12cos 212sin 232cos 212sin 232cos 1)(+-=++-=x x x x x x f 162sin +⎪⎭⎫ ⎝⎛-=πx , ……………………………(每对一步得1分)(4分) 所以,)(x f 的最小正周期π=T ,值域为]2,0[. ……………………………(6分)(2)由2)(=A f ,得162sin =⎪⎭⎫⎝⎛-πA , ………………………………………(2分) 因为π<<A 0,所以611626πππ<-<-A ,故262ππ=-A ,3π=A . ……(5分) 因为在△ABC 中,31cos =B ,所以322sin =B , …………………………(6分) 所以,[]B A B A B A B A C sin cos cos sin )sin()(sin sin +=+=+-=π6223322213123+=⋅+⋅=. …………………………………………(8分)18.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)法一:以AB 、AD 、AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系, ………………………………………………(1分) 则)0,0,2(B ,)0,1,0(D ,)0,4,2(C ,)4,0,0(P , ………………………(2分) 所以,)0,1,2(-=BD ,)4,4,2(-=PC , ………………………………………(3分) 因为044=+-=⋅,所以,⊥. ……………………………………(5分) 所以,异面直线BD 与PC 所成角的大小为︒90. …………………………………(6分)(1)法二:连结AC ,因为︒=∠90BAD ,所以21tan ==∠AB AD ABD ,………(1分) 由AD ∥BC ,得︒=∠90ABC ,所以21tan ==∠BC AB ACB , ………………(2分) 所以ACB ABD ∠=∠,于是︒=∠+∠90DBC ACB ,即AC BD ⊥, …………(4分) 又⊥PA 平面ABCD ,所以BD PA ⊥,所以⊥BD 平面PAC ,故PC BD ⊥.所以,异面直线BD 与PC 所成角的大小为︒90. ………………………………(6分)(2)由(1)⊥BD 平面PAC ,所以)0,1,2(-=BD 是平面PAC 的一个法向量.(1分) 设平面PCD 的一个法向量为),,(z y x n =, 因为)4,4,2(-=PC ,)0,3,2(=CD ,则由⎪⎩⎪⎨⎧=⋅=⋅,0,0n PC n 得⎩⎨⎧=+=-+,032,0442y x z y x 取1=z ,则6-=x ,4=y ,故)1,4,6(-=n . ……………………………………(5分) 设BD 与n 的夹角为θ,则2652651626516||||cos ==⋅=n BD BD θ. ……………(7分) 由图形知二面角D PC A --为锐二面角,所以二面角D PC A --的余弦值为26526516. ……………………………………(8分)19.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)设函数模型为)(x f y =,根据团队对函数模型的基本要求,函数)(x f y =满足: 当]1000,10[∈x 时,①)(x f 在定义域]1000,10[上是增函数;②9)(≤x f 恒成立; ③5)(x x f ≤恒成立. …………………………………………(3分,每项得1分) 对于函数2150+=x y ,当]1000,10[∈x 时,)(x f 是增函数; 9232021501000)1000()(max <+=+==f x f ,所以9)(≤x f 恒成立; 但10=x 时,5102151)10(>+=f ,即5)(x x f ≤不恒成立. 因此,该函数模型不符合团队要求. ………………………………(6分,每项得1分)(2)对于函数模型2203102310)(++-=+-=x a x a x x f , 当0203>+a 即320->a 时递增. ………………………………………………(2分) 当]1000,10[∈x 时,要使9)(≤x f 恒成立,即9)1000(≤f ,所以1000183≥+a ,3982≥a ; ……………………………………………………(4分) 要使5)(x x f ≤恒成立,即52310x x a x ≤+-,015482>+-a x x 恒成立, 得出5192≥a . ………………………………………………………………………(6分) 综上所述,3982≥a . …………………………………………………………………(7分) 所以满足条件的最小正整数a 的值为328. ………………………………………(8分)20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)(1)点)2,0(P 关于直线x y -=的对称点为)0,2(-, ……………………………(1分) 因为)0,2(-在椭圆Γ上,所以2=a ,又322=c ,故3=c , ………………(3分)则1222=-=c a b .所以,椭圆Γ的方程为1422=+y x . ……………………(4分) (2)由题意,直线l 的斜率存在,设l 的方程为2+=kx y , 由⎪⎩⎪⎨⎧=++=,14,222y x kx y 得01216)14(22=+++kx x k , ………………………………(1分) 由△0)14(124)16(22>+⋅-=k k ,得342>k . ………………………………(2分)设),(C C y x C ,),(D D y x D ,则14162+-=+k k x x D C ,14122+=k x x D C ,且||||C D x x >, ||||||||||21||||21C D C D C D POC POD COD x x x x x PO x PO S S S -=-=⋅⋅-⋅⋅=-=△△△, 所以,144814164)()222222+-⎪⎭⎫ ⎝⎛+-=-+=-=k k k x x x x x x S D C D C C D COD (△ 222222)14()34(16)14(4864+-=+-=k k k k . …………………………………………………(3分) 令t k =-342,则0>t ,所以,8161616816)4(16222++=++=+=tt t t t t t S COD △, 因为816≥+tt (当且仅当4=t 时等号成立),此时12≤CO D S △. ……………(5分) 所以,当且仅当4=t ,即472=k 时,△COD 的面积取最大值1. …………(6分) (3)当直线m 的斜率不存在时,m 的方程为1=x ,此时B A d d =,||||MB MA =, 等式||||MB MA d d B A =成立; ………………………………………………(1分) 当直线m 的斜率存在时,设直线m 的方程为)1(-=x k y , 由⎪⎩⎪⎨⎧=+-=,14,)1(22y x x k y 得0448)14(2222=-+-+k x k x k , ……………………(2分) 设)11,(y x A ,),(22y x B ,则1482221+=+k k x x ,14442221+-=k k x x , 由题意,1x 与2x 一个小于1,另一个大于1,不妨设211x x >>, 则212120222210)1(||)1(||||||y x x x y x x x MA d MB d B A +-⋅--+-⋅-=⋅-⋅ 2122022210)1)(1(||)1)(1(||-+⋅---+⋅-=x k x x x k x x|]1||||1||[|11202102-⋅---⋅-⋅+=x x x x x x k)]1)(()1)([(11202102-----⋅+=x x x x x x k[]02))(1(212121002=+++-⋅+=x x x x x x k ,所以,02))(1(2212100=+++-x x x x x x , ………………………………(4分) 即014)1(814)1(82222200=+-+++-k k k k x x ,解得40=x . …………………………(5分) 综上,存在满足条件的直线4=x ,使得||||MB MA d d B A =恒成立. ………………(6分)21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)(1)由2)1(4+=n n a S ,即1242++=n n n a a S ,所以1241211++=+++n n n a a S ,两式相减得,)(2412211n n n n n a a a a a -+-=+++, …………………………………(1分)故0)2)((11=--+++n n n n a a a a , ………………………………………(2分) 因为0>n a ,所以21=-+n n a a . ………………………………………(3分) 又由211)1(4+=a a 得11=a .所以,数列}{n a 是首项为1,公差为2的等差数列.所以,数列}{n a 的通项公式为12-=n a n . …………………………………………(4分)(2)由题意,数列}{n b 是首项为2,公比为2的等比数列,故n n b 2=.…………(1分) 所以,⎪⎩⎪⎨⎧=.,2,,2为偶数为奇数n n n c n n ………………………………………………………(3分)数列}{n a 的前n 项和2n S n =,数列}{n b 的前n 项和2221)21(21-=--='+n n n S .…(5分) 所以,22122-+='+=+n nn n n S S T . ………………………………………………(6分) (3)当n 为偶数时,设k n 2=(*N ∈k ),由(2)知,22122-+=+k k k T ,k k c 22=,由k k c T 22⋅≥λ,得k k k 22212⋅≥-++λ, …………………………………………(1分) 即222222212+-=-+≤+kk k k k λ, …………………………………………………(2分) 设222)(2+-=k k k f ,则12122)1)(3(2222)1()()1(+++--=---+=-+k k k k k k k k f k f , 所以,当3≤k 时,)(k f 单调递增,当3≥k 时,)(k f 单调递减. ………………(3分) 因为23)1(=f ,当3≥k 时,2222)(2>+-=k k k f ,所以,23)1()]([min ==f k f . 所以,23≤λ. …………………………………………………………………………(4分) 当n 为奇数时,设12-=k n (*N ∈k ),则k k k k k k c T T 222122212--+=-=+-,222-+=k k , …………………………………………………………………………(5分)由1212--⋅≥k k c T λ,得)12(222-⋅≥-+k k k λ,即12222--+≤k k k λ, ……………(6分) 设1222)(2--+=k k k g k ,则12221222)1()()1(212--+-+-++=-++k k k k k g k g k k 0)12)(12(3)32(222>+-+-+=k k k k k ,故)(k g 单调递增,1)1()]([min ==g k g ,故1≤λ.…(7分) 综上,λ的取值范围是]1,(-∞. ……………………………………………………(8分)。
