2019届北师大版(文科数学) §10.3 抛物线及其性质 单元测试
- 格式:docx
- 大小:267.80 KB
- 文档页数:13
2019届北师大版(文科数学) 导数及其应用 (2) 单元测试一、选择题1.函数f (x )=e x -x ,x ∈R 的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(-∞,1)D .(1,+∞)解析:选A.由题意知,f ′(x )=e x -1,令f ′(x )>0,解得x >0,故选A.2.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D.由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞). 3.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎫-π3>f ⎝⎛⎫π5>f (1) 解析:选A.因为f (x )=x sin x ,所以f (-x )=(-x )sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又x ∈⎝⎛⎭⎫0,π2时,得 f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3. 所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A. 4.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)解析:选B.由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B.5.已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示,则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)解析:选B.依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0解析:选A.因为函数f (x )=e x +x -2在R 上单调递增,且f (0)=1-2<0,f (1)=e -1>0,所以f (a )=0时a ∈(0,1).又g (x )=ln x +x 2-3在(0,+∞)上单调递增,且g (1)=-2<0,所以g (a )<0.由g (2)=ln 2+1>0,g (b )=0得b ∈(1,2),又f (1)=e -1>0,所以f (b )>0.综上可知,g (a )<0<f (b ).二、填空题7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)8.(2018·张掖第一次诊断考试)若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,因为函数f (x )在区间(12,3)上单调递减,所以f ′(x )≤0在区间(12,3)上恒成立,所以⎩⎪⎨⎪⎧f ′(12)≤0f ′(3)≤0,即⎩⎪⎨⎪⎧14-a 2+1≤09-3a +1≤0,解得a ≥103,所以实数a 的取值范围为[103,+∞).答案:[103,+∞) 9.(2017·高考江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12.答案:⎣⎡⎦⎤-1,12 10.已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析:由题可得函数定义域为(0,+∞),f ′(x )=1x+2x ln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.答案:(1,2)三、解答题11.已知函数f (x )=ln x ,g (x )=12ax +b . (1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围. 解:(1)由已知得f ′(x )=1x, 所以f ′(1)=1=12a ,所以a =2. 又因为g (1)=0=12a +b ,所以b =-1, 所以g (x )=x -1.(2)因为φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数. 所以φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立. 即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x,x ∈[1,+∞), 因为x +1x∈[2,+∞), 所以2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].12.已知函数f (x )=ln x +k e x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x -ln x -k e x, 又因为f ′(1)=1-k e=0,故k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x,设h (x )=1x-ln x -1(x >0), 则h ′(x )=-1x 2-1x<0, 即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0;当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).1.(2018·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x. 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2, 所以f (x )=-2ln x +2x -3,f ′(x )=2x -2x. 所以g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x ,所以g ′(x )=3x 2+(m +4)x -2.因为g (x )在区间(t ,3)上总不是单调函数,即g ′(x )=0在区间(t ,3)上有变号零点.由于g ′(0)=-2,所以⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.由g ′(t )<0,得3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立,由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,即m <-5且m <-9,即m <-9;由g ′(3)>0,得m >-373. 所以-373<m <-9. 即实数m 的取值范围是⎝⎛⎭⎫-373,-9. 2.设函数f (x )=x 2+ax -ln x .(1)若a =1,试求函数f (x )的单调区间;(2)令g (x )=f (x )e x ,若函数g (x )在区间(0,1]上是减函数,求实数a 的取值范围.解:(1)当a =1时,f (x )=x 2+x -ln x ,定义域为(0,+∞),所以f ′(x )=2x +1-1x =2x 2+x -1x =(x +1)(2x -1)x, 所以当0<x <12时,f ′(x )<0,当x >12时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增. (2)g (x )=f (x )e x =x 2+ax -ln x e x,定义域为(0,+∞).则g ′(x )=-x 2+(2-a )x +a -1x +ln x e x , 令h (x )=-x 2+(2-a )x +a -1x +ln x ,则h ′(x )=-2x +1x 2+1x+2-a ,令m (x )=h ′(x ),x ∈(0,+∞),则m ′(x )=-2-2x 3-1x 2<0, 故h ′(x )在区间(0,1]上单调递减,从而对任意的x ∈(0,1],h ′(x )≥h ′(1)=2-a .①当2-a ≥0,即a ≤2时,h ′(x )≥0,所以h (x )在(0,1]上单调递增,所以h (x )≤h (1)=0,即g ′(x )≤0,所以g (x )在区间(0,1]上是减函数,满足题意;②当2-a <0,即a >2时,h ′(1)<0,h ′⎝⎛⎭⎫1a =-2a +a 2+2>0,0<1a<1, 所以y =h ′(x )在区间(0,1]上有唯一零点,设为x 0,所以h (x )在(0,x 0)上单调递增,在(x 0,1]上单调递减,所以h (x 0)>h (1)=0,而h (e -a )=-e -2a +(2-a )e -a +a -e a +ln e -a <0,所以y =h (x )在区间(0,1)上唯一零点,设为x ′,即函数g ′(x )在区间(0,1)上有唯一零点, 所以g (x )在区间(0,x ′)上单调递减,在(x ′,1)上单调递增,不满足题意.综上可知,实数a 的取值范围为(-∞,2].。
