高考数学理科真题汇编解析:第六章数列
- 格式:doc
- 大小:506.00 KB
- 文档页数:8
第六章 数列第一节 等差数列与等比数列题型67 等差(等比)数列的公差(公比)1.(2017北京理10)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =_______. 解析由11a =-,48a =,则21132a a d =+=-+=,由11b =-,48b =,则2q =-,则212b b q ==.故22212a b ==. 2.(2017全国1理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ). A .1B .2C .4D .8解析 45113424a a a d a d +=+++=,61656482S a d ⨯=+=,联立112724 61548 a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②,得()211524-=d ,即624d =,所以4d =.故选C.3.(2017全国2理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ). A .1盏 B .3盏 C .5盏 D .9盏 解析 设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.故选B.4.(2017全国3理14)设等比数列{}n a 满足12–1a a +=, 13––3a a =,则4a = ___________.解析 因为{}n a 为等比数列,设公比为q .由题意得121313a a a a +=-⎧⎨-=-⎩,即112111 3 a a q a a q +=-⎧⎪⎨-=-⎪⎩①②显然1q ≠,10a ≠,式式②①,得13q -=,即2q =-,代入①式可得11a =, 所以()3341128a a q ==⨯-=-.题型68 等差、等比数列求和问题的拓展1.(2017全国1理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数100N N >:且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ). A.440B.330C.220D.110解析 设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. 设第n 组的项数为n ,则n 组的项数和为()12n n +,由题意得,100N >,令()11002n n +>,得14n ≥且*n ∈N ,即N 出现在第13组之后,第n 组的和为122112nn -=--,n 组总共的和为()12122212n n n n +--=---,若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数,即()*21214k n k n -=+∈N ,≥,()2log 3k n =+,得n 的最小值为295n k ==,, 则()2912954402N ⨯+=+=.故选A.2.2017山东理19)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=, (1)求数列{}n x 的通项公式;(2)如图所示,在平面直角坐标系xOy 中,依次联结点()111P x ,,()222P x ,,…,()11,1n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T .解析 (1)设数列{}n x 的公比为q ,由已知0q >. 由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=, 因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过1231,,,,n P P P P +向x 轴作垂线,垂足分别为1231,,,,n Q Q Q Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以1n n T b b b b =++++=13n n n n ---⨯+⨯+⨯++-⨯++⨯① 又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯②-①②,得132(n n n T n ----=⨯++++-+⨯=1132(21n n n---+--所以(21)21.2n n n T -⨯+=题型69 等差、等比数列的性质及其应用1.(2017江苏09)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = . 解析 解法一:由题意等比数列公比不为1,由()()313616171416314a q S q a q S q ⎧-==⎪-⎪⎨-⎪==⎪-⎩,因此36319S q S =+=,得2q =. 又3123S a a a =++()2117174a q qa =++==,得114a =,所以78132a a q ==.故填32.解法二(由分段和关系):由题意3363374634S S S q S ⎧=⎪⎪⎨⎪=+=⎪⎩,所以38q =,即2q =.下同解法一.2.(2017全国2理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 解析 设{}n a 首项为1a ,公差为d .由3123a a d =+=,414610S a d =+=,得11a =,1d =,所以n a n=,()12n n n S +=,()()112222122311nk kSn n n n ==++++=⨯⨯-+∑11111112122311n n n n ⎛⎫-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.题型70 判断或证明数列是等差、等比数列1.(2017江苏19)对于给定的正整数k ,若数列{}n a 满足1111+n k n kn nn ka aa a a --+-++-++⋅⋅⋅+++⋅⋅⋅+2n k n a k a +=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“()3P 数列”;(2)若数列{}n a 既是“()2P 数列”,又是“()3P 数列”,证明:{}n a 是等差数列. 解析 (1)因为{}n a 是等差数列,设其公差为d ,则()11n a a n d =+-, 从而当4n …时,()()1111=n k n k a a a n k d a n k d -++=+--+++-()12212n a n d a +-=,1,2,3k =,所以321123+++6n n n n n n n a a a a a a a ---+++++=,因此等差数列{}n a 是“()3P 数列”. (2)由数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n …时,21124n n n n n a a a a a --+++++= ① 当4n …时,3211236n n n n n n n a a a a a a a ---++++++++= ② 由①知,()()321144n n n n n a a a a a n ---++=-+≥ ③()()231142n n n n n a a a a a n +++-+=-+≥ ④将③④代入②,得112n n n a a a -++=,其中4n …, 所以345,,,a a a ⋅⋅⋅是等差数列,设其公差为d '.