2018届高三数学二模典题库一、填空题1.集合1.设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= . 【答案】{}2 【来源】18届宝山二模1 【难度】集合、基础题2.集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .【答案】{}1或{}1=x x 【来源】18届奉贤二模1 【难度】集合、基础题3. 已知(,]A a =-∞,[1,2]B =,且A B ≠∅,则实数a 的范围是【答案】1a ≥ 【来源】18届虹口二模1 【难度】集合、基础题4.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 .【答案】2 【来源】18届黄浦二模1 【难度】集合、基础题5.已知集合},2,1{m A =,}4,2{=B ,若}4,3,2,1{=B A ,则实数=m _______. 【答案】3【来源】18届长嘉二模1 【难度】集合、基础题6. 设集合1|,2xM y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .【答案】(1,0)- 【来源】18届普陀二模11 【难度】集合、中档题7.已知全集R U =,集合{}0322>--=x x x A ,则=A C U . 【答案】]3,1[- 【来源】18届徐汇二模1 【难度】集合、基础题8. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =【答案】(2,3) 【来源】18届金山二模3 【难度】集合、基础题9.已知集合{1,0,1,2,3}U =-,{1,0,2}A =-,则U C A =【答案】{1,3} 【来源】18届崇明二模1 【难度】集合、基础题2.命题、不等式1.不等式|1|1x ->的解集是 .【答案】(,0)(2,)-∞+∞【来源】18届黄浦二模2 【难度】不等式、基础题2.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 .【答案】3【来源】18届黄浦二模2 【难度】不等式、压轴题3.不等式|3|2x -<的解集为__________________. 【答案】{}15x x <<或()1,5 【来源】18届青浦二模1 【难度】不等式、基础题4.若为等比数列,0n a >,且2018a =,则2017201912a a +的最小值为 .{}n a【答案】4【来源】18届杨浦二模10 【难度】不等式、中档题5. 函数9y x x=+,(0,)x ∈+∞的最小值是 【答案】6 【来源】18届金山二模4 【难度】不等式、基础题3.函数1.给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 【答案】37【来源】18届奉贤二模9 【难度】函数、中档题2.已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈若π283222212321=++++++--n n n x x x x x x ,则=θ . 【答案】9π【来源】18届奉贤二模12 【难度】函数、压轴题3.已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---=【答案】-2【来源】18届虹口二模5 【难度】函数、基础题4.若函数()f x =是偶函数,则该函数的定义域是 . 【答案】[2,2]- 【来源】18届黄浦二模3 【难度】函数、基础题5.已知函数)1lg()(2ax x x f ++=的定义域为R ,则实数a 的取值范围是_________.【答案】]1,1[-【来源】18届长嘉二模10 【难度】函数、中档题6.若函数1()21f x x m =-+是奇函数,则实数m =________.【答案】12【来源】18届普陀二模2 【难度】函数、基础题7.若函数()f x =()g x ,则函数()g x 的零点为________.【答案】x =【来源】18届普陀二模3 【难度】函数、基础题8.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数 2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f xg x ≤,则实数m 的取值范围是 .【答案】5m ≥- 【来源】18届青浦二模10 【难度】函数、中档题9.若函数222(1)sin ()1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 .【答案】114⎛⎫⎪⎝⎭,【来源】18届徐汇二模11 【难度】函数、中档题10.设()f x 是定义在R 上以2为周期的偶函数,当[0,1]x ∈时,2()log (1)f x x =+,则函数()f x 在[1,2]上的解析式是 【答案】2()log (3)f x x =- 【来源】18届崇明二模9 【难度】函数、中档题4.指数函数、对数函数1.方程33log (325)log (41)0x x ⋅+-+=的解x = . 【答案】2【来源】18届黄浦二模6 【难度】对数函数、基础题2.[]x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是【答案】12x =或1x =- 【来源】18届虹口二模11 【难度】指数函数、中档题3.若实数x 、y 满足112244+++=+y x yx,则y x S 22+=的取值范围是____________.【答案】]4,2(【来源】18届长嘉二模12 【难度】指数函数、压轴题4.函数()lg(32)x xf x =-的定义域为_____________. 【答案】(0,)+∞ 【来源】18届徐汇二模3 【难度】对数函数、基础题5.定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -=【答案】2【来源】18届松江二模4 【难度】指数函数、基础题6.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围 【答案】()[)0,12,+∞【来源】18届松江二模10 【难度】指数函数、中档题7.函数lg 1y x =-的零点是 . 【答案】10x = 【来源】18届杨浦二模1 【难度】对数函数、基础题8.函数lg y x =的反函数是【答案】1()10xf x -=【来源】18届金山二模2 【难度】对数函数、基础题5. 三角函数1.已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .【答案】4π或045 【来源】18届奉贤二模5 【难度】三角函数、基础题2.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 【答案】4π【来源】18届黄浦二模4 【难度】三角函数、基础题3.若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________.【答案】13【来源】18届青浦二模3 【难度】三角函数、基础题4.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.【答案】6π 【来源】18届普陀二模5 【难度】三角函数、基础题5..函数()x x x f 4cos 4sin 2=的最小正周期为 . 【答案】4π 【来源】18届宝山二模4 【难度】三角函数、基础题6.已知22s 1(,,0)cos 1a a in M a a a a θθθ-+=∈≠-+R ,则M 的取值范围是 .【答案】⎣⎦【来源】18届青浦二模12 【难度】三角函数、压轴题7. 函数3sin(2)3y x π=+的最小正周期T =【答案】π【来源】18届金山二模1 【难度】三角函数、基础题8.若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 【答案】2424.77-或 【来源】18届杨浦二模9 【难度】三角函数、中档题9.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2a =,2sin sin A C =. 若B 为钝角,412cos -=C ,则ABC ∆的面积为 .【来源】18届杨浦二模11 【难度】三角函数、中档题 10. 若2018100922sin(2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=【答案】-1或1【来源】18届金山二模12 【难度】三角函数、压轴题题6. 数列1.已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q = 【答案】1或12-【来源】18届虹口二模7 【难度】数列、基础题2.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-,若1224,51,0k a a a ===,则k = .【答案】50【来源】18届黄浦二模11 【难度】数列、中档题3.设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*N n ∈)的公比,且2462018()7f a a a a =,则22221232018()()()()f a f a f a f a ++++的值为_________.【答案】1990-【来源】18届普陀二模9 【难度】数列、中档题4.在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S = . 【答案】33【来源】18届青浦二模5 【难度】数列、基础题7. 向量1.如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅的值为 .【答案】-4 【来源】18届宝山二模11 【难度】向量、中档题2.已知向量a 在向量b 方向上的投影为2-,且3b =,则a b ⋅= .(结果用数值表示) 【答案】-6 【来源】18届黄浦二模5 【难度】向量、基础题3.在△ABC 中,M 是BC 的中点,︒=∠120A ,21-=⋅AC AB ,则线段AM 长的最小值为____________. 【答案】21 【来源】18届长嘉二模114.已知曲线29C y x =--:,直线2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是 .11、 【答案】1,12⎡⎤-⎢⎥⎣⎦【来源】18届青浦二模11 【难度】向量、中档题5.已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 【答案】3【来源】18届松江二模7 【难度】向量、基础题6.点1F ,2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足:2122MNMF MF =⋅,则122MF MF +的最大值为__________.【答案】6【来源】18届普陀二模12 【难度】向量、压轴题7.已知两个不同向量(1,)OA m =,(1,2)OB m =-,若OA AB ⊥,则实数m =____________. 【答案】1【来源】18届青浦二模48.已知非零向量OP 、OQ 不共线,设111m OM OP OQ m m =+++,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为 . 【答案】34【来源】18届杨浦二模12 【难度】向量、压轴题9.已知向量,a b 的夹角为锐角,且满足||a =、||b =,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>,都有||1x y +≤成立,则a b ⋅的最小值为 . 【答案】815【来源】18届徐汇二模12 【难度】向量、压轴题10. 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅的值为 【答案】10【来源】18届崇明二模12 【难度】向量、压轴题8. 解析几何1.设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 【答案】24y x = 【来源】18届宝山二模2【难度】解析几何、基础题2.抛物线2y x =的焦点坐标是 .【答案】(0,14) 【来源】18届奉贤二模3 【难度】解析几何、基础题3.椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为【答案】2mn【来源】18届虹口二模10 【难度】解析几何、中档题4.角的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角的终边与曲线2522=+y x 的交点A 的横坐标是3-,角的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示)11、 【答案】7241250x y ±+= 【来源】18届奉贤二模11 【难度】解析几何、压轴题5.直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a = 【答案】2 【来源】18届虹口二模2 【难度】解析几何、基础题ααα26.已知平面直角坐标系xOy 中动点),(y x P 到定点)0,1(的距离等于P 到定直线1-=x 的距离,则点P 的轨迹方程为______________. 【答案】x y 42= 【来源】18届长嘉二模4 【难度】解析几何、基础题7. 抛物线212x y =的准线方程为_______. 【答案】3y =- 【来源】18届普陀二模1 【难度】解析几何、基础题8.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a =【答案】2a = 【来源】18届松江二模1 【难度】解析几何、基础题9.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 . 【答案】2220x y x y +--= 【来源】18届徐汇二模10 【难度】解析几何、中档题10.已知抛物线2x ay =的准线方程是14y =-,则a = . 【答案】1【来源】18届徐汇二模4 【难度】解析几何、基础题11.若双曲线222161(0)3x y p p-=>的左焦点在抛物线22y px =的准线上,则p = .【答案】4【来源】18届杨浦二模8 【难度】解析几何、中档题12.平面上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平面化分为六个部分,则实数k 的取值组成的集合A = 【答案】{2,1,0}-- 【来源】18届金山二模10 【难度】解析几何、中档题13.