1.顶点在原点,经过圆22:2220C x y x y +-+=的圆心,且准线与x 轴垂直的抛物线方程为 A .22y x =- B .22y x = C .22y x =D .22y x =-【答案】B【解析】圆C 的圆心坐标为(1,2)-,依题意抛物线方程可设为2y mx =,把坐标(1,2)-代入得222m y x =⇒=.故选B .2.已知点F 是抛物线24y x =的焦点,点P 在该抛物线上,且点P 的横坐标是2,则PF = A .2B .3C .4D .5【答案】B【解析】由抛物线方程可知(1,0)F ,由点P 的横坐标是2得22y =±,即点(2,22)P ±,3PF ∴=,故选B .3.已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ|-|QF|的最小值是A .72 B .3 C .52D .2【答案】C【解析】抛物线的准线方程为x =12-,当MQ ∥x 轴时,|MQ|-|QF|取得最小值,此时|MQ|-|QF|=|2+3|-|2+12|=52.4.已知抛物线的焦点为,准线与轴的交点为,点在抛物线上,且,则AFK △的面积为 A .4 B .6 C .8D .12【答案】C5.已知抛物线y 2=2px (p >0)的焦点为F ,抛物线上的两个动点A ,B 始终满足∠AFB =60°,过弦AB 的中点H 作抛物线的准线的垂线HN ,垂足为N ,则HNAB的取值范围为A .(0,33 B .[33,+∞) C .[1,+∞) D .(0,1【答案】D【解析】过A ,B 分别作抛物线准线的垂线AQ ,BP ,垂足分别为Q ,P ,设|AF|=a ,|BF|=b ,则由抛物线的定义,得|AQ|=a ,|BP|=b ,所以|HN|=.在△ABF 中,由余弦定理得|AB|2=a 2+b 2-2ab cos 60°=a 2+b 2-ab ,所以()()22222212322321a bHN a b a bAB aba b ab a b ab a b aba b +++====+-+-+--+,因为a+b ≥2,所以()211321aba b ≤-+,当且仅当a =b 时等号成立,故HNAB的取值范围为(0,1 .故选D.6.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】2【解析】因为抛物线上动点到焦点的距离为动点到准线的距离,因此抛物线上动点到焦点的最短距离为顶点到准线的距离,即1, 2.2pp == 7.已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =_______________.学 【答案】6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥于点B ,NA l ⊥于点A ,由抛物线的解析式可得准线方程为2x =-,则||2,||4AN FF'==,在直角梯形ANFF'中,中位线||||||32AN FF'BM +==,由抛物线的定义有:||||3MF MB ==,结合题意,有||||3MN MF ==,故336FN FM NM =+=+=.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化. 8.设抛物线的焦点为点在抛物线上,且满足若32AF =uu u r ,则的值为__________.【答案】12【解析】由题意得.因为为抛物线的焦点弦,所以1121AF BF p+==.而,解得3BF =uu u r.又因为,所以31232AF BFλ===uu u r uu u r.1.(2018新课标全国Ⅰ理)设抛物线2:4C y x =的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=A .5B .6C .7D .8【答案】D2.(2017新课标全国I 理)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12D .10【答案】A【解析】设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 的方程为1(1)y k x =-,联立方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=,同理直线2l 与抛物线的交点满足22342224k x x k ++=,由抛物线定义可知2112342124||||2k AB DE x x x x p k ++=++++=+ 222222221212244416482816k k k k k k ++=++≥+=,当且仅当121k k =-=(或1-)时,取等号.故选A . 【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,将到定点的距离转化到准线上;另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 3.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为________________.【答案】(1,0)【解析】由题意可得,点(1,2)P 在抛物线上,将(1,2)P 代入24y ax =中,解得1a =,所以24y x =, 由抛物线方程可得24p =,2p =,12p=,所以焦点坐标为(1,0). 4.(2018新课标全国Ⅲ)已知点(1,1)M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________________.学【答案】25.(2018新课标全国Ⅱ理)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)1y x =-;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=,216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k+=,解得1k =-(舍去)或1k =,因此l 的方程为1y x =-.。
第六节抛物线[考纲传真] 1.了解抛物线的实际背影,了解抛物线在刻画现实世界和解决实际问题中的作用.2.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、准线方程).3.理解数形结合的思想.4.了解抛物线的简单应用.(对应学生用书第123页)[基础知识填充]1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的集合叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质[知识拓展]1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p 2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,准线方程为x =-a 4.3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角). (3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与一个定点F 和一条定直线l 的距离相等的点的集合一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( ) [答案] (1)× (2)× (3)× (4)√2.(教材改编)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716 B .1516 C .78D .0B[M到准线的距离等于M到焦点的距离,又准线方程为y=-116,设M(x,y),则y+116=1,∴y=1516.]3.抛物线y=14x2的准线方程是()A.y=-1 B.y=-2 C.x=-1 D.x=-2A[∵y=14x2,∴x2=4y,∴准线方程为y=-1.]4.(2018·大同模拟)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为()A.(-1,0) B.(1,0)C.(0,-1) D.(0,1)B[抛物线y2=2px(p>0)的准线为x=-p2且过点(-1,1),故-p2=-1,解得p=2,所以抛物线的焦点坐标为(1,0).]5.(2016·浙江高考)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是________.9[设点M的横坐标为x0,则点M到准线x=-1的距离为x0+1,由抛物线的定义知x0+1=10,∴x0=9,∴点M到y轴的距离为9.](对应学生用书第124页)A(x,y0)是C上一点,|AF|=54x0,则x0=()A.1 B.2C.4D.8(2)已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为__________.【导学号:00090304】(1)A (2)2 [(1)由y 2=x ,知2p =1,即p =12, 因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线l 的方程为x =-14.设点A (x 0,y 0)到准线l 的距离为d ,则由抛物线的定义可知d =|AF |. 从而x 0+14=54x 0,解得x 0=1.(2)由y 2=4x ,知p =2,焦点F (1,0),准线x =-1. 根据抛物线的定义,|AF |=|AC |+1,|BF |=|BD |+1. 因此|AC |+|BD |=|AF |+|BF |-2=|AB |-2.所以|AC |+|BD |取到最小值,当且仅当|AB |取得最小值, 又|AB |=2p =4为最小值. 故|AC |+|BD |的最小值为4-2=2.][规律方法] 1.凡涉及抛物线上的点到焦点距离,一般运用定义转化为到准线的距离处理.如本例充分运用抛物线定义实施转化,使解答简捷、明快. 2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF |=x 0+p2;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为|AB |=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出.[变式训练1] (1)设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为__________.(2)若抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),则|P A |+|PF |取最小值时点P 的坐标为________.