在①中,取4n =,则235644a a a a a +++=,所以23a a d '=-, 在①中,取3n =,则124534a a a a a +++=,所以312a a d '=-, 从而数列{}n a 是等差数列.评注 这是数列新定义的问题,其实类似的问题此前我们也研究过,给出仅供参考.(2015南通基地密卷7第20题)设数列{}n a 的各项均为正数,若对任意的*n ∈N ,存在*k ∈N ,使得22n k n n k a a a ++=成立,则称数列{}n a 为“k J 型”数列.(1)若数列{}n a 是“2J 型”数列,且28a =,81a =,求2n a ;(2)若数列{}n a 既是“3J 型”数列,又是“4J 型”数列,证明数列{}n a 是等比数列. 解析 (1)由题意得,2468,,,,a a a a ⋅⋅⋅成等比数列,且公比138212a q a ⎛⎫== ⎪⎝⎭,所以412212n n n a a q --⎛⎫== ⎪⎝⎭.(2)由{}n a 是“4J 型”数列得159131721,,,,,,a a a a a a ⋅⋅⋅成等比数列,设公比为t , 由{}n a 是“3J 型”数列得1471013,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为1α;2581114,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为2α; 3691215,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为3α; 则431311a t a α==,431725a t a α==,432139a t a α==, 所以123ααα==,不妨令123αααα===,则43t α=. 所以()3211311k k k a aα----==,()2311223315111k k k k k a a a t a a ααα------====,所以131323339111k k k k kaa a t a a ααα----====,综上11n n a a -=,从而{}n a 是等比数列.2.(2017北京理20)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.解析(1)111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-. 当3n …时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k kb na -关于*k ∈N 单调递减.从而{}112211ma x ,,,1n n n c b a n b a n b an b a n=---=-=-, 将1,2,3n =代入,满足此式,所以对任意1n …,1n c n =-,于是11n n c c +-=-,得{}n c 是等差数 列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则()[]()()121111211(1)1k k b na b k d a k d n b a n d nd k -=+--+-=-+--. 所以()()11212111211,,n b a n n d nd d nd c b a n d nd ⎧-+-->⎪=⎨-⎪⎩当时当时….①当10d >时,取正整数21d m d >,则当n m …时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n …, (){}(){}()11211211max ,01max ,0n c b a n n d b a n d a =-+-=-+--.此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <,所以()()()11211211121n b a n n d nd c b d n d d a d n n n-+---==-+-++…()111212||n d d a d b d -+-+--.对任意正数M ,取正整数12112211||max ,M b d a d d d m d d ⎧⎫+-+-->⎨⎬-⎩⎭,故当n m …时,nc M n>. 题型71 等差数列与等比数列的交汇问题——暂无第二节 数列的通项公式与求和题型72 数列通项公式的求解 题型73 数列的求和1.(2017天津理18)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N .解析 (1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以2nn b =.由3412b a a =-,可得138d a -= ① 由114=11S b ,可得1516a d += ② 联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯=1112(14)4(31)4=(32)4814n n n n n ++⨯----⨯--⨯--,得1328433n n n T +-=⨯+. 所以数列{}221n n a b -的前n 项和为1328433n n +-⨯+. 2.(2017全国3理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则数列{}n a 前6项的和为( ). A .24-B .3-C .3D .8解析 因为{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d ,则2326a a a =,即()()()211125a d a d a d +=++.因为11a =,代入上式可得220d d +=,又0d ≠,则2d =-,所以()61656561622422S a d ⨯⨯=+=⨯+⨯-=-.故选A. 第三节 数列的综合题型74 数列与不等式的综合1.(2017浙江理22)已知数列{}n x 满足:11x =,()()*11ln 1n n n x x x n ++=++∈N .证明:当*n ∈N 时.(1)10n n x x +<<; (2)1122n n n n x x x x ++-…; (3)1-21122n n n x -剟. 解析 (1)用数学归纳法证明:0n x >.当1n =时,110x =>,假设n k =时,0k x >,那么1n k =+时,若10k x +…,则()110ln 10k k k x x x ++<=++…,矛盾,故10k x +>. 因此()*0n x n >∈N ,所以()111ln 1n n n n x x x x +++=++>. 因此()*10n n x x n +<<∈N .(2)由()111l n 1n n n nx x x x +++=++>,得()()21111114222ln1nnn nn n n nx x x x x x x x ++++++-+=-+++. 记函数()()()()222ln 10f x x x x x x =-+++….()()()()()222122222ln 1ln 1ln 10111x x x x xf x x x x x x x x -++++'=-+++=++=+++++…,知函数()f x 在[)0,+∞上单调递增,所以()()00f x f =…, 因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=…,即()*1122n n n n x x x x n ++-∈N …. (3)因为()()*11111ln 12n n n n n n x x x x x x n +++++=+++=∈N …,得112n n x x +…,以此类推,21111,,22n n x x x x -厖,所以112112112n n n n n n x x xx x x x x ----⎛⎫=⋅⋅⋅⋅ ⎪⎝⎭=x ?,故112n n x -…. 由(2)知,()*1122n n n n x x x x n ++-∈N …,即111112022n n x x +⎛⎫--> ⎪⎝⎭…, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎝⎭⎝⎭厖?,故212n n x -….综上,()*121122n n n x n --∈N 剟.。