已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作一直线与双曲线C 的右半支交于P 、Q 两点,使得190F PQ ∠=︒,则1F PQ ∆的内切圆的半径r = 【答案】2【来源】18届金山二模11 【难度】解析几何、中档题14.已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为 (结果保留π) 【答案】12π【来源】18届崇明二模6 【难度】解析几何、基础题15. 已知椭圆2221x y a +=(0a >)的焦点1F 、2F ,抛物线22y x =的焦点为F ,若123F F FF =,则a =【来源】18届崇明二模8 【难度】解析几何、中档题9. 复数1.设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______. 【答案】4【来源】18届奉贤二模7 【难度】复数、基础题2.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .【答案】3(4- 【来源】18届黄浦二模8 【难度】复数、中档题3.已知复数z 满足i 342+=z (i 为虚数单位),则=||z ____________. 【答案】5【来源】18届长嘉二模3 【难度】复数、基础题4.若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 【答案】512i -【来源】18届青浦二模2 【难度】复数、基础题5.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【答案】-1【来源】18届松江二模3 【难度】复数、基础题6.若复数z 满足1z =,则z i -的最大值是 . 【答案】2【来源】18届杨浦二模6 【难度】复数、中档题7.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为 【答案】-2【来源】18届崇明二模3 【难度】复数、基础题10. 立体几何1.已知球的俯视图面积为π,则该球的表面积为 . 【答案】4π 【来源】18届宝山 二模5 【难度】立体几何、基础题2.已知半径为2R 和R 的两个球,则大球和小球的体积比为 .【答案】8或1:8 【来源】18届奉贤 二模2 【难度】立体几何、基础题3.长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++= 4.2【答案】2【来源】18届虹口 二模4 【难度】立体几何、中档题4.如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于【答案】3π 【来源】18届虹口 二模9 【难度】立体几何、中档题5.将圆心角为32π,面积为π3的扇形围成一个圆锥的侧面,则此圆锥的体积为___________.【答案】π322【来源】18届长嘉二模7【难度】立体几何、中档题6.三棱锥ABCP-及其三视图中的主视图和左视图如下图所示,则棱PB的长为________.【答案】24【来源】18届长嘉二模8【难度】立体几何、中档题7.如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为__________.【答案】4π【来源】18届青浦二模7【难度】立体几何、中档题8.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【来源】18届徐汇二模5【难度】立体几何、基础题9.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .【答案】15π【来源】18届徐汇二模8【难度】立体几何、中档题10.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为【答案】16π【来源】18届松江二模8 【难度】立体几何、中档题11.若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的体积是 .【来源】18届杨浦二模7 【难度】立体几何、中档题12.记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 【答案】23【来源】18届金山二模6 【难度】立体几何、中档题11. 排列组合、概率统计、二项式定理1.某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).【答案】1.72 【来源】18届宝山二模3 【难度】统计、基础题2.若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 【答案】310【来源】18届宝山二模9 【难度】概率、中档题3.在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示) 【答案】1688 【来源】18届宝山二模7 【难度】排列组合、中档题4.从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 【答案】12【来源】18届虹口二模6 【难度】概率、中档题5.若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于 【答案】20 【来源】18届虹口二模8 【难度】二项式、中档题6.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.【答案】140【来源】18届黄浦二模9【难度】概率统计、中档题7.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示) 10.【答案】5 16【来源】18届黄浦二模10 【难度】概率统计、中档题8.nxx⎪⎭⎫⎝⎛+1的展开式中的第3项为常数项,则正整数=n___________.【答案】4【来源】18届长嘉二模2【难度】二项式、基础题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为____________.9.【答案】167【难度】概率统计、中档题10.代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 【答案】3【来源】18届奉贤二模10 【难度】二项式、中档题11.书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示). 【答案】24【来源】18届普陀二模4 【难度】二项式、基础题12.若321()nx x-的展开式中含有非零常数项,则正整数n 的最小值为_________.5 【答案】5【来源】18届普陀二模6 【难度】二项式、基础题13.某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示).【答案】221【难度】概率统计、中档题14.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【答案】45【来源】18届松江二模11 【难度】排列组合、压轴题15.设*n N ∈,n a 为(4)(1)n nx x +-+的展开式的各项系数之和,324c t =-,t ∈R1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为【答案】25【来源】18届松江二模12 【难度】二项式、压轴题16.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .【答案】20【来源】18届徐汇二模2 【难度】二项式、基础题 17.621(1)(1)x x++展开式中2x 的系数为______________.8、30【答案】30【来源】18届青浦二模8 【难度】二项式、中档题18.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 .【答案】151192【来源】18届青浦二模9 【难度】概率统计、中档题19.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是 . 【答案】16【来源】18届徐汇二模9 【难度】概率统计、中档题20.若的二项展开式中项的系数是,则n = . 【答案】4【来源】18届杨浦二模3 【难度】概率统计、基础题21.掷一颗均匀的骰子,出现奇数点的概率为 .()13nx +2x 542【来源】18届杨浦二模4 【难度】概率统计、基础题22.若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一个黑球的概率是【答案】11322535C C C ⋅=【来源】18届金山二模8 【难度】概率统计、中档题23.(12)nx +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍, 则正整数n = 【答案】5【来源】18届金山二模9 【难度】二项式、中档题24.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石(精确到小数点后一位数字) 【答案】169.1【来源】18届崇明二模5 【难度】统计、基础题25. 若二项式7(2)ax x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+=3【来源】18届崇明二模7 【难度】二项式、基础题26.某办公楼前有7个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在 相邻车位的概率是【答案】47【来源】18届崇明二模10 【难度】概率、中档题12. 行列式、矩阵、程序框图1.若某线性方程组对应的增广矩阵是421m m m ⎛⎫⎪⎝⎭,且此方程组有唯一一组解,则实数m的取值范围是 【答案】0D ≠,即2m ≠±【来源】18届金山二模7 【难度】矩阵、中档题2.三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 【答案】2log 3x = 【来源】18届奉贤二模6 【难度】矩阵、中档题3.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【答案】 40【来源】18届松江二模2 【难度】矩阵、基础题4.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.【答案】π【来源】18届徐汇二模7 【难度】矩阵、基础题5.若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 【答案】9【来源】18届宝山二模6 【难度】矩阵、基础题6.已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是 . 【答案】3[,],Z 88k k k ππππ-+∈【来源】18届黄浦二模7 【难度】矩阵、基础题7.已知一个关于x 、y 的二元一次方程组的增广矩阵是111012-⎛⎫⎪⎝⎭,则x y +=【答案】5【来源】18届崇明二模2【难度】矩阵、基础题8.若2log 1042x -=-,则x =【答案】4【来源】18届崇明二模4 【难度】行列式、基础题13. 数学归纳法、极限1.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅【答案】12【来源】18届松江二模6 【难度】极限、基础题2.计算:=+∞→142limn nn .【答案】12【来源】18届杨浦二模2 【难度】极限、基础题14. 参数方程、线性规划1.已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .【答案】4 【来源】18届奉贤二模4 【难度】线性规划、中档题2.设变量x 、y 满足条件⎪⎩⎪⎨⎧≤+-≤-+≥,043,04,1y x y x x 则目标函数y x z -=3的最大值为_________.【答案】4 【来源】18届长嘉二模6 【难度】线性规划、基础题3.在平面直角坐标系xOy 中,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为__________.【答案】(24-【来源】18届普陀二模8 【难度】参数方程、中档题4.设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是__________. 【答案】4(0,1][,)3+∞ 【来源】18届普陀二模10 【难度】参数方程、中档题5.若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为____________.【答案】12-【来源】18届青浦二模6 【难度】参数方程、中档题6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.【答案】-1【来源】18届徐汇二模6 【难度】线性规划、基础题7.若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为 .【答案】3【来源】18届杨浦二模5 【难度】线性规划、基础题8.