(1)5 (2)(2,2)[(1)如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到F 的距离.于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.连接AF 交抛物线于点P ,此时最小值为 |AF |=[1-(-1)]2+(0-1)2= 5.(2)将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2).](1)是( ) A .x 2=112y B .x 2=112y 或x 2=-136y C .x 2=-136yD .x 2=12y 或x 2=-36y(2)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A .12 B .1 C .32D .2(1)D (2)D [(1)将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,∴a =112.当a<0时,准线y=-14a,则⎪⎪⎪⎪⎪⎪3+14a=6,∴a=-136.∴抛物线方程为x2=12y或x2=-36y.(2)由抛物线C:y2=4x知p=2.∴焦点F(1,0).又曲线y=kx(k>0)与曲线C交于点P,且PF⊥x轴.∴P(1,2),将点P(1,2)代入y=kx,得k=2][规律方法] 1.求抛物线的标准方程的方法:(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.[变式训练2](1)(2018·郑州模拟)抛物线y2=2px(p>0)的焦点为F,O为坐标原点,M为抛物线上一点,且|MF|=4|OF|,△MFO的面积为43,则抛物线的方程为() 【导学号:00090305】A.y2=6x B.y2=8xC.y2=16x D.y2=15x 2(2018·西安模拟)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O 为坐标原点.若|AF|=3,则△AOB的面积为________.(1)B(2)322[(1)设M(x,y),因为|OF|=p2,|MF|=4|OF|,所以|MF|=2p,由抛物线定义知x+p2=2p,所以x=32p,所以y=±3p.又△MFO的面积为43,所以12×p2×3p=43,解得p=4(p=-4舍去).所以抛物线的方程为y2=8x.(2)如图,由题意知,抛物线的焦点F 的坐标为(1,0),又|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,所以点A 的横坐标为2,将x =2代入y 2=4x 得y 2=8,由图知点A 的纵坐标为y =22,所以A (2,22),所以直线AF 的方程为y =22(x -1),联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =22,由图知B ⎝ ⎛⎭⎪⎫12,-2,所以S △AOB =12×1×|y A -y B |=322.]角度1 (2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. [解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,2分故直线ON 的方程为y =pt x ,将其代入y 2=2px ,整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.5分(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ). 8分代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.12分 [规律方法] 1.(1)本题求解的关键是求出点N ,H 的坐标.(2)第(2)问将直线MH 的方程与抛物线C 的方程联立,根据方程组的解的个数进行判断. 2.(1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)解题时注意应用根与系数的关系及设而不求、整体代换的技巧.角度2 与抛物线弦长或中点有关的问题(2017·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1的垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积. [解] (1)易知直线与抛物线的交点坐标为(8,-8), 2分 ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .5分(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .6分由⎩⎨⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.8分由题意可知OA⊥OB,即x1x2+y1y2=m2-8m=0,∴m=8或m=0(舍),∴直线l2:x=y+8,M(8,0). 10分故S△F AB=S△FMB+S△FMA=12·|FM|·|y1-y2|=3(y1+y2)2-4y1y2=24 5. 12分[规律方法] 1.抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等方法.3.涉及弦的中点、斜率时,一般用“点差法”求解.。
【练习检测】1.【甘肃省兰州市第一中学2016-2017学年高一下学期期末考试】已知函数()()cos (0)f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A. 函数()f x 的最小周期为B. 函数()f x 的图象关于C. 函数()f x 的图象关于直线D. 函数()f x 的最小值为1- 【答案】D2.【宁夏石嘴山市第三中学2017届高三下学期第三次模拟考试数学(文)】已知角φ的终边经过点P(1.1),函数()()f x sin x ωϕ=+( )A.B. C. D. 【答案】A3.【2017届江西省南昌市高三第一次模拟考试数学(文)试卷】已知函数()()sin f x A x ωϕ=+()的周期为π,若()1f α=,则) A. -2 B. -1 C. 1 D. 2 【答案】B【解析】由题意得,()sin 21,A αϕ+=所以B. 4.【湖南省长沙市雅礼中学2017届高考模拟试卷(二)文 数学】如图,将绘有函数部分图象的纸片沿x 轴折成直二面角,若AB 之间的空间距,则()1f -=( )A. -1B. 1C.D. 【答案】D【解析】由题设并结合图形可知,即D。
5.【贵州省遵义市第四中学2016届高三上学期第四次月考数学(文)】将函数()sin4y xφ=+,则φ的值不可能是()A. C.D.【答案】C【解析】将函数()4y sin xϕ=+的图象向左平单位,得到新函数的解析式为C.6.【福建省莆田第六中学2017届高三下学期第一次模拟(期中)数学(文)试题】已知函数()()sinf x xωϕ=+(0ω>,0ϕπ<<)的最小正周期是π,将函数()f x的图象向()0,1P,则函数()()sinf x xωϕ=+()A. B.C.D.【答案】B7.【河南省新乡市2017届高三第三次模拟测试数学(文)试题】(01ω<<)的图象关于点()2,0-对称,则ω=__________.又01ω<<,故8.【天津市静海县第一中学2017届高三4月阶段性检测数学试题】已知函数f (x )=2sin(ax ﹣)cos (ax ﹣)+2cos 2(ax ﹣)(a >0),且函数的最小正周期为.(Ⅰ)求a 的值; (Ⅱ)求f (x )在[0,]上的最大值和最小值.【答案】(Ⅰ) 2 ;(Ⅱ) 最大值为3故f (x )=2sin (4x+)+1;(Ⅱ)x ∈[0,]时,4x+∈[0,].当4x+=时,函数f (x )取得最小值为=1.当4x+=时,函数f (x )取得最大值为2×1+1=3∴f(x )在[0,]上的最大值为3,最小值为1.9.【陕西省西安市长安区第一中学2017届高三4月模拟考试数学(文)试题】已知函数的部分图像如图所示,若,且2AB BC π⋅=-(1)求函数()f x 的单调递增区间; (2)若将()f x 的图像向左平移个单位长度,得到函数()g x 的图像,求函数()g x 在区间【答案】(2),最小值2-.试题解析:(111,2,,AB T BC T ⎛⎫⎛== ⎪ ,则2T AB BC ⋅=-=.故,所以Tπ∈,解得k Zf x的单调递增区间为所以函数()10.【西藏日喀则区第一高级中学2017届高三下学期期中考试数学(文)试题】已知函数()22=++.f x x x x xsin2sin cos3cosf x的最小正周期;(1)求函数()f x的单调递减区间.(2)求函数()【答案】(1)π(2【解析】试题分析:(1)化简函数的解析式可得函数的周期为π;f x的单调递减区间为(2)由函数的解析式结合正弦函数的性质可得函数()试题解析:解:(1)T π= (211.【安徽省淮北市第一中学2017届高三最后一卷数学(文)试题】设函数(1,求()f x 的最大值及相应的x 的取值范围; (2是()f x 的一个零点,且010ω<<,求ω的值和()f x 的最小正周期.【答案】(1)()f x 的最大值为x (2)π.(1所以()f x 的最大值为x(2又010ω<< 所以0, 2.k ω==π.。