第六章数列第一节等差数列与等比数列题型67等差(等比)数列的公差(公比)1.(2017北京理10)若等差数列an 和等比数列bn满足a1b –11,a b 844,则a2b2解析_______.由a 1,a 8,则a a d 132,由b 1,b 8,则q 2 142114,则b b q 2 21.故a221b22.2.(2017全国1理4)记S为等差数列n an 的前n项和.若a a 24,S 48,则{a}456n的公差为().A.1B.2C.4D.8解析a a a 3d a 4d 24 4511,S 6a61652d 482a7d 24,联立6a15d 48①②①3②,得2115d24,即6d 24,所以d 4.故选C.3.(2017全国2理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381 盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯().A.1盏B.3盏C.5盏D.9盏解析设顶层灯数为a1,q 2,S7a121127381,解得a 31.故选B.4.(2017全国3理14)设等比数列___________.a满足a a –1,a–a –3,则a n12134解析因为a n为等比数列,设公比为.由题意得a a 112a a 313a aq 1,即a aq 311q1 121 1②①1显然q 1, a0 1,式② 式①,得 1 q 3 ,即 q2,代入 ① 式可得 a 1 1,所以 aa q 413128.题型 68等差、等比数列求和问题的拓展1.(2017 全国 1 理 12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是 2 ,接下来的两项是 2 , 2 ,再接下来的三项是 2 , 2 , 2 ,依此类推.求满足如下条件的最小整数 N :N 100 码是( ).且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活A.440B.330C.220D.110解析 设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. n1n设第 n 组的项数为 n ,则 n 组的项数和为,由题意得, N100 ,令 2n1n2100 ,得 n ≥ 14 且 n N*,即 N 出现在第 13 组之后,第 n 组的和为1 2n 1 22 n1, n 组总共的和为2 12n1 2n 2n 12 n,若要使前 N 项和为 2 的整数幂,则 Nn1n2项的和 2k 1应与2 n 互为相反数,即 2k1 2 nk N *,n ≥14,k log2n 3,得 n 的最小值为n 29 ,k 5,则 N2912925 440 .故选 A.2.2017 山东理 19)已知xn是各项均为正数的等比数列,且xx3 , xx2 1232,x 的通项公式;(1)求数列n(2)如图所示,在平面直角坐标系 xOy中,依次联结点P x ,1,Px ,21122,…,P n 1x , n 130 0 1 0 1 2得到折线PP n 112Pn1,求由该折线与直线y0,x x,x x1n 1所围成的区域的面积T.n2解析(1)设数列{x}n的公比为,由已知q 0.由题意得x x q 311x q2x q 211,所以3q25q 20,因为q 0,所以q 2,x 11,因此数列{x}n的通项公式为x 2n 1.n(2)过P,P,P,,P123n 1向轴作垂线,垂足分别为Q ,Q,Q,,Q123n 1,由(1)得xn 1x 2n 2n 12n 1. n记梯形P P Q Q的面积为b.n n 1n 1n n由题意bn (n n 1)22n 1(2n 1)2n 2,所以T b b bn1bn31n n n n①又2T 32n0521722(2n 1)2n 2(2n 1)2n 1②①②,得T 3n 1n n n 232n 1( n n 1(21所以Tn (2n 1)22n1.qx3题型69等差、等比数列的性质及其应用1.(2017江苏09)等比数列a的各项均为实数,其前n项的和为nSn,已知S374,63S ,则a4.解析解法一:由题意等比数列公比不为1S,由S a 1q 371q4a 1q 6631q4,因此S S61q339,得q 2.又S a a a a1q q3123127a171,得a ,所以a a q44732.故填32.7S4解法二(由分段和关系):由题意S S q3S63法一.634,所以q38,即q 2.下同解2.(2017全国2理15)等差数列a n的前n项和为Sn,a 33,S 104,则n1Sk 1k.解析设an 首项为a,公差为d .由a a 2d 3,S 4a 6d 10,得a 1,d 1,1 3 1 4 1 1所以a nn,Sn nn12,n 122S 1223 k 1 k22n n 1n n 1111212231111n 1n n n 112n 21n 1n 168361181133.4题型70判断或证明数列是等差、等比数列1.(2017江苏19)对于给定的正整数k,若数列an满足a nakan1k1na1na+a2k对a任意正整数nn k 1n k n总成立,则称数列a n 是“Pk数列”.(1)证明:等差数列a n 是“P3数列”;(2)若数列a n 既是“P 2数列”,又是“P 3数列”,证明:a n是等差数列.解析(1)因为a n 是等差数列,设其公差为d,则a a n 1d,n1从而当n…4时,an k an kan k 1d a n k 1d =112a 2n 1d2a,k 1,2,3,1n所以an 3an 2+an1+an 1an 2+an 36a ,因此等差数列a是“P 3数列”.n n(2)由数列a n既是“P 2数列”,又是“P 3数列”,因此,当n…3时,an 2an 1an 1an 24an①当n…4时,an 3an 2an 1an 1an 2an 36an②由①知,an 3an 24a n 1aann1n≥4③a n 2an 34a n 1a n 1ann≥2④将③④代入②,得an 1an 12a,其中n…4,n所以a,a,a,是等差数列,设其公差为d345.在①中,取n 4,则a a a a 4a,所以a a d2356423,在①中,取n 3,则a a a a 4a,所以a a 2d ,1245313从而数列a是等差数列.n评注这是数列新定义的问题,其实类似的问题此前我们也研究过,给出仅供参考.(2015南通基地密卷7第20题)设数列的各项均为正数,若对任意的n N*,a n5存在k N*,使得a2n k a a nn 2k成立,则称数列a n为“Jk型”数列.(1)若数列a n是“J2型”数列,且a 8,a 1,求a;282n(2)若数列a n 既是“J型”数列,又是“J型”数列,证明数列34a n是等比数列.解析(1)由题意得,a,a,a,a,2468成等比数列,且公比1a 3 1q 8a22,所以a a q n 12n21n 4.