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【答案】()2,1- 【来源】18届松江二模5 【难度】线性规划、基础题9.若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-,则常数k = 【答案】5k =【来源】18届松江二模9 【难度】线性规划、中档题10.已知,x y ∈R,且满足00y y y +≤-≥≥⎪⎩,若存在θ∈R 使得cos sin 10x y θθ++=成立,则点(,)P x y 构成的区域面积为【答案】6π【来源】18届崇明二模11 【难度】线性规划、中档题15.其它1.函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于 【答案】16【来源】18届虹口二模12 【难度】其它、压轴题 二、选择题1.命题、不等式)(C 充要条件. )(D 既不充分也不必要条件.【答案】 B 【来源】18届宝山二模13 【难度】命题与条件、基础题2.在给出的下列命题中,是假命题的是 答( ). (A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈, 则点A B C 、、必共线(B )若向量a b 和是平面α上的两个不平行的向量,则平面α上的任一向量c 都可以表示为(R)c a b λμμλ=+∈、,且表示方法是唯一的(C )已知平面向量OA OB OC 、、满足||||(0)OA OB OC r r ==>|=|,且0OA OB OC ++=, 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d 、、、,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【来源】18届黄浦二模16 【难度】命题与条件、压轴题3.唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
2018 年上海市嘉定区中考数学二模试卷一、选择题:(本大题共6 题,每题4 分,满分24 分)1.(4 分)下列说法中,正确的是()A.0 是正整数B.1 是素数C.是分数D.是有理数2.(4 分)关于x 的方程x2﹣mx﹣2=0 根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定3.(4 分)将直线y=2x 向下平移2 个单位,平移后的新直线一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(4 分)下列说法正确的是()A.一组数据的中位数一定等于该组数据中的某个数据B.一组数据的平均数和中位数一定不相等C.一组数据的众数可以有几个D.一组数据的方差一定大于这组数据的标准差5.(4 分)对角线互相平分且相等的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形6.(4 分)已知圆O1 的半径长为6cm,圆O2 的半径长为4cm,圆心距O1O2=3cm,那么圆O1与圆O2的位置关系是()A.外离B.外切C.相交D.内切二、填空题(本大题共12 题,每题4 分,满分48 分)7.(4 分).8.(4 分)一种细菌的半径是0.00000419 米,用科学记数法把它表示为米.9.(4 分)因式分解:x2﹣4x=.10.(4 分)不等式组的解集为.11.(4 分)在一个不透明的布袋中装有2 个白球、8 个红球和5 个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是.12.(4 分)方程的解是x=.13.(4 分)近视眼镜的度数y(度)与镜片焦距x(米)呈反比例,其函数关系式为y.如果近似眼镜镜片的焦距x=0.3 米,那么近视眼镜的度数y 为.14.(4 分)数据1、2、3、3、6 的方差是.15.(4 分)在△ABC 中,点D 是边BC 的中点,,,那么(用、表示).16.(4 分)如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF:DE=2:,EF⊥ BD,那么tan∠ADB=.17.(4 分)如图,点A、B、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为度.18.(4 分)如图,在△ ABC 中,AB=AC=5,BC=6,点D 在边AB 上,且∠ BDC=90°.如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,那么线段DD1的长为.三、简答题(本大题共7 题,满分78 分)19.(10 分)先化简,再求值:,其中x=2.20.(10 分)解方程组:21.(10 分)如图,在梯形ABCD 中,AD∥BC,∠BAD=90°,AC=AD.(1)如果∠BAC﹣∠BCA=10°,求∠D 的度数;(2)若AC=10,cot∠D,求梯形ABCD 的面积.22.(12 分)有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10 米,拱桥的最高点D到水面BC 的距离DO 为4 米,点O 是BC 的中点,如图,以点O 为原点,直线BC 为x,建立直角坐标xOy.(1)求该抛物线的表达式;(2)如果水面BC 上升3 米(即OA=3)至水面EF,点E 在点F 的左侧,求水面宽度EF 的长.23.(10 分)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B、C 重合),点N 在CD 边的延长线上,且满足∠MAN=90°,联结MN、AC,N 与边AD 交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.24.(12 分)已知平面直角坐标系xOy(如图),直线y=x+m 的经过点A(﹣4,0)和点B(n,3).(1)求m、n 的值;(2)如果抛物线y=x2+bx+c 经过点A、B,该抛物线的顶点为点P,求sin∠ABP 的值;(3)设点Q 在直线y=x+m 上,且在第一象限内,直线y=x+m 与y 轴的交点为点D,如果∠AQO=∠DOB,求点Q 的坐标.25.(14 分)在圆O 中,AO、BO 是圆O 的半径,点C 在劣弧上,OA=10,AC=12,AC∥OB,联结AB.(1)如图1,求证:AB 平分∠OAC;(2)点M 在弦AC 的延长线上,联结BM,如果△AMB 是直角三角形,请你在如图2 中画出点M 的位置并求CM 的长;(3)如图3,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E,设点D 与点C 的距离为x,△OEB 的面积为y,求y 与x 的函数关系式,并写出自变量x 的取值范围.2018 年上海市嘉定区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6 题,每题4 分,满分24 分)1.(4 分)下列说法中,正确的是()A.0 是正整数B.1 是素数C.是分数D.是有理数【解答】解:A.0 不是正整数,故本选项错误;B.1 是正整数,故本选项错误;C.是无理数,故本选项错误;D.是有理数,正确;故选:D.2.(4 分)关于x 的方程x2﹣mx﹣2=0 根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【解答】解:△=(﹣m)2﹣4×1×(﹣2)=m2+8,∵m2≥0,∴m2+8>0,即△>0,∴方程有两个不相等的实数根.故选:A.3.(4 分)将直线y=2x 向下平移2 个单位,平移后的新直线一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:k>0,b=0 函数图象过第一,三象限,将直线y=2x 向下平移2 个单位,所得直线的k=2>0,b<0,函数图象过第一,三、四象限;故选:B.4.(4 分)下列说法正确的是()A.一组数据的中位数一定等于该组数据中的某个数据B.一组数据的平均数和中位数一定不相等C.一组数据的众数可以有几个D.一组数据的方差一定大于这组数据的标准差【解答】解:A、一组数据的中位数不一定等于该组数据中的某个数据,故本选项错误;B、一组数据的平均数和众数不一定相等,故本选项错误;C、一组数据的众数可以有几个,这种说法是正确的,故本选项正确.D、一组数据的方差不一定大于这组数据的标准差,故本选项错误;故选:C.5.(4 分)对角线互相平分且相等的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形【解答】解:对角线互相平分切相等的四边形一定是矩形,故选:B.6.(4 分)已知圆O1 的半径长为6cm,圆O2 的半径长为4cm,圆心距O1O2=3cm,那么圆O1与圆O2的位置关系是()A.外离B.外切C.相交D.内切【解答】解:因为6﹣4=2,6+4=10,圆心距为3cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.二、填空题(本大题共12 题,每题4 分,满分48 分)7.(4 分) 2 .【解答】解:∵22=4,∴2.故答案为:28.(4 分)一种细菌的半径是0.00000419 米,用科学记数法把它表示为 4.19×10﹣6 米.【解答】解:0.00000419=4.19×10﹣6,故答案为:4.19×10﹣6.9.(4 分)因式分解:x2﹣4x= x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).【解答】解:解不等式x﹣1≤0,得:x≤1,解不等式3x+6>0,得:x>﹣2,∴不等式组的解集为:﹣2<x≤1,故答案为:﹣2<x≤1.11.(4 分)在一个不透明的布袋中装有2 个白球、8 个红球和5 个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是.【解答】解:∵布袋中共有15 个球,其中黄球有5 个,∴从中随机摸出一个球,摸到黄球的概率是,故答案为:.12.(4 分)方程的解是x= 1 .【解答】解:两边平方得,x+3=4,移项得:x=1.当x=1 时,x+3>0.故本题答案为:x=1.13.(4 分)近视眼镜的度数y(度)与镜片焦距x(米)呈反比例,其函数关系式为y.如果近似眼镜镜片的焦距x=0.3 米,那么近视眼镜的度数y 为 400 .【解答】解:把x=0.3 代入,y=400,故答案为:400.14.(4 分)数据1、2、3、3、6 的方差是 2.8 .【解答】解:这组数据的平均数是:(1+2+3+3+6)÷5=3,则方差S2[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(6﹣3)2]=2.8;故答案为:2.8.15.(4 分)在△ABC 中,点D 是边BC 的中点,,,那么()(用、表示).【解答】解:延长AD 到E,使得DE=AD,连接BE.∵AD=DE,∠ADC=∠BDE,CD=DB,∴△ADC≌△EDB,∴AC=BE,∠C=∠EBD,∴BE∥AC,∴,∴,∴(),故答案为().16.(4 分)如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF:DE=2:,EF⊥ BD,那么tan∠ADB= 2 .【解答】解:∵EF⊥BD,∴∠DFE=90°,设DF=2x,DEx,由勾股定理得:EF=x,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠ADB+∠CDB=90°,∠CDB+∠DEF=90°,∴∠ADB=∠DEF,∴tan∠ADB=tan∠DEF2,故答案为:2.17.(4 分)如图,点A、B、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为 120 度.【解答】解:∵弦AC 与半径OB 互相平分,∴OA=AB,∵OA=OC,∴△OAB 是等边三角形,∴∠AOB=60°,∴∠AOC=120°,故答案为120.18.(4 分)如图,在△ ABC 中,AB=AC=5,BC=6,点D 在边AB 上,且∠ BDC=90°.如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,那么线段DD1的长为.【解答】解:如图,作AE⊥BC 于E.∵AB=AC=5,BC=6,∴BE=ECBC=3,∴AE4.∵S△ABC AB•CDBC•AE,∴CD,∴AD.∵△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,∴AD=AD1,∠CAD=∠BAD1,∵AB=AC,∴△ABC∽△ADD1,∴,∴,∴DD1.故答案为.三、简答题(本大题共7 题,满分78 分)19.(10 分)先化简,再求值:,其中x=2.【解答】解:原式,当x=2 时,原式.20.(10 分)解方程组:【解答】解:由②得(2x﹣y)2=1,所以2x﹣y=1③,2x﹣y=﹣1④由①③、①④联立,得方程组:,解方程组得,解方程组得,.所以原方程组的解为:,21.(10 分)如图,在梯形ABCD 中,AD∥BC,∠BAD=90°,AC=AD.