第6讲抛物线最新考纲 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.知识梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线.这个定点F叫作抛物线的焦点,这条定直线l叫作抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R开口方向向右向左向上向下诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫作抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形.答案 (1)× (2)× (3)× (4)√ 2.(2016·四川卷)抛物线y 2=4x 的焦点坐标是( ) A .(0,2) B .(0,1) C .(2,0) D .(1,0)解析 抛物线y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,故y 2=4x ,则焦点坐标为(1,0).答案 D3.(2014·全国Ⅰ卷)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( ) A .4 B .2 C .1 D .8解析 由y 2=x ,得2p =1,即p =12,因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线方程为l :x =-14.设A 点到准线的距离为d ,由抛物线的定义可知d =|AF |,从而x 0+14=54x 0,解得x 0=1,故选C. 答案 C4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为________.解析很明显点P在第三象限,所以抛物线的焦点可能在x轴负半轴上或y轴负半轴上.当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点P(-2,-4)的坐标代入得(-4)2=-2p×(-2),解得p=4,此时抛物线的标准方程为y2=-8x;当焦点在y轴负半轴上时,设方程为x2=-2py(p>0),把点P(-2,-4)的坐标代入得(-2)2=-2p×(-4),解得p=12,此时抛物线的标准方程为x2=-y.综上可知,抛物线的标准方程为y2=-8x或x2=-y.答案y2=-8x或x2=-y5.已知抛物线方程为y2=8x,若过点Q(-2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.解析设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,当k=0时,显然满足题意;当k≠0时,Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1].答案[-1,1]考点一抛物线的定义及应用【例1】(1)(2016·浙江卷)若抛物线y2=4x上的点M到焦点的距离为10,则M 到y轴的距离是________.(2)若抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|P A|+|PF|取最小值时点P的坐标为________.解析(1)抛物线y2=4x的焦点F(1,0).准线为x=-1,由M到焦点的距离为10,可知M到准线x=-1的距离也为10,故M的横坐标满足x M+1=10,解得x M =9,所以点M到y轴的距离为9.(2)将x =3代入抛物线方程 y 2=2x ,得y =±6.∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2). 答案 (1)9 (2)(2,2)规律方法 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径. 【训练1】 (1)过抛物线y 2=8x 的焦点F 的直线交抛物线于A ,B 两点,交抛物线的准线于点C ,若|AF |=6,BC →=λFB →(λ>0),则λ的值为( ) A.34 B.32 C.3 D .3(2)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.解析 (1)设A (x 1,y 1),B (x 2,y 2),C (-2,-x 3), 则x 1+2=6,解得x 1=4,y 1=±42,点A (4,42), 则直线AB 的方程为y =22(x -2), 令x =-2,得C (-2,-82),联立方程组⎩⎨⎧y 2=8x ,y =22(x -2),解得B (1,-22),所以|BF |=1+2=3,|BC |=9,所以λ=3.(2)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x . 答案 (1)D (2)y 2=4x考点二 抛物线的标准方程及其性质【例2】 (1)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ) A .x 2=833y B .x 2=1633y C .x 2=8y D .x 2=16y(2)(2016·全国Ⅰ卷)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A .2 B .4 C .6 D .8解析 (1)∵x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2, ∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,即y =±3x .由题意得p 21+(3)2=2,解得p =8.故C 2的方程为x 2=16y .(2)不妨设抛物线C :y 2=2px (p >0),圆的方程为x 2+y 2=r 2(r >0), ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2, ∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5,∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p +8=p 24+5,解得p =4(负值舍去),∴C 的焦点到准线的距离为4.答案(1)D(2)B规律方法(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练2】(1)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6xC.y2=3x D.y2=3x(2)(2017·西安模拟)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O 为坐标原点.若|AF|=3,则△AOB的面积为________.解析(1)设A,B在准线上的射影分别为A1,B1,由于|BC|=2|BF|=2|BB1|,则直线l的斜率为3,故|AC|=2|AA1|=6,从而|BF|=1,|AB|=4,故p|AA1|=|CF||AC|=12,即p=32,从而抛物线的方程为y2=3x,故选C.(2)如图,由题意知,抛物线的焦点F的坐标为(1,0),又|AF|=3,由抛物线定义知,点A到准线x=-1的距离为3,所以点A的横坐标为2,将x=2代入y2=4x得y2=8,由图知点A的纵坐标为y=22,所以A(2,22),所以直线AF的方程为y=22(x-1),联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =22,由图知B ⎝ ⎛⎭⎪⎫12,-2,所以S △AOB =12×1×|y A -y B |=322. 答案 (1)C (2)322考点三 直线与抛物线的位置关系(多维探究) 命题角度一 直线与抛物线的公共点(交点)问题【例3-1】 (2016·全国Ⅰ卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,故ON 的方程为y =pt x ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p , 因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其它公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ). 代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.规律方法 (1)①本题求解的关键是求点N 、H 的坐标.②第(2)问将直线MH 的方程与曲线C 联立,根据方程组的解的个数进行判断.(2)①判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.②解题时注意应用根与系数的关系及设而不求、整体代换的技巧.命题角度二 与抛物线弦长(中点)有关的问题【例3-2】 (2017·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积. 解 (1)易知直线与抛物线的交点坐标为(8,-8), ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎨⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍),∴直线l 2:x =y +8,M (8,0). 故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2| =3(y 1+y 2)2-4y 1y 2=24 5.规律方法 (1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.(3)涉及弦的中点、斜率时,一般用“点差法”求解.【训练3】 已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切. (1)解 由抛物线的定义得|AF |=2+p 2. 因为|AF |=3,即2+p2=3,解得p =2, 所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.[思想方法]1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率). 2.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p . [易错防范]1.