(2)由a n 是“J型”数列得4a,a,a,a,a,a,159131721成等比数列,设公比为t,由a n是“J3型”数列得a,a,a,a,a,1471013成等比数列,设公比为;1a,a,a,a,a,25811 14a,a,a,a,a,36912 15成等比数列,设公比为;2成等比数列,设公比为;3a a a则13 4 t3,17 4 t3,214t3,a a a159所以,不妨令123123,则t 43.所以a3k k 13a3k212,a11a3k 1a k 25a t k 21a1k23a133k 11,所以a3k a k 39a t12k3a1k13a133k1,综上a an 13n1,从而a n是等比数列.2.(2017北京理20)设{a}n 和{b }n是两个等差数列,记2 123c max{b a n,b a n,,b an}(n 1,2,3,)n1122n nx,x,,x这s个数中最大的数.12s ,其中max{x,x,,x}12s表示(1)若a n,b 2n 1,求c,c,c n n123的值,并证明{c }n是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n m时,cn Mn;或者存在正整数6m,使得c,cm m1,cm 2,是等差数列.解析(1)c b a 110111,c max b2a,b 2a max121,322121122,c max b3a,b 3a,b 3a max 131,332,53323112233.当n…3时,bk 1nak1b nabk k k 1bn ak k 1a2n0k,所以b nak k关于k N*单调递减.从而c m na bx11a n,b2n2,ann,,b1an11b a n将n 1,2,3代入,满足此式,所以对任意等差数列.n…1,c 1n,于是c c 1,得cn n 1n n是(2)设数列an 和bn的公差分别为d,d12,则b na b k 1d a (k 1)d n b a n d nd k k12111121b an n 1d nd,当d nd时112121.b 1a1n,当d2…nd1时k 1.①当d 01时,取正整数md2d1,则当n…m 时,nd d,因此c b a n12n11.此时,c,cm m1,cm 2,是等差数列.②当d 01时,对任意n…1,c b a nn 1max d,0b a n 1max d,0an1121121此时,c,c,c,123,c,n是等差数列.③当d 01时,当dn 2d1时,有ndd12 c所以n.1112,所以c b a n n1d nd b d n1121n d d a d12…n n n7n d d a d |b d| 111212.对任意正数M,取正整数m max M |b d|a d d d12112,2d d11,c故当n…m时,n Mn.题型71等差数列与等比数列的交汇问题——暂无第二节数列的通项公式与求和题型72题型73数列通项公式的求解数列的求和1.(2017天津理18)已知{a}n 为等差数列,前n项和为Snn N,{b}n是首项为2的等比数列,且公比大于0,b b 12,b a 2a,S 11b23341114.(1)求{a }和{b}nn的通项公式;(2)求数列a b 的前n项和n N.2n2n 1解析(1)设等差数列{a}n 的公差为d,等比数列{b}n的公比为q.由已知b b 1223,得b(q q2)12,而b 2,所以q112q 60.又因为q 0,解得q 2.所以b 2nn.由b a 2a341,可得3d a 81①S=11b,可得a 5d 16由1141a 1,d 3,由此可得联立①②,解得1a 3n 2n.②所以数列{a}n 的通项公式为a 3n 2n,数列{b}n的通项公式为b 2nn.(2)设数列{a b2n2n 1}的前n项和为T,n由a2n 6n 2,b2n 124n1,有a b2n2n 1(3n 1)4n,8故 T2 4 5 4 n28 4 3(3n 1) 4 n,4T 2 4 25 43 8 4 4n(3n 4) 4 n(3n 1) 4n 1 ,上述两式相减,得3T2 434 23 43n3 4 n(3n 1) 4 n112 (14n ) 144 (3n 1) 4n 1= (3n 2) 4 n 18,得 Tn3n 2 8 4n 133.所以数列a b2n 2n 1的前n 项和为3n 2 8 4n 133.2.(2017 全国 3 理 9)等差数列an的首项为 1,公差不为 0.若a 2,a 3,a 6成等比数列,则数列an前6 项的和为( ).A .24B . 3C .3D .8解 析 因为an为等差数列,且 a , a , a 236成等比数列,设公差为d ,则 a 23a a ,即2 6a12d2a d1a 5d .因为a1 11,代入上式可得 d 22d 0,又 d 0 ,则 d2,所以 S 6a 6 1 6 5 6 5d 16 2 24 .2 2故选A .第三节数列的综合题型 74数列与不等式的综合1.(2017 浙江理 22)已知数列xn* n N 时.0 xx ;(1) n n 1x xn n 1 2xx;(2) nn 12满足: x1 1, x xnn 1ln 1xn 1n N *.证明:当(3)1 1 剟x 2n 1 2n -2.解析 (1)用数学归纳法证明:x0 n.n当n 1时,x 101,假设n k时,x 0k,9那么n k1时,若x 0k 1,则0x x kk 1ln 1xk1…,矛盾,故xk 10.因此x 0n N *,所以n x xn n1ln 1xn1xn1.因此0xn1xn N *.n(xn 124xn)12 xn由xnx21n1l x nnx .n11xn12xn1,l得xn1x n1n 1xn记函数fxx 22xx 2l n 1x x 0.fx 22x 1x22x2xx 2x 2ln1x ln x 1ln x 1 0x 1x 1x 1,知函数f x 在0,上单调递增,所以fx…f 0,因此x2n 12xn 1xn 12l n 1xn1f xn1…0,即2xn 1x…n n 1n N *.2(3)因为x xn n 1ln 1xn1…xn1xn12xn1n N *,得x1n 1…,以此类推,x2nx1 n厖, x2 n 1x,2x112,所以x x xn n 1x x n 1n 2x2=xx?x11n1,故1x…2n 1.由(2)知,x xn n 1…2x x n Nn 1n*,即1111 (20)x2x2n 1n,所以111111厖2?2n 12x2x2x2n n 11n 2,故x …n21n 2.综上,11剟x n N2n 12n 2*2x xnn12n2n.10。
第六章 数列一.基础题组1.【2005某某,理13】在数列{}n a 中,11a =,22a =且()()*211nn n a a n N +-=+-∈则100S =__________。