(1)如果∠BAC﹣∠BCA=10°,求∠D 的度数;(2)若AC=10,cot∠D,求梯形ABCD 的面积.【解答】解:(1)在△ABC 中,∠B=90°,则∠BAC+∠BCA=90°,又∠BAC﹣∠BCA=10°,∴∠BCA=40°,∵AD∥BC,∴∠CAD=∠BCA=40°,又∵AC=AD,∴;(2)作CH⊥AD,垂足为H,在Rt△CDH 中,cot∠D,令DH=x,CH=3x,则在Rt△ACH 中,AC2=AH2+CH2,即102=(10﹣x)2+(3x)2,解得:x=2则CH=3x=6,BC=AH=10﹣x=8,∴梯形ABCD 的面积,22.(12 分)有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10 米,拱桥的最高点D到水面BC 的距离DO 为4 米,点O 是BC 的中点,如图,以点O 为原点,直线BC 为x,建立直角坐标xOy.(1)求该抛物线的表达式;(2)如果水面BC 上升3 米(即OA=3)至水面EF,点E 在点F 的左侧,求水面宽度EF 的长.【解答】解:(1)设抛物线解析式为:y=ax2+c,由题意可得图象经过(5,0),(0,4),则,解得:a,故抛物线解析为:yx2+4;(2)由题意可得:y=3 时,3x2+4解得:x=±,故EF=5,答:水面宽度EF 的长为5m.23.(10 分)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B、C 重合),点N 在CD 边的延长线上,且满足∠MAN=90°,联结MN、AC,N 与边AD 交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.【解答】证明:(1)∵四边形ABCD 是正方形,∴AB=AD,∠BAD=90°,又∠MAN=90°,∴∠BAM=∠DAN,在△BAM 和△DAN 中,,∴△BAM≌△DAN,∴AM=AN;(2)四边形ABCD 是正方形,∴∠CAD=45°,∵∠CAD=2∠NAD,∠BAM=∠DAN,∴∠MAC=45°,∴∠MAC=∠EAN,又∠ACM=∠ANE=45°,∴△AMC∽△AEN,∴,∴AN•AM=AC•AE,∴AM2=AC•AE.24.(12 分)已知平面直角坐标系xOy(如图),直线y=x+m 的经过点A(﹣4,0)和点B(n,3).(1)求m、n 的值;(2)如果抛物线y=x2+bx+c 经过点A、B,该抛物线的顶点为点P,求sin∠ABP 的值;(3)设点Q 在直线y=x+m 上,且在第一象限内,直线y=x+m 与y 轴的交点为点D,如果∠AQO=∠DOB,求点Q 的坐标.【解答】解:(1)把A(﹣4,0)代入直线y=x+m 中得:﹣4+m=0,m=4,∴y=x+4,把B(n,3)代入y=x+4 中得:n+4=3,n=﹣1,(2)解法一:把A(﹣4,0)和点B(﹣1,3)代入y=x2+bx+c 中得:,解得:,∴y=x2+6x+8=(x+3)2﹣1,∴P(﹣3,﹣1),易得直线PB 的解析式为:y=2x+5,当y=0 时,x,∴G(,0),过B 作BM⊥x 轴于M,过G 作GH⊥AB 于H,由勾股定理得:BG,S△ABG AG•BMAB•GH,GH,∴GH,Rt△GHB 中,sin∠ABP;解法二:连接AP,得AB2=18,AP2=2,PB2=42+22=20,∴PB2=AP2+AB2,∴∠PAB=90°,∴sin∠ABP;(3)设Q(x,x+4),∵∠BOD=∠AQO,∠OBD=∠QBO,∴△BDO∽△BOQ,∴,∴BO2=BD•BQ,∴12+32,10(x+1),x=4,∴Q(4,8).25.(14 分)在圆O 中,AO、BO 是圆O 的半径,点C 在劣弧上,OA=10,AC=12,AC∥OB,联结AB.(1)如图1,求证:AB 平分∠OAC;(2)点M 在弦AC 的延长线上,联结BM,如果△AMB 是直角三角形,请你在如图2 中画出点M 的位置并求CM 的长;(3)如图3,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E,设点D 与点C 的距离为x,△OEB 的面积为y,求y 与x 的函数关系式,并写出自变量x 的取值范围.【解答】解:(1)∵OA、OB 是⊙O 的半径,∴AO=BO,∴∠OAB=∠B,∵OB∥AC,∴∠B=∠CAB,∴∠OAB=∠CAB,∴AB 平分∠OAC;(2)由题意知,∠BAM 不是直角,所以△AMB 是直角三角形只有以下两种情况:∠AMB=90°和∠ABM=90°,①当∠AMB=90°,点M 的位置如图1,过点O 作OH⊥AC,垂足为点H,∵OH 经过圆心,AC=12,∴AH=HCAC=6,在Rt△AHO 中,∵OA=10,∴OH8,∵AC∥OB,∠AMB=90°,∴∠OBM=180°﹣∠AMB=90°,∴∠OHC=∠AMB=∠OBM=90°,∴四边形OBMH 是矩形,∴BM=OH=8、OB=HM=10,∴CM=HM﹣HC=4;②当∠ABM=90°,点M 的位置如图2,由①可知,AB8、cos∠CAB,在Rt△ABM 中,cos∠CAB,∴AM=20,则CM=AM﹣AC=8,综上所述,CM 的长为4 或8;(3)如图3,过点O 作OG⊥AB 于点G,由(1)知sin∠OAG=sin∠CAB,由(2)可得sin∠CAB,∵OA=10,∴OG=2,∵AC∥OB,∴,又AE=8BE、AD=12﹣x、OB=10,∴,∴BE,∴yBE×OG2(0≤x<12).。
一、填空题(本大题共有 12 题,满分 54 分,第 1~6 题每题 4 分,第 7~ 12 题每题 5 分)考生应在答题纸的相应地址直接填写结果..函数 y=2sin 2( 2x )﹣ 1 的最小正周期是 . 1 2.设 i 为虚数单位,复数 ,则 | z| =.3.设 f ﹣ 1( x )为 的反函数,则 f ﹣ 1(1) =.4.=.5.若圆锥的侧面积是底面积的 2 倍,则其母线与轴所成角的大小是 .6.设等差数列 { a n } 的前 n 项和为 S n ,若= ,则=.7.直线 (t 为参数)与曲线 ( θ为参数)的公共点的个数是.8.已知双曲线 C 1 与双曲线 C 2 的焦点重合, C 1 的方程为 ,若 C 2 的一条渐近线的倾斜角是 C 1 的一条渐近线的倾斜角的 2 倍,则 C 2 的方程为.9.若,则满足 f (x )> 0 的 x 的取值范围是.10.某企业有甲、 乙两个研发小组, 他们研发新产品成功的概率分别为 和 .现安排甲组研发新产品 A ,乙组研发新产品 B ,设甲、乙两组的研发相互独立,则 最少有一种新产品研发成功的概率为 ..设等差数列 n } 的各项都是正数,前 n 项和为 S n ,公差为 d .若数列 11 { a 也是公差为 d 的等差数列,则 { a n } 的通项公式为 a n =.12.设 x ∈R ,用[ x] 表示不高出 x 的最大整数(如 [ 2.32] =2,[ ﹣ 4.76] =﹣5),对于给定的n ∈ N * ,定义C=,其中 x ∈[ 1, +∞),则当时,函数 f ( x ) =C的值域是.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项.考生应在答题纸的相应地址,将代表正确选项的小方格涂黑.13.命题“若 x=12﹣3x 2=0”的逆否命题是(),则 x+A.若 x≠1,则 x2﹣3x+2≠0B.若 x2﹣3x+2=0,则 x=1C.若 x2﹣ 3x+2=0,则 x≠1 D.若 x2﹣ 3x+2≠ 0,则 x≠1.如图,在正方体1 1 1 1 中,M、E是AB的三均分点,G、N是14ABCD ﹣A B C DCD 的三均分点, F、H 分别是 BC、 MN 的中点,则四棱锥 A 1﹣ EFGH 的左视图是()A.B.C.D.15.已知△ ABC 是边长为 4 的等边三角形, D、P 是△ ABC 内部两点,且满足,,则△ ADP的面积为()A. B .C.D.16.已知 f( x)是偶函数,且 f( x)在 [ 0, +∞)上是增函数,若 f (ax+1)≤ f ( x﹣ 2)在上恒建立,则实数 a 的取值范围是()A.﹣2,1]B.﹣2,0C.﹣1,1D.﹣1,0[[][][]三、解答题(本大题共有 5 题,满分 76 分)解答以下各题必定在答题纸的相应地址写出必要的步骤.17.在△ ABC 中,内角 A , B, C 的对边分别为a,b,c,已知 a﹣b=2,c=4,sinA=2sinB .(Ⅰ)求△ ABC 的面积;(Ⅱ)求 sin( 2A﹣ B).18.如图,在长方体 ABCD ﹣A 1B1C1D1中,AB=8 ,BC=5,AA 1=4,平面α截长方体获取一个矩形EFGH,且 A1E=D1F=2,AH=DG=5 .(1)求截面 EFGH 把该长方体分成的两部分体积之比;(2)求直线 AF 与平面α所成角的正弦值.19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣ 1,0)和 F2(1,0).圆 O 的方程为 x2+y2=a2.(1)求椭圆 C 的标准方程;(2)过 F1且斜率为 k(k>0)的动直线 l 与椭圆 C 交于 A 、B 两点,与圆 O 交于P、Q 两点(点 A 、P 在 x 轴上方),当 | AF2| , | BF2| ,| AB | 成等差数列时,求弦 PQ 的长.20.若是函数 y=f( x)的定义域为 R,且存在实常数 a,使得关于定义域内任意x,都有 f (x+a)=f(﹣ x)建立,则称此函数 f( x)拥有“P( a)性质”.( 1)判断函数 y=cosx 可否拥有“P(a)性质”,若拥有“P(a)性质”,求出所有 a 的值的会集;若不拥有“P(a)性质”,请说明原由;( 2)已知函数 y=f (x)拥有“P(0)性质”,且当 x≤0 时, f (x )=(x+m)2,求函数 y=f( x)在区间 [ 0,1] 上的值域;( 3)已知函数y=g(x )既拥有“P(0)性质”,又拥有“P( 2)性质”,且当﹣ 1≤x≤ 1 时,g(x )=| x| ,若函数 y=g(x)的图象与直线 y=px 有 2017 个公共点,求实数 p 的值.21.给定数列 { a n } ,若满足 a1=a(a> 0 且 a≠1),关于任意的n,m∈N*,都有a n+m=a n?a m,则称数列 { a n} 为指数数列.( 1)已知数列 { a n} ,{ b n} 的通项公式分别为,,试判断{ a n},{ b n} 可否是指数数列(需说明原由);( 2)若数列 { a n} 满足: a1=2, a2=4,a n+2=3a n+1﹣2a n,证明: { a n} 是指数数列;( 3)若数列 { a n} 是指数数列,(t∈N*),证明:数列{ a n}中任意三项都不能够构成等差数列.2017 年上海市嘉定区高考数学二模试卷参照答案与试题分析一、填空题(本大题共有12 题,满分 54 分,第 1~6 题每题 4 分,第 7~ 12 题每题 5 分)考生应在答题纸的相应地址直接填写结果..函数y=2sin 2( 2x)﹣ 1 的最小正周期是.1【考点】 H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,2【解答】解:函数 y=2sin (2x)﹣ 1,∴最小正周期 T=.故答案为2.设 i 为虚数单位,复数,则| z| =1.【考点】 A8:复数求模.【分析】利用复数的运算法规、模的计算公式即可得出.【解答】解:复数===﹣ i,则 | z| =1.故答案为: 1..设f ﹣1( x)为的反函数,则 f﹣1(1) = 1 .3【考点】 4R:反函数.【分析】依照反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数 f﹣1( x),反函数的性质,反函数的定义域是原函数的值域,即.可得: x=1,∴ f ﹣ 1(x )=1.故答案为 1.4.= 3 .【考点】 8J :数列的极限.【分析】 经过分子分母同除 3n +1,利用数列极限的运算法规求解即可.【解答】 解:= = =3.故答案为: 3.5.若圆锥的侧面积是底面积的 2 倍,则其母线与轴所成角的大小是30° .【考点】 MI :直线与平面所成的角.【分析】 依照圆锥的底面积公式和侧面积公式,结合已知可得l=2R ,进而解母线与底面所成角,尔后求解母线与轴所成角即可.【解答】 解:设圆锥的底面半径为 R ,母线长为 l ,则:2其底面积: S底面积 =πR,其侧面积: S 侧面积 = 2π Rl= π,Rl∵圆锥的侧面积是其底面积的2 倍,∴ l=2R ,故该圆锥的母线与底面所成的角 θ有,cos θ== ,∴ θ=60,°母线与轴所成角的大小是:30°.故答案为: 30°.6.设等差数列 { a n } 的前 n 项和为 S n,若=,则=.【考点】 85:等差数列的前 n 项和.【分析】=,可得 3( a14d)=5( a12d),化为: a1=d.再利用等差数列的++求和公式即可得出.【解答】解:∵=,∴ 3(a1+4d)=5(a1+2d),化为:a1=d.则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是1.【考点】 QK:圆的参数方程; QJ:直线的参数方程.【分析】依照题意,将直线的参数方程变形为一般方程,再将曲线的参数方程变形为一般方程,分析可得该曲线为圆,且圆心坐标为(3, 5),半径 r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有 1 个公共点,即可得答案.