认真区分四种形式的标准方程(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).2.直线与抛物线结合的问题,不要忘记验证判别式.基础巩固题组(建议用时:40分钟)一、选择题1.(2016·全国Ⅱ卷)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12 B .1 C.32 D .2解析 由题可知抛物线的焦点坐标为(1,0),由PF ⊥x 轴知,|PF |=2,所以P 点的坐标为(1,2),代入曲线y =kx (k >0)得k =2,故选D.答案 D2.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2 B .y =12x 2或y =-36x 2 C .y =-36x 2 D .y =112x 2或y =-136x 2解析 分两类a >0,a <0可得y =112x 2,y =-136x 2. 答案 D3.(2017·宜春诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( ) A .9 B .8 C .7 D .6解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B. 答案 B4.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于( ) A.72 B.52 C .3 D .2 解析∵FP→=4FQ →, ∴|FP→|=4|FQ →|,∴|PQ ||PF |=34. 如图,过Q 作QQ ′⊥l ,垂足为Q ′, 设l 与x 轴的交点为A , 则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34,∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C. 答案 C5.(2017·衡水金卷)已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值为( )A .12B .24C .16D .32解析 当直线的斜率不存在时,其方程为x =4,由⎩⎨⎧x =4,y 2=4x ,得y 1=-4,y 2=4,∴y 21+y 22=32.当直线的斜率存在时,设其方程为y =k (x -4),由⎩⎨⎧y 2=4x ,y =k (x -4),得ky 2-4y -16k =0,∴y 1+y 2=4k ,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32,综上可知,y 21+y 22≥32.∴y 21+y 22的最小值为32.故选D.答案 D 二、填空题6.(2016·兰州诊断)抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形的面积等于________.解析 由图可知弦长|AB |=23,三角形的高为3, ∴面积为S =12×23×3=3 3.答案 3 37.(2017·安徽四校三联)过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,则弦长|AB |为________.解析 设A (x 1,y 1),B (x 2,y 2).易得抛物线的焦点是F (1,0),所以直线AB 的方程是y =x -1,联立⎩⎨⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0,所以x 1+x 2=6,所以|AB|=x1+x2+p=6+2=8.答案88.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析建立如图平面直角坐标系,设抛物方程为x2=-2py(p>0).由题意将点A(2,-2)代入x2=-2py,得p=1,故x2=-2y.设B(x,-3),代入x2=-2y中,得x=6,故水面宽为26米.答案2 6三、解答题9.(2016·江苏卷)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.(1)解∵l:x-y-2=0,∴l与x轴的交点坐标为(2,0).即抛物线的焦点为(2,0),∴p2=2,∴p=4.∴抛物线C 的方程为y 2=8x .(2)①证明 设点P (x 1,y 1),Q (x 2,y 2).则⎩⎨⎧y 21=2px 1,y 22=2px 2,则⎩⎪⎨⎪⎧x 1=y 212p,x 2=y 222p ,∴k PQ =y 1-y 2y 212p -y 222p=2py 1+y 2,又∵P ,Q 关于l 对称.∴k PQ =-1,即y 1+y 2=-2p , ∴y 1+y 22=-p ,又∵PQ 的中点一定在l 上, ∴x 1+x 22=y 1+y 22+2=2-p .∴线段PQ 的中点坐标为(2-p ,-p ). ②解 ∵PQ 的中点为(2-p ,-p ), ∴⎩⎪⎨⎪⎧y 1+y 2=-2p ,x 1+x 2=y 21+y 222p =4-2p ,即⎩⎨⎧ y 1+y 2=-2p ,y 21+y 22=8p -4p 2,∴⎩⎨⎧y 1+y 2=-2p ,y 1y 2=4p 2-4p , 即关于y 的方程y 2+2py +4p 2-4p =0,有两个不等实根.∴Δ>0. 即(2p )2-4(4p 2-4p )>0,解得0<p <43, 故所求p 的范围为⎝ ⎛⎭⎪⎫0,43.10.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2, 所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2 =x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式, 得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N , 则|MN |=12(|AC |+|BD |)= 12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.能力提升题组 (建议用时:25分钟)11.(2017·汉中模拟)已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于( )A .-4B .4C .p 2D .-p 2解析 ①若焦点弦AB ⊥x 轴,则x 1=x 2=p 2,则x 1x 2=p 24; ②若焦点弦AB 不垂直于x 轴,可设AB :y =k (x -p2), 联立y 2=2px 得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.又y 21=2px 1,y 22=2px 2,∴y 21y 22=4p 2x 1x 2=p 4,又∵y 1y 2<0,∴y 1y 2=-p 2.故y 1y 2x 1x 2=-4. 答案 A12.(2016·四川卷)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33 B.23 C.22 D .1 解析 如图,由题可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0(y 0>0),则OM→=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 206p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2等号成立.故选C.答案 C13.(2016·湖北七校联考)已知抛物线方程为y 2=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点A 到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为________.解析 如图,过A 作AH ⊥l ,AN 垂直于抛物线的准线,则|AH |+|AN |=m +n +1,连接AF ,则|AF |+|AH |=m +n +1,由平面几何知识,知当A ,F ,H 三点共线时,|AF |+|AH |=m +n +1取得最小值,最小值为F 到直线l 的距离,即65=655,即m +n 的最小值为655-1.答案655-114.(2017·南昌模拟)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,点P (-1,-1),且F 1F 2⊥OP (O 为坐标原点). (1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值.解 (1)由题意知F 1(1,0),F 2⎝ ⎛⎭⎪⎫0,p 2, ∴F 1F 2→=⎝ ⎛⎭⎪⎫-1,p 2,∵F 1F 2⊥OP ,∴F 1F 2→·OP →=⎝ ⎛⎭⎪⎫-1,p 2·(-1,-1)=1-p 2=0, ∴p =2,∴抛物线C 2的方程为x 2=4y . (2)设过点O 的直线为y =kx (k <0), 联立⎩⎨⎧ y =kx ,y 2=4x 得M ⎝ ⎛⎭⎪⎫4k 2,4k ,联立⎩⎨⎧y =kx .x 2=4y得N (4k,4k 2),从而|MN |=1+k 2⎪⎪⎪⎪⎪⎪4k 2-4k =1+k 2⎝ ⎛⎭⎪⎫4k 2-4k , 又点P 到直线MN 的距离d =|k -1|1+k 2,进而S △PMN =12·|k -1|1+k 2·1+k 2·⎝ ⎛⎭⎪⎫4k 2-4k = 2·(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k 2=2⎝ ⎛⎭⎪⎫k +1k -2⎝ ⎛⎭⎪⎫k +1k +1, 令t =k +1k (t ≤-2),则有S △PMN =2(t -2)(t +1),当t =-2时,此时k =-1,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8.。