【答案】2600【解析】当n 为奇数时,20n n a a +-=;当n 为偶数时,22n n a a +-= 因此,数列{}n a 的奇数各项都是1,偶数项成公差为2的等差数列()()()210010011505021005050260022a a S a a ++=+=+=本题答案填写:26002.【2006某某,理7】已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .100 【答案】C3.【2006某某,理16】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++,n θ是n a 与i 的夹角,(其中()0,1=i),设n n S θθθtan tan tan 21+++= ,则n n S ∞→lim =.【答案】1【解析】设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++=0n A A ,n θ是n a 与i 的夹角,111tan (1)n n n n n θ+==+(其中()0,1=i ),设n n S θθθtan tan tan 21+++= 111111223(1)1n n n +++=-⋅⋅++,则nn S ∞→lim =1.4.【2007某某,理8】设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k = ( )A.2B.4C.6D.8【答案】B 【解析】k a 是1a 与2k a 的等比中项可得12k k a a a =⨯(*),由{}n a 为等差数列可得121(1),(21)k k a a k d a a k d =+-=+-及19a d =代入(*)式可得4k =.故选B5.【2007某某,理13】设等差数列{}n a 的公差d 是2,前n 项的和为,n S 则22lim n n na n S →∞-=__________. 【答案】3 【解析】根据题意知11(1)222n a a n n a =+-⨯=+-21,(1)n S n n a =+-代入极限式得22112134(2)(2)lim 3(1)n n a n a n n a →∞+-+-=+- 6.【2008某某,理15】已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→nn a lim .【答案】767.【2009某某,理6】设a >0,b >0.若3是3a与3b的等比中项,则ba 11+的最小值为( ) A.8 B.4 C.1 D.41【答案】B【解析】3是3a 与3b 的等比中项⇒3a·3b=3⇒3a+b =3⇒a+b =1,∵a>0,b >0,∴41212≤⇒=+≤ab b a ab .∴4411111=≥=+=+ab ab b a b a . 8.【2010某某,理6】已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )A.158或5 B.3116或5 C.3116 D.158【答案】C法二:∵S6=S3+a4+a5+a6=S3+S3·q3, ∴9S3=S3+S3·q3得q3=8,解得q =2. ∴{1n a }是首项为1,公比为12的等比数列. ∴其前5项和为511[1()]31211612-=-9.【2011某某,理4】已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .110 【答案】D.【解析】∵2,9327-=•=d a a a ,∴)16)(4()12(1121--=-a a a ,解之得201=a ,∴110)2(2910201010=-⨯+⨯=s . 10.【2014某某,理11】设n a 是首项为1a ,公差为1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.【答案】12-. 【解析】试题分析:依题意得2214S S S ,∴21112146a a a ,解得112a . 考点:1.等差数列、等比数列的通项公式;2.等比数列的前n 项和公式.二.能力题组1.【2005某某,理18】已知:()1221*,0,0n n n n n n u a a b a b ab b n N a b ---=+++++∈>>。
数列的概念考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.知识梳理 1.数列的定义按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类标准 类型 满足条件 项数有穷数列 项数有限 无穷数列 项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的通项公式如果数列{a n }的第n 项a n 与它的序号n 之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式. 4.数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.常用结论1.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *);若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *).判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)1,1,1,1,…,不能构成一个数列.( × )(3)任何一个数列不是递增数列,就是递减数列.( × )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( √ ) 教材改编题1.若数列{a n }满足a 1=2,a n +1=1+a n1-a n ,则a 2023的值为( )A .2B .-3C .-12D.13答案 C解析 因为a 1=2,a n +1=1+a n1-a n ,所以a 2=1+a 11-a 1=-3,同理可得a 3=-12,a 4=13,a 5=2,…,可得a n +4=a n ,则a 2023=a 505×4+3=a 3=-12.2.数列13,18,115,124,135,…的通项公式是a n =________.答案1nn +2,n ∈N *解析 ∵a 1=11×1+2=13, a 2=12×2+2=18,a 3=13×3+2=115,a 4=14×4+2=124,a 5=15×5+2=135,∴通过观察,我们可以得到如上的规律, 则a n =1nn +2,n ∈N *. 3.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________.解析 a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)] =4n -5,因为a 1也适合上式,所以a n =4n -5.题型一 由a n 与S n 的关系求通项公式例1 (1)设S n 为数列{a n }的前n 项和,若2S n =3a n -3,则a 4等于( ) A .27 B .81 C .93 D .243答案 B解析 根据2S n =3a n -3, 可得2S n +1=3a n +1-3, 两式相减得2a n +1=3a n +1-3a n , 即a n +1=3a n ,当n =1时,2S 1=3a 1-3,解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列, 所以a 4=a 1q 3=34=81.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n,则a n =________. 答案 ⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2解析 当n =1时,a 1=21=2. ∵a 1+3a 2+…+(2n -1)a n =2n,① ∴a 1+3a 2+…+(2n -3)a n -1=2n -1(n ≥2),② 由①-②得,(2n -1)·a n =2n -2n -1=2n -1,∴a n =2n -12n -1(n ≥2).显然n =1时不满足上式,∴a n =⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2.教师备选1.已知数列{a n }的前n 项和S n =n 2+2n ,则a n =________.解析 当n =1时,a 1=S 1=3.