【解答】解:依照题意,直线的参数方程为,则其一般方程为x+y﹣6=0,曲线的参数方程为,则其一般方程为(x﹣3)2+( y﹣ 5)2=2,该曲线为圆,且圆心坐标为(3,5),半径 r=,圆心到直线 x+y﹣6=0 的距离 d== =r,则圆(x﹣3)2+(y﹣5)2=2 与直线x+y﹣6=0 相切,有1 个公共点;故答案为: 1.8.已知双曲线C1与双曲线 C2的焦点重合, C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的 2 倍,则C2的方程为.【考点】 KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,尔后求解即可.【解答】解:双曲线 C1与双曲线 C2的焦点重合, C1的方程为,焦点坐标(± 2, 0).双曲线 C1的一条渐近线为: y=,倾斜角为30°,C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的 2 倍,可得 C2的渐近线y=.可得, c=2,解得 a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】 7E:其他不等式的解法.【分析】由已知获取关于x 的不等式,化为根式不等式,尔后化为整式不等式解之.【解答】解:由 f(x )>0 获取即,因此,解得x>1;故x 的取值范围为(1,+∞);故答案为:( 1, +∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品 A ,乙组研发新产品B,设甲、乙两组的研发相互独立,则最少有一种新产品研发成功的概率为.【考点】 C9:相互独立事件的概率乘法公式.【分析】利用对峙事件的概率公式,计算即可,【解答】解:设最少有一种新产品研发成功的事件为事件 A 且事件 B 为事件 A 的对峙事件,则事件 B 为一种新产品都没有成功,由于甲乙研发新产品成功的概率分别为和.则 P(B)=(1﹣)(1﹣)= ,再依照对峙事件的概率之间的公式可得 P(A )=1﹣P(B)= ,故最少有一种新产品研发成功的概率.故答案为.n}的各项都是正数,前n项和为S n,公差为d.若数列11.设等差数列 { a也是公差为 d 的等差数列,则 { a n} 的通项公式为 a n=.【考点】 84:等差数列的通项公式.【分析】由题意可得: S n=na1d.a n>0.=+(n﹣1)d,化简 n+≠1时可得: a1 2 2d﹣d.分别令 n=2,3,解出即可得出.=(n﹣1)d +【解答】解:由题意可得:S n1d. a n>0.=na +n 1n﹣1)2 22(n﹣1) d.=+( n﹣ 1) d,可得: S =a +( d +∴na1+d=a1+( n﹣ 1)2d2+2(n﹣1)d.22d dn≠1 时可得: a1=( n﹣ 1)d +﹣.分别令 n=2,3,可得: a122d﹣d,a12 2d﹣ d.=d +=2d +解得a1,d= .=∴ a n=+(﹣).n 1 =故答案为:.12.设 x ∈R,用x表示不高出 x 的最大整数(如[=2,﹣ 4.76 =﹣5),对[]][]于给定的 n∈ N*,定义 C =,其中 x ∈1,∞),则当[+时,函数 f( x) =C的值域是.【考点】57:函数与方程的综合运用.【分析】分类谈论,依照定义化简C x n,求出 C x10 的表达式,再利用函数的单调性求出 C x10 的值域.【解答】解:当 x∈ [ , 2)时, [ x] =1,∴ f (x)=C= ,当 x∈[,2)时, f (x)是减函数,∴ f( x)∈( 5,);当 x∈[ 2, 3)时, [ x] =2,∴ f (x) =C=,当 x∈[ 2, 3)时, f (x)是减函数,∴ f(x)∈( 15, 45] ;∴当时,函数 f (x)=C的值域是,故答案为:.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项.考生应在答题纸的相应地址,将代表正确选项的小方格涂黑..命题“若x=1,则 x 2﹣3x+2=0”的逆否命题是()13A.若 x ≠ ,则x2﹣3x+2≠0 B.若 x2﹣3x+2=0,则 x=1 1C.若 x2﹣ 3x+2=0,则 x≠1 D.若 x2﹣ 3x+2≠ 0,则 x≠1【考点】 25:四种命题间的逆否关系.【分析】依照逆否命题的定义,我们易求出命题的逆否命题【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x2﹣3x 2+≠0,则 x≠1应选: D14.如图,在正方体ABCD ﹣A 1B1C1D1中, M 、E 是 AB 的三均分点, G、N 是CD 的三均分点, F、H 分别是 BC、 MN 的中点,则四棱锥 A 1﹣ EFGH 的左视图是()A.B.C.D.【考点】 L7:简单空间图形的三视图.【分析】确定 5 个极点在面 DCC1D1上的投影,即可得出结论.【解答】解: A1在面 DCC1D1上的投影为点 D1,E 在面 DCC1D1的投影为点 G,F 在面 DCC1D1上的投影为点 C, H 在面 DCC1D1上的投影为点 N,因此侧视图为选项 C 的图形.应选 C15.已知△ ABC是边长为 4 的等边三角形,D、P 是△ ABC内部两点,且满足,,则△ ADP的面积为()A. B .C.D.【考点】 9V:向量在几何中的应用.【分析】以 A 为原点,以 BC 的垂直均分线为y 轴,建立直角坐标系.由于等边三角形△的边长为4,可得 B,C 的坐标,再利用向量的坐标运算和数乘运算可得,,利用△ APD的面积公式即可得出.【解答】解:以 A 为原点,以 BC 的垂直均分线为y 轴,建立直角坐标系.∵等边三角形△的边长为4,∴B(﹣ 2,﹣2),C(2,﹣2),由足=[(﹣ 2,﹣2)(2,﹣2)=( 0,﹣),+]=(0,﹣)+ (4,0)=(,﹣),∴△ ADP 的面积为 S= ||?| |=×× = ,应选: A.16.已知 f( x)是偶函数,且f( x)在 [ 0, +∞)上是增函数,若 f (ax+1)≤ f ( x﹣ 2)在上恒建立,则实数 a 的取值范围是()A.[ ﹣2,1]B.[ ﹣2,0]C.[ ﹣1,1]D.[ ﹣1,0]【考点】 3N:奇偶性与单调性的综合.【分析】由于偶函数在对称区间上单调性相反,依照已知中f(x)是偶函数,且f(x )在( 0, +∞)上是增函数,易得f( x)在(﹣∞, 0)上为减函数,又由若时,不等式 f(ax 1)≤f( x﹣ 2)恒建立,结合函数恒建立的条+件,求出时 f (x﹣2)的最小值,进而能够构造一个关于 a 的不等式,解不等式即可获取实数 a 的取值范围.【解答】解:∵ f( x)是偶函数,且 f (x)在( 0, +∞)上是增函数,∴ f(x )在(﹣∞, 0)上为减函数,当时, x﹣2∈[ ﹣,﹣1],故 f( x﹣ 2)≥ f(﹣ 1)=f(1),若时,不等式 f (ax+1)≤ f (x﹣2)恒建立,则当时, | ax+1| ≤ 1 恒建立,∴﹣ 1≤ax+1≤ 1,∴≤a≤0,∴﹣ 2≤a≤ 0,应选 B.三、解答题(本大题共有 5 题,满分 76 分)解答以下各题必定在答题纸的相应地址写出必要的步骤.17.在△ ABC 中,内角 A , B, C 的对边分别为a,b,c,已知 a﹣b=2,c=4,sinA=2sinB .(Ⅰ)求△ ABC 的面积;(Ⅱ)求 sin( 2A﹣ B).【考点】 GL:三角函数中的恒等变换应用.【分析】解法一:(I)由已知及正弦定理可求 a,b 的值,由余弦定理可求 cosB,进而可求 sinB,即可由三角形面积公式求解.(II)由余弦定理可得 cosA,进而可求 sinA,sin2A,cos2A,由两角差的正弦公式即可求 sin( 2A﹣ B)的值.解法二:(I)由已知及正弦定理可求 a,b 的值,又 c=4,可知△ ABC 为等腰三角形,作 BD ⊥AC 于 D,可求 BD==,即可求三角形面积.(II)由余弦定理可得 cosB,即可求 sinB,由( I)知 A=C ? 2A ﹣ B=π﹣ 2B.进而 sin( 2A﹣ B)=sin(π﹣2B)=sin2B,代入即可求值.【解答】解:解法一:(I)由 sinA=2sinB? a=2b.又∵ a﹣ b=2,∴ a=4,b=2.cosB===.sinB===.∴ S△ABC = acsinB==.( II) cosA===.sinA===.sin2A=2sinAcosA=2 ×.cos2A=cos2 A ﹣sin2A=﹣.∴sin(2A ﹣B) =sin2AcosB﹣cos2AsinB==.解法二:(I)由 sinA=2sinB? a=2b.又∵ a﹣ b=2,∴a=4,b=2.又 c=4,可知△ ABC 为等腰三角形.作 BD⊥AC于 D,则BD===.∴S△ABC==.( II) cosB===.sinB===.由( I)知 A=C ? 2A ﹣B=π﹣ 2B.∴sin(2A ﹣B) =sin(π﹣2B)=sin2B =2sinBcosB=2××=.18.如图,在长方体 ABCD ﹣A 1B1C1D1中,AB=8 ,BC=5,AA 1=4,平面α截长方体获取一个矩形EFGH,且 A1E=D1F=2,AH=DG=5 .(1)求截面 EFGH 把该长方体分成的两部分体积之比;(2)求直线 AF 与平面α所成角的正弦值.【考点】 MI :直与平面所成的角;LF:棱柱、棱、棱台的体.【分析】(1)由意,平面α把方体分成两个高 5 的直四棱柱,化求解体推出果即可.(2)解法一:作 AM ⊥EH,垂足 M ,明 HG⊥AM ,推出 AM ⊥平面 EFGH.通算求出 AM=4 .AF ,直 AF 与平面α所成角θ,求解即可.解法二:以 DA 、DC、 DD1所在直分 x 、 y 、 z 建立空直角坐系,求出平面α一个法向量,利用直 AF 与平面α所成角θ,通空向量的数量求解即可.【解答】(本分,第 1 小分,第 2 小分 8 分)解:( 1)由意,平面α把方体分成两个高 5 的直四棱柱,,⋯,⋯因此,.⋯( 2)解法一:作 AM ⊥EH,垂足 M ,由意, HG⊥平面 ABB 1A 1,故 HG⊥AM ,因此AM ⊥平面EFGH.⋯因,,因此S△AEH =10,)因 EH=5,因此 AM=4 .⋯又,⋯直 AF 与平面α所成角θ,因此,直 AF 与平面α所成角的正弦..⋯⋯解法二:以DA 、DC、 DD1所在直分x 、 y、 z 建立空直角坐系,A(5,0,0),H(5,5,0),E(5,2,4),F(0,2,4),⋯故,,⋯α,即平面一个法向量因此可取.⋯直 AF 与平面α所成角θ,.⋯因此,直 AF 与平面α所成角的正弦.⋯19.如,已知 C:( a> b> 0)点,两个焦点 F1(1,0)和 F2(1,0). O 的方程 x2 y22.+=a(1)求 C 的准方程;(2) F1且斜率 k(k>0)的直 l 与 C 交于 A 、B 两点,与 O 交于 P、Q 两点(点 A 、P 在 x 上方),当 | AF2| , | BF2| ,| AB | 成等差数列,求弦 PQ 的.【考点】 KH :直与曲的合;K3:的准方程; KL :直与的地址关系.【分析】(1)求出 c=1, C 的方程,将点代入,解得 a2=4,尔后求解 C 的方程.(2)由定, | AF1|+| AF2| =4,| BF1|+| BF2 | =4,通 | AF 2| ,| BF2| ,| AB |成等差数列,推出.B(x0,y0),通解得 B,尔后求解直方程,推出弦 PQ 的即可.【解答】(本分,第 1 小分,第 2 小分 8 分)解:( 1)由意,c=1,⋯C 的方程,将点代入,解得 a2=4(舍去),⋯因此, C 的方程.⋯(2)由定,|AF1|+| AF2|=4,|BF1|+| BF2|=4,两式相加,得 | AB|+| AF2|+| BF2| =8,因 | AF2| ,| BF2| ,| AB| 成等差数列,因此 | AB|+| AF2| =2| BF2| ,于是 3| BF2| =8,即.⋯B(x0, y0),由解得,⋯(或,,解得,,因此).因此,,直 l 的方程,即,⋯O 的方程 x2+y2,心O 到直l的距离,⋯=4此,弦 PQ 的.⋯20.若是函数 y=f( x)的定域 R,且存在常数 a,使得于定域内任意x,都有 f (x+a)=f( x)建立,称此函数 f( x)拥有“P( a)性”.( 1)判断函数 y=cosx 可否拥有“P(a)性”,若拥有“P(a)性”,求出所有a 的的会集;若不拥有“P(a)性”,明原由;(2)已知函数 y=f (x)拥有“P(0)性”,且当 x≤0 , f (x )=(x +m)2,求函数 y=f( x)在区 [ 0,1] 上的域;(3)已知函数 y=g(x )既拥有“P(0)性”,又拥有“P( 2)性”,且当 1≤x≤ 1 ,g(x )=| x| ,若函数 y=g(x)的象与直 y=px 有 2017 个公共点,求数 p 的.【考点】 57:函数与方程的合运用.【分析】(1)依照意可知 cos(x+a) =cos( x) =cosx,故而 a=2kπ, k∈ Z;( 2)由新定可推出 f (x)偶函数,进而求出 f( x)在 [ 0, 1] 上的分析式, m 与[ 0, 1] 的关系判断 f (x)的性得出 f(x)的最;( 3)依照新定可知 g(x)周期 2 的偶函数,作出 g( x)的函数象,依照函数象得出 p 的.