1.(2017课标全国Ⅱ理,20,12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且·=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.解析本题考查了求轨迹方程的基本方法和定点问题.(1)设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由=得x=x,y0=y.因为M(x,y0)在C上,所以+=1.因此点P的轨迹方程为x2+y2=2.(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),·=3+3m-tn,=(m,n),=(-3-m,t-n).由·=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0.所以·=0,即⊥.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.(2016课标全国Ⅰ,20,12分)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.解析(1)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.(2分)由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为+=1(y≠0).(4分)(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).由-得(4k2+3)x2-8k2x+4k2-12=0.则x 1+x 2=,x 1x 2=-.所以|MN|= |x 1-x 2|=.(6分)过点B(1,0)且与l 垂直的直线m:y=-(x-1),A 到m 的距离为,|PQ|=2 -=4.故四边形MPNQ 的面积 S= |MN||PQ|=12.(10分)可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,8 ). 当l 与x 轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,8 ).(12分)3.(2016课标全国Ⅲ,20,12分)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解析 由题设知F.设l 1:y=a,l 2:y=b,则ab ≠0,且A,B,P - ,Q - ,R -. 记过A,B 两点的直线为l,则l 的方程为2x-(a+b)y+ab=0.(3分) (1)证明:由于F 在线段AB 上,故1+ab=0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=- = - - = =-=-b=k 2.所以AR ∥FQ.(5分)(2)设l 与x 轴的交点为D(x 1,0),则S △ABF =|b-a||FD|= |b-a| - ,S △PQF =-. 由题设可得2× |b-a| - =-, 所以x 1=0(舍去),或x 1=1.(8分) 设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得=-(x ≠1).而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以,所求轨迹方程为y2=x-1.(12分)4.(2015广东,20,14分)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.的方程x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆心坐标为(3,0).解析(1)圆C1(2)设A(x1,y1),B(x2,y2)(x1≠x2),M(x0,y0),则x=,y0=.由题意可知直线l的斜率必存在,设直线l的方程为y=tx.的方程,化简得(1+t2)x2-6x+5=0.将上述方程代入圆C1由题意,可得Δ=36-20(1+t2)>0(*),x+x2=,1所以x=,代入直线l的方程,得y0=.因为+=+===3x,所以-+=.由(*)解得t2<,又t2≥0,所以<x≤3.所以线段AB的中点M的轨迹C的方程为-+y2=.(3)存在.由(2)知,曲线C是在区间上的一段圆弧.如图,D,E-,F(3,0),直线L过定点G(4,0).联立直线L的方程与曲线C的方程,消去y整理得(1+k2)x2-(3+8k2)x+16k2=0.令判别式Δ=0,解得k=±,由求根公式解得交点的横坐标为x=∈,由图可知:要使直线L与曲线C只有一个交点,则H,Ik∈[k DG,k EG]∪{k GH,k GI},即k∈-∪-.5.(2014湖北,21,14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1).求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解析(1)设点M(x,y),依题意得|MF|=|x|+1,即-=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x<0),依题意,可设直线l的方程为y-1=k(x+2).由方程组-可得ky2-4y+4(2k+1)=0.①i)当k=0时,y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.ii)当k≠0时,方程①的判别式为Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x,0),则由y-1=k(x+2),令y=0,得x=-.③若由②③解得k<-1或k>,即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或则由②③解得k∈-或-≤k<0,即当k∈-时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈-时,直线l与C1有两个公共点,与C2没有公共点,故当k∈-∪-时,直线l与轨迹C恰好有两个公共点.若则由②③解得-1<k<-或0<k<.即当k∈--∪时,直线l与C1有两个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综合i)和ii)可知,当k∈(-∞,-1)∪∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈-∪-时,直线l与轨迹C恰好有两个公共点;当k∈--∪时,直线l与轨迹C恰好有三个公共点.教师用书专用(6)6.(2014广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.解析(1)由题意知c=,e==,∴a=3,b2=a2-c2=4,故椭圆C的标准方程为+=1.(2)设两切线为l1,l2,①当l1⊥x轴或l1∥x轴时,l2∥x轴或l2⊥x轴,可知P(±3,±2).②当l1与x轴不垂直且不平行时,x0≠±3,设l1的斜率为k,且k≠0,则l2的斜率为-,l1的方程为y-y0=k(x-x0),与+=1联立,整理得(9k2+4)x2+18(y-kx0)kx+9(y0-kx0)2-36=0,∵直线l1与椭圆相切,∴Δ=0,即9(y0-kx0)2k2-(9k2+4)·[(y0-kx0)2-4]=0,∴(-9)k2-2x0y0k+-4=0,∴k是方程(-9)x2-2x0y0x+-4=0的一个根,同理,-是方程(-9)x2-2x0y0x+-4=0的另一个根,∴k·-=-,整理得+=13,其中x0≠±3,-∴点P的轨迹方程为x2+y2=13(x≠±3).P(±3,±2)满足上式.综上,点P的轨迹方程为x2+y2=13.三年模拟A组2016—2018年模拟·基础题组考点曲线与方程1.(2018浙江镇海中学阶段性测试,8)在圆C:x2+y2+2x-2y-23=0中,长为8的弦中点的轨迹方程为()A.(x-1)2+(y+1)2=9B.(x+1)2+(y-1)2=9C.(x-1)2+(y+1)2=16D.(x+1)2+(y-1)2=16答案B2.(2017浙江温州十校期末联考,6)点P为直线y=x上任一点,F1(-5,0),F2(5,0),则下列结论正确的是()A.||PF1|-|PF2||>8B.||PF1|-|PF2||=8C.||PF1|-|PF2||<8D.以上都有可能答案C3.(2016浙江镇海中学测试卷四,13)在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.则直线A1N1与A2N2的交点M的轨迹方程为.答案+=1(x≠±2)4.(2017浙江稽阳联谊学校联考(4月),21)已知两个不同的动点A,B在椭圆+=1上,且线段AB的垂直平分线恒过点P(0,-1).求:(1)线段AB的中点M的轨迹方程;(2)线段AB的长度的最大值.解析(1)设A(x,y1),B(x2,y2),M(x0,y0).易知直线AB的斜率存在,1由题意可知,+=1,+=1,则-+-=0,得-=-.-又-·=-1,得y0=-2.-从而,线段AB的中点M的轨迹方程为y=-2(-<x<).(2)由(1)知,直线AB的斜率k=x0.所以直线AB的方程为y+2=x(x-x0),与椭圆方程联立得,(+2)x2-2x0(+2)x++4-4=0,则x+x2=2,x1x2=-,1于是,|AB|=|x-x2|=1=2-≤2,当且仅当x=0时,取等号,所以线段AB的长度的最大值为2.B组2016—2018年模拟·提升题组一、选择题1.(2017浙江镇海中学一轮阶段检测,7)已知二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为--,与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于F(0,4)和F2(0,-4),则点(b,c)所在的曲线为()1A.圆B.椭圆C.双曲线D.抛物线答案B2.