当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -1)2+2(n -1)]=2n +1.由于a 1=3适合上式,∴a n =2n +1.2.已知数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 当n =1时,a 1=S 1=2a 1+1, ∴a 1=-1.当n ≥2时,S n =2a n +1,①S n -1=2a n -1+1.②①-②得S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1, 即a n =2a n -1(n ≥2),∴{a n }是首项为a 1=-1,公比为q =2的等比数列. ∴a n =a 1·qn -1=-2n -1.思维升华 (1)已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2转化为关于a n 的关系式,再求通项公式.(2)S n 与a n 关系问题的求解思路方向1:利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. 方向2:利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.跟踪训练1 (1)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n +1,n ∈N *,则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2解析 根据题意,可得S n -1=2(n -1)2+(n -1)+1. 由通项公式与求和公式的关系, 可得a n =S n -S n -1, 代入化简得a n =2n 2+n +1-2(n -1)2-(n -1)-1=4n -1.经检验,当n =1时,S 1=4,a 1=3, 所以S 1≠a 1,所以a n =⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则a n =________.答案 ⎩⎪⎨⎪⎧-1,n =1,1n n -1,n ≥2解析 由已知得a n +1=S n +1-S n =S n +1S n , 两边同时除以S n +1S n , 得1S n +1-1S n=-1.故数列⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-1为公差的等差数列,则1S n=-1-(n -1)=-n .所以S n =-1n.当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n n -1,故a n =⎩⎪⎨⎪⎧-1,n =1,1n n -1,n ≥2.题型二 由数列的递推关系求通项公式 命题点1 累加法例2 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n答案 A解析 因为a n +1-a n =ln n +1n=ln(n +1)-ln n , 所以a 2-a 1=ln2-ln1,a 3-a 2=ln3-ln2, a 4-a 3=ln4-ln3,……a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式分别相加得a n -a 1=ln n -ln1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *).命题点2 累乘法例3 若数列{a n }满足a 1=1,na n -1=(n +1)·a n (n ≥2),则a n =________. 答案2n +1解析 由na n -1=(n +1)a n (n ≥2), 得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1×n -1n ×n -2n -1×…×34×23×1=2n +1, 又a 1=1满足上式,所以a n =2n +1. 教师备选1.在数列{a n }中,a 1=3,a n +1=a n +1n n +1,则通项公式a n =________.答案 4-1n解析 ∵a n +1-a n =1nn +1=1n -1n +1, ∴当n ≥2时,a n -a n -1=1n -1-1n, a n -1-a n -2=1n -2-1n -1,……a 2-a 1=1-12,∴以上各式相加得,a n -a 1=1-1n,∴a n =4-1n ,a 1=3适合上式,∴a n =4-1n.2.若{a n }满足2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0,且a n >0,a 1=1,则a n =________. 答案 n ·2n -1解析 由2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0得n (2a 2n +a n ·a n +1-a 2n +1)+2a n (a n +a n +1)=0,∴n (a n +a n +1)(2a n -a n +1)+2a n (a n +a n +1)=0, (a n +a n +1)[(2a n -a n +1)·n +2a n ]=0, 又a n >0,∴2n ·a n +2a n -n ·a n +1=0, ∴a n +1a n =2n +1n, 又a 1=1, ∴当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n n -1×2n -1n -2×2n -2n -3×…×2×32×2×21×1=2n -1·n . 又n =1时,a 1=1适合上式, ∴a n =n ·2n -1.思维升华 (1)形如a n +1-a n =f (n )的数列,利用累加法,即利用公式a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1(n ≥2),即可求数列{a n }的通项公式. (2)形如a n +1a n =f (n )的数列,常令n 分别为1,2,3,…,n -1,代入a n +1a n=f (n ),再把所得的(n -1)个等式相乘,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1(n ≥2)即可求数列{a n }的通项公式. 跟踪训练2 (1)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________.答案 2n -1+n解析 ∵a n +1=a n +2n -1+1,∴a n +1-a n =2n -1+1,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -2+2n -3+…+2+1+a 1+n -1=1-2n -11-2+2+n -1=2n -1+n .又∵a 1=2满足上式, ∴a n =2n -1+n .(2)(2022·莆田模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案 a n =2nn +1解析 由S n =n 2a n ,可得当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1, 即(n 2-1)a n =(n -1)2a n -1, 易知a n ≠0,故a n a n -1=n -1n +1(n ≥2).所以当n ≥2时,a n =a n a n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n +1×n -2n ×n -3n -1×…×24×13×1 =2n n +1.