【解答】解:(1)假 y=cosx 拥有“P(a)性”, cos( x+a)=cos( x)=cosx恒建立,∵cos( x+2kπ)=cosx,∴函数 y=cosx 拥有“P(a)性”,且所有 a 的的会集 { a| a=2kπ,k∈Z} .( 2)由于函数 y=f (x)拥有“P(0)性质”,因此 f( x) =f(﹣ x)恒建立,∴ y=f( x)是偶函数.设 0≤x≤1,则﹣ x≤0,∴ f(x)=f (﹣ x)=(﹣ x+m)2=( x﹣ m)2.①当m≤ 0 时,函数 y=f (x)在 [ 0,1] 上递加,值域为 [ m2,( 1﹣ m)2] .②当时,函数y=f( x)在 [ 0, m] 上递减,在[ m,1] 上递加,y min=f( m)=0,,值域为 [ 0,(1﹣m)2].③当时, y min =f(m) =0,,值域为[ 0,m2 ] .④ m>1 时,函数 y=f( x)在 [ 0, 1] 上递减,值域为 [ (1﹣m)2,m2] .(3)∵ y=g(x )既拥有“P( 0)性质”,即 g(x )=g(﹣ x),∴函数 y=g ( x)偶函数,又 y=g(x)既拥有“P( 2)性质”,即 g(x+2)=g(﹣ x)=g(x),∴函数 y=g(x)是以 2 为周期的函数.作出函数 y=g(x)的图象以下列图:由图象可知,当 p=0 时,函数 y=g(x)与直线 y=px 交于点( 2k,0)(k∈Z),即有无数个交点,不合题意.当 p>0 时,在区间 [ 0,2016] 上,函数 y=g(x)有 1008 个周期,要使函数 y=g ( x)的图象与直线 y=px 有 2017 个交点,则直线在每个周期内都有 2 个交点,且第2017 个交点恰好为,因此.同理,当 p<0 时,.综上,.21.定数列 { a n } ,若足 a1=a(a> 0 且 a≠1),于任意的n,m∈N*,都有a n+m=a n?a m,称数列 { a n} 指数数列.( 1)已知数列 { a n} ,{ b n} 的通公式分,,判断{ a n},{ b n} 可否是指数数列(需明原由);( 2)若数列 { a n} 足: a1=2, a2=4,a n+2=3a n+12a n,明: { a n} 是指数数列;( 3)若数列 { a n} 是指数数列,(t∈N*),明:数列{ a n}中任意三都不能够构成等差数列.【考点】 8B:数列的用.【分析】(1)利用指数数列的定,判断即可;( 2)求出 { a n } 的通公式,即可明:{ a n} 是指数数列;( 3)利用反法行明即可.【解答】( 1)解:于数列{ a n} ,因a3 =a1+2≠a1?a2,因此 { a n} 不是指数数列.⋯于数列 { b n} ,任意n,m∈ N*,因,因此 { b n} 是指数数列.⋯( 2)明:由意, a n+2 a n+1( n+1 a n),=2a因此数列 { a n+1 a n} 是首 a2 a1,公比2的等比数列.⋯=2所以.所以,=,即 { a n} 的通公式(n∈N*).⋯因此,故 {a n是指数数列.⋯}( 3)明:因数列{a n是指数数列,故于任意的n,m∈N*,有 a n+m n m,}=a ?a令 m=1,,因此 { a n} 是首,公比的等比数列,因此,.⋯假数列 { a n} 中存在三 a u,a v,a w构成等差数列,不如u<v<w,由2a v=a u+a w,得,因此 2(t+4)w﹣v( t+3)v﹣u=( t+4)w﹣u+(t +3)w﹣u,⋯当 t 偶数, 2(t+4)w﹣v(t+3)v﹣u是偶数,而( t+4)w﹣u是偶数,(t+3)w﹣u是奇数,故 2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能够建立;⋯当 t 奇数, 2(t+4)w﹣v(t+3)v﹣u是偶数,而( t+4)w﹣u是奇数,(t+3)w﹣u是偶数,故 2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t +3)w﹣u也不能够建立.⋯因此,任意 t∈N*,2(t+4)w﹣v( t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能够建立,即数列 { a n } 的任意三都不行构成等差数列.⋯2017年 5月 22日。
2018年高考数学二模试卷(理科)带答案精讲2018年高考数学二模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.若集合 $A=\{x\mid x^2-mx+2>0\}$ 的值域为(),其中 $m$ 的取值范围是()。
A。
$(2,+\infty)$ B。
$(-\infty,-1)$ C。
$-1$ 或 $2$ D。
$2$ 或 $-1$2.设等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,若$a_4=9$,$a_6=11$,则 $S_9$ 等于()。
A。
$180$ B。
$90$ C。
$72$ D。
$10$3.在样本的频率分布直方图中,共有 $5$ 个长方形,若中间一个小长方形的面积等于其它 $4$ 个小长方形的面积和,且样本容量为 $100$,则正中间的一组的频数为()。
A。
$80$ B。
$0.8$ C。
$20$ D。
$0.2$4.若满足条件 $AC>BC$,其中 $\triangle ABC$ 的周长为$2$,则 $AB$ 的取值范围是()。
A。
$(1,\infty)$ B。
$(-\infty,1)$ ___(1,2)$5.复数 $2+i$ 与复数$\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i$ 在复平面上的对应点分别是 $A$、$B$,则 $\angle AOB$ 等于()。
A。
$30^\circ$ B。
$45^\circ$ C。
$60^\circ$ D。
$90^\circ$6.已知 $x,y$ 满足约束条件 $x+y\geqslant1$,$x\geqslant0$,$y\geqslant0$,则 $xy$ 的最小值是()。
A。
$0$ B。
$\dfrac{1}{4}$ C。
$\dfrac{1}{3}$ D。
$\dfrac{1}{2}$7.2011 年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共 $$ 个号码。
2018年上海市嘉定区高考数学第二次模拟试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.函数y=2sin 2(2x )﹣1的最小正周期是 .2.设i 为虚数单位,复数,则|z|= .3.设f ﹣1(x )为的反函数,则f ﹣1(1)= .4.= .5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是 .6.设等差数列{a n }的前n 项和为S n ,若=,则= .7.直线(t 为参数)与曲线(θ为参数)的公共点的个数是 .8.已知双曲线C 1与双曲线C 2的焦点重合,C 1的方程为,若C 2的一条渐近线的倾斜角是C 1的一条渐近线的倾斜角的2倍,则C 2的方程为 .9.若,则满足f (x )>0的x 的取值范围是 .10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为 .11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n = .12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣4.76]=﹣5),对于给定的n ∈N *,定义C=,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1 D.若x2﹣3x+2≠0,则x≠114.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A. B. C.D.15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A. B. C. D.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).18.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣1,0)和F2(1,0).圆O的方程为x2+y2=a2.(1)求椭圆C的标准方程;(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.20.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P(a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x ≤1时,g (x )=|x|,若函数y=g (x )的图象与直线y=px 有2017个公共点,求实数p 的值.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列.(1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列.参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为2.设i为虚数单位,复数,则|z|= 1 .【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.3.设f﹣1(x)为的反函数,则f﹣1(1)= 1 .【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.4. = 3 .【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解: ===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R,进而解母线与底面所成角,然后求解母线与轴所成角即可.【解答】解:设圆锥的底面半径为R,母线长为l,则:=πR2,其底面积:S底面积=2πRl=πRl,其侧面积:S侧面积∵圆锥的侧面积是其底面积的2倍,∴l=2R,故该圆锥的母线与底面所成的角θ有,cosθ==,∴θ=60°,母线与轴所成角的大小是:30°.故答案为:30°.6.设等差数列{a n }的前n 项和为S n ,若=,则= .【考点】85:等差数列的前n 项和.【分析】=,可得3(a 1+4d )=5(a 1+2d ),化为:a 1=d .再利用等差数列的求和公式即可得出.【解答】解:∵=,∴3(a 1+4d )=5(a 1+2d ),化为:a 1=d .则==.故答案为:. 7.直线(t 为参数)与曲线(θ为参数)的公共点的个数是 1 .【考点】QK :圆的参数方程;QJ :直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y ﹣6=0,曲线的参数方程为,则其普通方程为(x ﹣3)2+(y ﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y ﹣6=0的距离d===r ,则圆(x ﹣3)2+(y ﹣5)2=2与直线x+y ﹣6=0相切,有1个公共点; 故答案为:1.8.已知双曲线C 1与双曲线C 2的焦点重合,C 1的方程为,若C 2的一条渐近线的倾斜角是C 1的一条渐近线的倾斜角的2倍,则C 2的方程为 .【考点】KC :双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C 1与双曲线C 2的焦点重合,C 1的方程为,焦点坐标(±2,0).双曲线C 1的一条渐近线为:y=,倾斜角为30°,C 2的一条渐近线的倾斜角是C 1的一条渐近线的倾斜角的2倍,可得C 2的渐近线y=.可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f (x )>0的x 的取值范围是 (1,+∞) .【考点】7E :其他不等式的解法.【分析】由已知得到关于x 的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f (x )>0得到即,所以,解得x >1;故x 的取值范围为(1,+∞); 故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式. 【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为和.则P (B )=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P (A )=1﹣P (B )=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n = .【考点】84:等差数列的通项公式.