(2017浙江镇海中学第一学期期中,6)如图,在四边形ABCD中,将△ADC沿AC所在的直线进行翻折,则翻折过程中线段DB的中点M的轨迹是()A.椭圆的一段B.抛物线的一段C.一段圆弧D.双曲线的一段答案C3.(2016浙江高考冲刺卷(四),8)点P到图形C上所有点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离等于到定点A的距离的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线答案D二、填空题4.(2018浙江镇海中学阶段性测试,8)已知点M在经过点A(-4,-3)和点B(2,5)且面积最小的圆C上运动,点N(3,-3),则线段MN的中点P的轨迹方程为.答案(x-1)2+(y+1)2=5.(2017浙江“超级全能生”联考(3月),13)在平面直角坐标系中,A(a,0),D(0,b),a≠0,C(0,-2),∠CAB=,D是AB的中点,当A在x轴上移动时,a与b满足的关系式为;点B的轨迹E的方程为.答案a2=2b;y=x2(x≠0)6.(2016浙江镇海中学测试(五),14)已知线段PQ的长为1,若P,Q分别在椭圆+y2=1和x轴上运动,则线段PQ的中点M的轨迹方程是.答案+4y2=1三、解答题7.(2018浙江镇海中学阶段性测试,18)已知直角坐标平面内的点Q(2,0)和圆O:x2+y2=1,动点M到圆O的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并说明它表示什么曲线.解析设M(x,y),则|MN|=-=-,|MQ|=-,由题设知=λ,∴-=λ,(5分)-两边平方整理得(1-λ2)x2+(1-λ2)y2+4λ2x-(1+4λ2)=0(λ>0),(7分)由得λ=1,(8分)∴当λ=1时,方程化为4x-5=0,表示一条垂直于x轴的直线;(10分)当λ∈(0,1)∪(1,+∞)时,方程可变形为x2+y2+x-=0,配方得+y2=,-方程表示一个圆.(14分)综上,动点M的轨迹方程为(1-λ2)x2+(1-λ2)y2+4λ2x-(1+4λ2)=0(λ>0),当λ=1时,它表示一条垂直于x轴的直线;当λ∈(0,1)∪(1,+∞)时,它表示一个圆.(15分)C组2016—2018年模拟·方法题组方法1直接法求轨迹方程1.在△ABC中,⊥,=(0,-2),M在y轴上,且=(+),C在x轴上移动.求点B的轨迹方程.解析设B(x,y),C(a,0),M(0,b),a≠0,∵=(+),∴M是BC的中点,可得∴a=-x,b=,又=(-a,-2),=(x-a,y),⊥,∴-ax+a2-2y=0,①把a=-x代入①中,得y=x2(x≠0),所以点B的轨迹方程为y=x2(x≠0).2.已知△ABC中,AB=2,AC=BC,求顶点C的轨迹方程.解析以直线AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=BC得,=-,平方整理得(x-3)2+y2=8,∵A、B、C三点为三角形的顶点,∴y≠0,∴顶点C的轨迹方程为(x-3)2+y2=8(y≠0).方法2定义法求轨迹方程3.已知A(0,7),B(0,-7),C(12,2),以C为焦点的椭圆过A,B两点,则椭圆的另一个焦点F的轨迹方程为()A.y2-=1(y≤-1)B.y2-=1(y≥-1)C.y2-=1D.x2-=1答案A方法3相关点法求轨迹方程4.过点(1,0)的直线l与中心在原点、焦点在x轴上且离心率为的椭圆C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.解析设椭圆C的方程为+=1(a>b>0),由e==,得-=,从而a2=2b2,所以c=b.故椭圆C方程为x2+2y2=2b2,设A(x,y1)、B(x2,y2),∵A、B在椭圆C上,∴+2=2b2,+2=2b2,两式相减得(-)+2(-)=0,1即-=-.-设AB中点为(x,y0),则k AB=-,又(x0,y0)在直线y=x上,故y0=x0,于是-=-1,即k AB=-1,故直线l的方程为y=-x+1.右焦点(b,0)关于直线l的对称点设为(x',y'),则-解得-由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,∴b=,∴b2=,a2=.∴所求椭圆C的方程为+=1.。
1.(2013课标全国Ⅱ,11,5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x答案C2.(2016浙江,9,4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.答案93.(2017课标全国Ⅱ理,16,5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.答案64.(2015陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=.答案25.(2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F 两点,则=.答案1+考点二抛物线的几何性质1.(2015浙江,5,5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y 轴上,则△BCF与△ACF的面积之比是()A.--B.--C. D.答案A2.(2016课标全国Ⅰ,10,5分)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2B.4C.6D.8答案B3.(2017山东理,14,5分)在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.答案y=±x4.(2016浙江文,19,15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.解析(1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得=1,即p=2.(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1.因为AF不垂直于y轴,可设直线AF:x=sy+1(s≠0),由消去x得y2-4sy-4=0,故y1y2=-4,所以,B-.又直线AB的斜率为-,故直线FN的斜率为--.从而得直线FN:y=--(x-1),直线BN:y=-.所以N--.设M(m,0),由A,M,N三点共线得-=--,于是m=-.所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).5.(2014浙江文,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M-或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0).由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x,1-y0)=3(2k,2k2+m-1),所以---由=4y得k2=-m+.由Δ>0,k2≥0,得-<m≤.又因为|AB|=4,点F(0,1)到直线AB的距离为d=-,所以S△ABP=4S△ABF=8|m-1|=-.记f(m)=3m3-5m2+m+1-.令f '(m)=9m 2-10m+1=0,解得m 1=,m 2=1.可得f(m)在 - 上是增函数,在 上是减函数,在 上是增函数.又f =>f, 所以,当m=时, f(m)取到最大值,此时k=±.所以,△ABP 面积的最大值为. 6.(2013浙江文,22,14分)已知抛物线C 的顶点为O(0,0),焦点为F(0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A,B 两点.若直线AO,BO 分别交直线l:y=x-2于M,N 两点,求|MN|的最小值.解析 (1)由题意可设抛物线C 的方程为x 2=2py(p>0),则=1,所以抛物线C 的方程为x 2=4y.(2)设A(x 1,y 1),B(x 2,y 2),直线AB 的方程为y=kx+1. 由 消去y,整理得x 2-4kx-4=0, 所以x 1+x 2=4k,x 1x 2=-4.从而|x 1-x 2|=4 . 由-解得点M 的横坐标x M =-= -=- .同理点N 的横坐标x N = -. 所以|MN|= |x M -x N | =- - -=8--=-.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.7.(2017北京理,18,14分)已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.解析本题考查抛物线方程及性质,直线与抛物线的位置关系.(1)由抛物线C:y2=2px过点P(1,1),得p=.所以抛物线C的方程为y2=x.抛物线C的焦点坐标为,准线方程为x=-.(2)由题意,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0.则x1+x2=-,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1).直线ON的方程为y=x,点B的坐标为.因为y1+-2x1=-=-=-=--=0,所以y+=2x1.1故A为线段BM的中点.8.(2014大纲全国,21,12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l'与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.解析(1)设Q(x,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(5分)(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.1故AB的中点为D(2m2+1,2m),|AB|=|y-y2|=4(m2+1).1又l'的斜率为-m,所以l'的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x,y3),N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).3故MN的中点为E-,|MN|=|y3-y4|=.