当n =1时,a 1=1满足a n =2n n +1. 故数列{a n }的通项公式为a n =2nn +1. 题型三 数列的性质 命题点1 数列的单调性例4 已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若数列{a n }为递增数列, 则有a n +1-a n >0,∴(n +1)2-2λ(n +1)-n 2+2λn =2n +1-2λ>0,即2n +1>2λ对任意的n ∈N *都成立, 于是有λ<⎝⎛⎭⎪⎫2n +12min =32,∵由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件. 命题点2 数列的周期性例5 (2022·广州四校联考)数列{a n }满足a 1=2,a n +1=11-a n (n ∈N *),则a 2023等于( )A .-2B .-1C .2 D.12答案 C解析 ∵数列{a n }满足a 1=2,a n +1=11-a n(n ∈N *), ∴a 2=11-2=-1, a 3=11--1=12,a 4=11-12=2,…,可知此数列有周期性,周期T =3, 即a n +3=a n ,则a 2023=a 1=2. 命题点3 数列的最值例6 已知数列{a n }的通项公式a n =(n +1)·⎝ ⎛⎭⎪⎫1011n,则数列{a n }的最大项为( )A .a 8或a 9B .a 9或a 10C .a 10或a 11D .a 11或a 12答案 B解析 结合f (x )=(x +1)⎝ ⎛⎭⎪⎫1011x的单调性,设数列{a n }的最大项为a n , 所以⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1,所以⎩⎪⎨⎪⎧n +1·⎝ ⎛⎭⎪⎫1011n ≥n +2·⎝ ⎛⎭⎪⎫1011n +1,n +1·⎝ ⎛⎭⎪⎫1011n ≥n ·⎝ ⎛⎭⎪⎫1011n -1,解不等式组可得9≤n ≤10. 所以数列{a n }的最大项为a 9或a 10. 教师备选1.已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( ) A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)答案 D解析 因为a n +1-a n =3n +3+k 2n +1-3n +k2n =3-3n -k2n +1, 由数列{a n }为递减数列知,对任意n ∈N *,a n +1-a n =3-3n -k 2n +1<0, 所以k >3-3n 对任意n ∈N *恒成立, 所以k ∈(0,+∞).2.在数列{a n }中,a 1=1,a n a n +3=1,则log 5a 1+log 5a 2+…+log 5a 2023等于( ) A .-1 B .0 C .log 53 D .4答案 B解析 因为a n a n +3=1,所以a n +3a n +6=1,所以a n +6=a n ,所以{a n }是周期为6的周期数列, 所以log 5a 1+log 5a 2+…+log 5a 2023 =log 5(a 1a 2…a 2023) =log 5[(a 1a 2…a 6)337·a 1], 又因为a 1a 4=a 2a 5=a 3a 6=1, 所以a 1a 2…a 6=1,所以原式=log 5(1337×1)=log 51=0. 思维升华 (1)解决数列的单调性问题的方法用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)求数列的最大项与最小项的常用方法 ①函数法,利用函数的单调性求最值.②利用⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.跟踪训练3 (1)在数列{a n }中,a n +1=⎩⎪⎨⎪⎧2a n,a n<12,2a n-1,a n≥12,若a 1=45,则a 2023的值为( )A.35B.45C.25D.15答案 D 解析 a 1=45>12,∴a 2=2a 1-1=35>12,∴a 3=2a 2-1=15<12,∴a 4=2a 3=25<12,∴a 5=2a 4=45,……可以看出四个循环一次, 故a 2023=a 4×505+3=a 3=15.(2)(2022·沧州七校联考)已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项. 答案 5解析 a n =n +13n -16=13⎝ ⎛⎭⎪⎫1+193n -16,当n >5时,a n >0,且单调递减; 当n ≤5时,a n <0,且单调递减, ∴当n =5时,a n 最小.课时精练1.数列{a n }的前几项为12,3,112,8,212,…,则此数列的通项公式可能是( )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -92答案 A解析 数列为12,62,112,162,212,…,其分母为2,分子是以首项为1,公差为5的等差数列,故数列{a n }的通项公式为a n =5n -42.2.在数列{a n }中,a 1=1,a n =1+-1na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D 解析 a 2=1+-12a 1=2,a 3=1+-13a 2=12, a 4=1+-14a 3=3,a 5=1+-15a 4=23. 3.已知数列{a n }的前n 项积为T n ,且满足a n +1=1+a n 1-a n (n ∈N *),若a 1=14,则T 2023为( )A .-4B .-35C .-53D.14答案 C解析 由a n +1=1+a n 1-a n ,a 1=14,得a 2=53,a 3=-4,a 4=-35,a 5=14,…,所以数列{a n }具有周期性,周期为4,因为T 4=a 1·a 2·a 3·a 4=1,2023=4×505+3, 所以T 2023=(a 1a 2a 3a 4)…(a 2021a 2022a 2023) =14×53×(-4)=-53. 4.若数列{a n }的前n 项和S n =2a n -1(n ∈N *),则a 5等于( ) A .8B .16C .32D .64 答案 B解析 数列{a n }的前n 项和S n =2a n -1(n ∈N *), 则S n -1=2a n -1-1(n ≥2), 两式相减得a n =2a n -1(n ≥2), 由此可得,数列{a n }是等比数列,又S 1=2a 1-1=a 1,所以a 1=1, 故数列{a n }的通项公式为a n =2n -1,令n =5,得a 5=16.5.(多选)已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *),则下列结论正确的是( ) A .这个数列的第10项为2731B.97100是该数列中的项 C .数列中的各项都在区间⎣⎢⎡⎭⎪⎫14,1内 D .数列{a n }是单调递减数列 答案 BC解析 a n =9n 2-9n +29n 2-1=3n -13n -23n -13n +1=3n -23n +1, 令n =10得a 10=2831,故A 错误;令3n -23n +1=97100得n =33∈N *, 故97100是数列中的项,故B 正确; 因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *.所以数列{a n }是单调递增数列, 所以14≤a n <1,故C 正确,D 不正确.6.