【分析】由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,化简n≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d .分别令n=2,3,解出即可得出.【解答】解:由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,可得:S n =a 1+(n ﹣1)2d 2+2(n ﹣1)d .∴na 1+d=a 1+(n ﹣1)2d 2+2(n ﹣1)d .n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d .分别令n=2,3,可得:a 1=d 2+2d ﹣d ,a 1=2d 2+2d ﹣d .解得a 1=,d=.∴a n =+(n ﹣1)=.故答案为:.12.设x∈R,用[x]表示不超过x的最大整数(如[2.32]=2,[﹣4.76]=﹣5),对于给定的n∈N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简C xn ,求出C x10的表达式,再利用函数的单调性求出C x10的值域.【解答】解:当x∈[,2)时,[x]=1,∴f(x)=C=,当x∈[,2)时,f(x)是减函数,∴f(x)∈(5,);当x∈[2,3)时,[x]=2,∴f(x)=C=,当x∈[2,3)时,f(x)是减函数,∴f(x)∈(15,45];∴当时,函数f(x)=C的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1 D.若x2﹣3x+2≠0,则x≠1【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x2﹣3x+2≠0,则x≠1故选:D14.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A. B. C.D.【考点】L7:简单空间图形的三视图.【分析】确定5个顶点在面DCC1D1上的投影,即可得出结论.【解答】解:A1在面DCC1D1上的投影为点D1,E在面DCC1D1的投影为点G,F在面DCC1D1上的投影为点C,H在面DCC1D1上的投影为点N,因此侧视图为选项C的图形.故选C15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A. B. C. D.【考点】9V:向量在几何中的应用.【分析】以A为原点,以BC的垂直平分线为y轴,建立直角坐标系.由于等边三角形△的边长为4,可得B,C的坐标,再利用向量的坐标运算和数乘运算可得,,利用△APD的面积公式即可得出.【解答】解:以A为原点,以BC的垂直平分线为y轴,建立直角坐标系.∵等边三角形△的边长为4,∴B(﹣2,﹣2),C(2,﹣2),由足= [(﹣2,﹣2)+(2,﹣2)]=(0,﹣),=(0,﹣)+(4,0)=(,﹣),∴△ADP的面积为S=||•||=××=,故选:A.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]【考点】3N:奇偶性与单调性的综合.【分析】因为偶函数在对称区间上单调性相反,根据已知中f(x)是偶函数,且f(x)在(0,+∞)上是增函数,易得f(x)在(﹣∞,0)上为减函数,又由若时,不等式f(ax+1)≤f(x﹣2)恒成立,结合函数恒成立的条件,求出时f(x﹣2)的最小值,从而可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围.【解答】解:∵f(x)是偶函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上为减函数,当时,x﹣2∈[﹣,﹣1],故f(x﹣2)≥f(﹣1)=f(1),若时,不等式f(ax+1)≤f(x﹣2)恒成立,则当时,|ax+1|≤1恒成立,∴﹣1≤ax+1≤1,∴≤a≤0,∴﹣2≤a≤0,故选B.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).【考点】GL:三角函数中的恒等变换应用.【分析】解法一:(I)由已知及正弦定理可求a,b的值,由余弦定理可求cosB,从而可求sinB,即可由三角形面积公式求解.(II)由余弦定理可得cosA,从而可求sinA,sin2A,cos2A,由两角差的正弦公式即可求sin(2A﹣B)的值.解法二:(I)由已知及正弦定理可求a,b的值,又c=4,可知△ABC为等腰三角形,作BD⊥AC于D,可求BD==,即可求三角形面积.(II)由余弦定理可得cosB,即可求sinB,由(I)知A=C⇒2A﹣B=π﹣2B.从而sin(2A﹣B)=sin(π﹣2B)=sin2B,代入即可求值.【解答】解:解法一:(I)由sinA=2sinB⇒a=2b.又∵a﹣b=2,∴a=4,b=2.cosB===.sinB===.=acsinB==.∴S△ABC(II)cosA===.sinA===.sin2A=2sinAcosA=2×.cos2A=cos2A﹣sin2A=﹣.∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.解法二:(I )由sinA=2sinB ⇒a=2b . 又∵a ﹣b=2, ∴a=4,b=2.又c=4,可知△ABC 为等腰三角形.作BD ⊥AC 于D ,则BD===.∴S △ABC ==.(II )cosB===.sinB===.由(I )知A=C ⇒2A ﹣B=π﹣2B . ∴sin (2A ﹣B )=sin (π﹣2B )=sin2B =2sinBcosB=2××=.18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=8,BC=5,AA 1=4,平面α截长方体得到一个矩形EFGH ,且A 1E=D 1F=2,AH=DG=5.(1)求截面EFGH 把该长方体分成的两部分体积之比; (2)求直线AF 与平面α所成角的正弦值.【考点】MI :直线与平面所成的角;LF :棱柱、棱锥、棱台的体积.【分析】(1)由题意,平面α把长方体分成两个高为5的直四棱柱,转化求解体积推出结果即可.(2)解法一:作AM ⊥EH ,垂足为M ,证明HG ⊥AM ,推出AM ⊥平面EFGH .通过计算求出AM=4.AF,设直线AF与平面α所成角为θ,求解即可.解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,求出平面α一个法向量,利用直线AF与平面α所成角为θ,通过空间向量的数量积求解即可.【解答】(本题满分,第1小题满分,第2小题满分8分)解:(1)由题意,平面α把长方体分成两个高为5的直四棱柱,,,所以,.(2)解法一:作AM⊥EH,垂足为M,由题意,HG⊥平面ABB1A1,故HG⊥AM,所以AM⊥平面EFGH.…因为,,所以S△AEH=10,)因为EH=5,所以AM=4.又,设直线AF与平面α所成角为θ,则.所以,直线AF与平面α所成角的正弦值为.解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(5,0,0),H(5,5,0),E(5,2,4),F(0,2,4),…故,,设平面α一个法向量为,则即所以可取.设直线AF与平面α所成角为θ,则.所以,直线AF与平面α所成角的正弦值为.19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣1,0)和F2(1,0).圆O的方程为x2+y2=a2.(1)求椭圆C的标准方程;(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程;KL:直线与椭圆的位置关系.【分析】(1)求出c=1,设椭圆C的方程为,将点代入,解得a 2=4,然后求解椭圆C 的方程.(2)由椭圆定义,|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,通过|AF 2|,|BF 2|,|AB|成等差数列,推出. 设B (x 0,y 0),通过解得B ,然后求解直线方程,推出弦PQ 的长即可.【解答】(本题满分,第1小题满分,第2小题满分8分) 解:(1)由题意,c=1,设椭圆C 的方程为,将点代入,解得a 2=4(舍去),…所以,椭圆C 的方程为. (2)由椭圆定义,|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,两式相加,得|AB|+|AF 2|+|BF 2|=8,因为|AF 2|,|BF 2|,|AB|成等差数列,所以|AB|+|AF 2|=2|BF 2|,于是3|BF 2|=8,即.设B (x 0,y 0),由解得,(或设,则,解得,,所以).所以,,直线l 的方程为,即,圆O 的方程为x 2+y 2=4,圆心O 到直线l 的距离,此时,弦PQ 的长.20.如果函数y=f (x )的定义域为R ,且存在实常数a ,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P(a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.【考点】57:函数与方程的综合运用.【分析】(1)根据题意可知cos(x+a)=cos(﹣x)=cosx,故而a=2kπ,k∈Z;(2)由新定义可推出f(x)为偶函数,从而求出f(x)在[0,1]上的解析式,讨论m与[0,1]的关系判断f(x)的单调性得出f(x)的最值;(3)根据新定义可知g(x)为周期为2的偶函数,作出g(x)的函数图象,根据函数图象得出p的值.【解答】解:(1)假设y=cosx具有“P(a)性质”,则cos(x+a)=cos(﹣x)=cosx恒成立,∵cos(x+2kπ)=cosx,∴函数y=cosx具有“P(a)性质”,且所有a的值的集合为{a|a=2kπ,k∈Z}.(2)因为函数y=f(x)具有“P(0)性质”,所以f(x)=f(﹣x)恒成立,∴y=f(x)是偶函数.设0≤x≤1,则﹣x≤0,∴f(x)=f(﹣x)=(﹣x+m)2=(x﹣m)2.①当m≤0时,函数y=f(x)在[0,1]上递增,值域为[m2,(1﹣m)2].②当时,函数y=f(x)在[0,m]上递减,在[m,1]上递增,=f(m)=0,,值域为[0,(1﹣m)2].ymin=f(m)=0,,值域为[0,m2].③当时,ymin④m>1时,函数y=f(x)在[0,1]上递减,值域为[(1﹣m)2,m2].(3)∵y=g(x)既具有“P(0)性质”,即g(x)=g(﹣x),∴函数y=g(x)偶函数,又y=g (x )既具有“P (2)性质”,即g (x+2)=g (﹣x )=g (x ), ∴函数y=g (x )是以2为周期的函数. 作出函数y=g (x )的图象如图所示:由图象可知,当p=0时,函数y=g (x )与直线y=px 交于点(2k ,0)(k ∈Z ),即有无数个交点,不合题意.当p >0时,在区间[0,2016]上,函数y=g (x )有1008个周期,要使函数y=g (x )的图象与直线y=px 有2017个交点,则直线在每个周期内都有2个交点,且第2017个交点恰好为,所以.同理,当p <0时,.综上,.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列.(1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列. 【考点】8B :数列的应用.【分析】(1)利用指数数列的定义,判断即可;(2)求出{a n }的通项公式为,即可证明:{a n }是指数数列;(3)利用反证法进行证明即可.【解答】(1)解:对于数列{an },因为a3=a1+2≠a1•a2,所以{an}不是指数数列.对于数列{bn},对任意n,m∈N*,因为,所以{bn}是指数数列.…(2)证明:由题意,an+2﹣an+1=2(an+1﹣an),所以数列{an+1﹣an}是首项为a2﹣a1=2,公比为2的等比数列.所以.所以,=,即{an}的通项公式为(n∈N*).所以,故{an}是指数数列.(3)证明:因为数列{an }是指数数列,故对于任意的n,m∈N*,有an+m=an•am,令m=1,则,所以{an}是首项为,公比为的等比数列,所以,.假设数列{an }中存在三项au,av,aw构成等差数列,不妨设u<v<w,则由2av =au+aw,得,所以2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u,当t为偶数时,2(t+4)w﹣v(t+3)v﹣u是偶数,而(t+4)w﹣u是偶数,(t+3)w﹣u 是奇数,故2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能成立;…当t为奇数时,2(t+4)w﹣v(t+3)v﹣u是偶数,而(t+4)w﹣u是奇数,(t+3)w﹣u 是偶数,故2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u也不能成立.…所以,对任意t∈N*,2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能成立,即数列{an}的任意三项都不成构成等差数列.。