(10分)由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2++=.化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.(12分)教师用书专用(9—10)9.(2013安徽,13,5分)已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为.答案[1,+∞)10.(2013江西,14,5分)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p=.答案6三年模拟A组2016—2018年模拟·基础题组考点一抛物线的定义和标准方程1.(2017浙江“超级全能生”联考(3月),4)设抛物线的顶点在原点,焦点在x轴上,若抛物线上的点A(-1,a)与焦点F的距离为2,则a=()A.4B.4或-4C.-2D.-2或2答案D2.(2017浙江杭州二模(4月),7)设倾斜角为α的直线经过抛物线C:y2=2px(p>0)的焦点F,与抛物线C交于A,B两点,设点A在x轴上方,点B在x轴下方.若=m,则cosα的值为()A.-B.C.-D.答案A3.(2018浙江名校协作体期初,15)已知F是抛物线C:y2=4x的焦点,M是C上一点,FM的延长线交y轴于点N.若=,则||=.答案54.(2017浙江稽阳联谊学校联考(4月),11)已知抛物线y2=-2px过点M(-2,2),则p=,准线方程是.答案1;x=5.(2018浙江镇海中学期中,19)在平面直角坐标系xOy中,已知抛物线C:x2=2py的焦点为F(0,1),过O作斜率为k(k≠0)的直线l交抛物线于A(异于O点),已知D(0,5),直线AD交抛物线于另一点B.(1)求抛物线C的方程;(2)若OA⊥BF,求k的值.解析(1)由题意知,=1,所以p=2,所以抛物线C:x2=4y.(6分)(2)由题意知,直线OA:y=kx,将其代入抛物线方程:x2=4y中,消去y,得x2-4kx=0,则A(4k,4k2).(8分)直线AB:y=-x+5,直线BF:y=-x+1,(10分)联立可解得B---.(12分)又因为B在抛物线C上,则--=4×-,(13分)得(4k2+3)(4k2-5)=0,得k=±.(15分)考点二抛物线的几何性质6.(2018浙江镇海中学期中,6)已知抛物线y2=4x的焦点为F,O为原点,若M是抛物线上的动点,则的最大值为()A. B. C. D.答案C7.(2017浙江镇海中学模拟卷(五),12)已知抛物线x2=4y,则该抛物线的焦点坐标是;过焦点斜率为1的直线与抛物线交于P,Q两点,则|PQ|=.答案(0,1);88.(2016浙江宁波二模,19)在“2016”的Logo设计中,有这样一个图案:.其由线段l、抛物线弧E及圆C三部分组成.对其进行代数化的分析,如图建系,发现:圆C方程为(x-4)2+y2=16,抛物线弧E:y2=2px(p>0,y≥0,0≤x≤8),若圆心C恰为抛物线y2=2px的焦点,线段l所在的直线恰为抛物线y2=2px的准线.(1)求p 的值及线段l 所在的直线方程;(2)P 为圆C 上的任意一点,过P 作圆的切线交抛物线弧E 于A 、B 两点,问是否存在这样的点P,使得弦AB 在l 上的投影的长度与圆C 的直径之比为4∶3?若存在,求出P 点坐标;若不存在,请说明理由.解析 (1)由题意易得p=8,线段l 所在直线方程为x=-4.(5分) (2)假设存在这样的P 点,设P(x 0,y 0)(0≤x 0≤8), 则切线方程为(x 0-4)(x-4)+y 0y=16,(7分)将其与抛物线方程y 2=16x 联立,显然x 0≠4,y 0>0. 整理得-y 2+y 0y-4x 0=0,(9分) 设点A 、B 在l 上的投影分别为M,N. 由题意可得|MN|=|y A -y B |= -=, 解得x 0=1(x 0=16舍去).此时P(1, ),则y A,B =( ±2),(11分)因为抛物线弧的右上端点坐标为(8,8 ),且( +2)>8 ,故此时的P 不满足条件,即这样的P 点不存在.(15分)B 组 2016—2018年模拟·提升题组一、选择题1.(2017浙江绍兴质量调测(3月),7)已知抛物线y 2=2px(p>0)的焦点为F,过点M(p,0)的直线交抛物线于A,B 两点,若 =2 ,则=( )A.2B.C. D.与p 有关答案 B二、填空题2.(2017浙江名校(镇海中学)交流卷二,13)设抛物线y2=4x的焦点为F,P,R为抛物线上的点,若|PF|=4,则点P的坐标是;若直线RF与抛物线的另一交点为Q,且△RQO(O为坐标原点)的重心在直线y=x上,则直线RF的斜率是.答案(3,±2);2或13.(2017浙江台州4月调研卷(一模),15)过抛物线y2=4x的焦点F作直线与抛物线及其准线分别交于A,B,C三点,若=4,则||=.答案4.(2017浙江名校新高考研究联盟测试一,11)已知抛物线C:y2=2x,若C上的点M到焦点F的距离为,则△OFM的面积是.答案1三、解答题5.(2018浙江名校协作体期初,21)如图,已知抛物线C1:x2=2py的焦点在抛物线C2:y=x2+1上,点P是抛物线C1上的动点.(1)求抛物线C1的方程及其准线方程;(2)过点P作抛物线C2的两条切线,A、B为两个切点,求△PAB面积的最小值.解析(1)C的方程为x2=4y,(3分)1其准线方程为y=-1.(5分)(2)设P(2t,t2),A(x1,y1),B(x2,y2),则切线PA的方程:y-y=2x1(x-x1),即y=2x1x-2+y1,又y1=+1,所以y=2x1x+2-y1,同理得切线PB的方程为y=2x2x+2-y2,又切线PA1和PB都过P点,所以--所以直线AB的方程为4tx-y+2-t2=0.(9分)--联立-得x2-4tx+t2-1=0,所以-所以|AB|=|x1-x2|=.(11分)点P到直线AB的距离d==.(13分)所以△PAB的面积S=|AB|d=2(3t2+1)=2(3t2+1,所以当t=0时,S取得最小值,为2.即△PAB面积的最小值为2.(15分)6.(2017浙江名校(诸暨中学)交流卷四,21)设抛物线C:x2=2py(p>0)的焦点为F,直线l过点F,且与C交于M,N两点.(1)当l与y轴垂直时,△OMN的面积为2(O为坐标原点),求此时抛物线C的方程;(2)过M,N分别作抛物线C的两条切线交于点P,当直线l变化时,证明:P点在一条定直线上,并且以MP为直径的圆过定点.解析(1)当直线l与y轴垂直时,|MN|=2p,S△OMN=·2p·==2,因此p=2,所以此时抛物线C的方程为x2=4y.(4分)(2)证明:由题意知,直线l的斜率必存在,设l的方程为y=kx+,M(x1,y1),N(x2,y2),P(x P,y P).由x2=2py,得y=x2,所以y'=x,所以切线PM的斜率为x1,PM的方程为y-y1=x1(x-x1),即x1x=p(y1+y).同理,PN的方程为x2x=p(y2+y).联立消去x,得y=--=--=-,故点P的纵坐标为定值,所以点P在定直线y=-,即抛物线的准线上.(12分)把yP=-代入x1x=p(y1+y),得x P=-=pk,所以P-,又因为F,所以kPF=-.于是PF⊥MN,亦即∠PFM=90°,所以以PM为直径的圆过定点F.(15分)C组2016—2018年模拟·方法题组方法1抛物线的定义和标准方程的解题策略1.(2017浙江名校协作体期初,9)双曲线C:-y2=1的渐近线方程是;若抛物线y2=2px(p>0)的焦点与双曲线C的一个焦点重合,则p=.答案y=±x;42.(2016浙江嘉兴第一中学能力测试,20)已知抛物线x2=2py(p>0)与直线3x-2y+1=0交于A,B两点,|AB|=,点M在抛物线上,MA⊥MB.(1)求p的值;(2)求点M的坐标.解析(1)将y=x+代入x2=2py,得x2-3px-p=0,由|AB|=及p>0得p=.(2)由(1)得A(1,2),B-,抛物线方程为y=2x2.设点M(x,y0),由MA⊥MB得·=0,即(x-1)+(y0-2)-=0,将y=2代入得(x0-1)+4(x0-1)(x0+1)·-=0,又x≠1且x0≠-,所以1+4(x0+1)-=0,解得x0=0或x0=-,所以点M的坐标为(0,0)或-.方法2抛物线的几何性质的解题策略3.(2016“江南十校”信息优化卷,13)经过抛物线y2=2px(p≠0)的顶点O作两条弦OA和OB,若弦OA、OB所在直线的斜率k1、k2恰好是方程x2+6x-4=0的两个根,则直线AB的斜率为.答案方法3与抛物线有关的综合问题的解题策略4.(2016浙江模拟训练卷(三),19)已知抛物线C:y2=4x的焦点为F,过点M(-1,0)且斜率为k的直线l与抛物线C相交于不同的两点A、B,且∠AFB为锐角.(1)求k的取值范围;(2)求△AFB面积的取值范围.解析(1)显然k≠0,直线l的方程为y=k(x+1),由得k2x2+2(k2-2)x+k2=0.设A(x1,y1)、B(x2,y2),则有x1+x2=--,x1x2=1.显然A,F,B三点不共线,故∠AFB为锐角等价于·>0.而·=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+1)·(x2+1)=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1=2k2+2+--,从而有2k2+2+-->0,即有k2>.由Δ=4(k2-2)2-4k4>0,得k2<1.则有<k2<1,故k的取值范围为--∪.(2)|AB|=|x1-x2|=·-=·--=·-,点F(1,0)到直线l:kx-y+k=0的距离为d=,∴S△AFB=×|AB|×d=-=4-,由(1)知<k2<1,则1<<2,∴0<S△AFB<4,故△AFB面积的取值范围是(0,4).。