(多选)若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =lnnn +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1, 所以{a n +1-a n }为递增数列,故B 错误; 对于C ,若a n =n , 则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故C 正确; 对于D ,若a n =ln nn +1,则a n +1-a n =ln n +1n +2-ln nn +1=ln ⎝⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n ,由函数y =ln ⎝⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故D 正确.7.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2解析 ∵a n +1=3S n (n ∈N *), ∴当n =1时,a 2=3; 当n ≥2时,a n =3S n -1, ∴a n +1-a n =3a n , 得a n +1=4a n ,∴数列{a n }从第二项起为等比数列, 当n ≥2时,a n =3·4n -2, 故a n =⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2.8.(2022·临沂模拟)已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n , 即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ∈N *,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.9.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3,由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知当n =1时,a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1, 于是a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1,将以上n -1个等式中等号两端分别相乘,整理得a n =n n +12.当n =1时,a 1=1满足a n =n n +12.综上可知,{a n }的通项公式为a n =n n +12.10.求下列数列{a n }的通项公式. (1)a 1=1,a n +1=a n +3n; (2)a 1=1,a n +1=2na n .解 (1)由a n +1=a n +3n 得a n +1-a n =3n,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =1+31+32+33+…+3n -1=1×1-3n1-3=3n-12,当n =1时,a 1=1=31-12,满足上式,∴a n =3n-12(n ∈N *).(2)由a n +1=2na n 得a n +1a n=2n, 当n ≥2时,a n =a 1×a 2a 1×a 3a 2×a 4a 3×…×a na n -1=1×2×22×23×…×2n -1=21+2+3+…+(n -1)=()122n n -.当n =1时,a 1=1满足上式, ∴a n =()122n n -(n ∈N *).11.已知数列{a n }满足a n =⎩⎪⎨⎪⎧3-a n -2,n ≤6,an -5,n >6,且{a n }是递增数列,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫167,3 B.⎣⎢⎡⎭⎪⎫167,3C .(1,3)D .(2,3)答案 D解析 若{a n }是递增数列,则⎩⎪⎨⎪⎧3-a >0,a >1,a 7>a 6,即⎩⎪⎨⎪⎧a <3,a >1,a 2>63-a -2,解得2<a <3,即实数a 的取值范围是(2,3).12.(多选)(2022·江苏盐城中学模拟)对于数列{a n },若存在数列{b n }满足b n =a n -1a n(n ∈N *),则称数列{b n }是{a n }的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{a n }是单增数列,则其“倒差数列”不一定是单增数列 B .若a n =3n -1,则其“倒差数列”有最大值 C .若a n =3n -1,则其“倒差数列”有最小值D .若a n =1-⎝ ⎛⎭⎪⎫-12n,则其“倒差数列”有最大值答案 ACD解析 若数列{a n }是单增数列,则b n -b n -1=a n -1a n -a n -1+1a n -1=(a n -a n -1)⎝ ⎛⎭⎪⎫1+1a n a n -1,虽然有a n >a n -1, 但当1+1a n a n -1<0时,b n <b n -1,因此{b n }不一定是单增数列,A 正确;a n =3n -1,则b n =3n -1-13n -1,易知{b n }是递增数列,无最大值,B 错误;C 正确,最小值为b 1.若a n =1-⎝ ⎛⎭⎪⎫-12n,则b n =1-⎝ ⎛⎭⎪⎫-12n-11-⎝ ⎛⎭⎪⎫-12n ,∵函数y =x -1x在(0,+∞)上单调递增,∴当n 为偶数时,a n =1-⎝ ⎛⎭⎪⎫12n∈(0,1),∴b n =a n -1a n<0,当n 为奇数时,a n =1+⎝ ⎛⎭⎪⎫12n>1,显然a n 是单调递减的,因此b n =a n -1a n也是单调递减的,即b 1>b 3>b 5>…,∴{b n }的奇数项中有最大值为b 1=32-23=56>0,∴b 1=56是数列{b n }(n ∈N *)中的最大值,D 正确.13.已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________. 答案 5解析 a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.14.(2022·武汉模拟)已知数列{a n }中,a 1=1,1a n +1-1a n=n +1,则其前n 项和S n =________.答案2nn +1解析 ∵1a 2-1a 1=2,1a 3-1a 2=3,1a 4-1a 3=4,…,1a n -1a n -1=n ,累加得1a n -1a 1=2+3+4+…+n ,得1a n=1+2+3+4+…+n =n n +12,∴a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=2n n +1.15.(多选)若数列{a n }满足a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),记数列{a n }的前n 项积为T n ,则下列说法正确的有( ) A .T n 无最大值 B .a n 有最大值 C .T 2023=1 D .a 2023=1答案 BCD解析 因为a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),所以a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…因此数列{a n }为周期数列,a n +6=a n ,a n 有最大值3, a 2023=a 1=1,因为T 1=1,T 2=3,T 3=9,T 4=9,T 5=3,T 6=1,T 7=1,T 8=3,…, 所以{T n }为周期数列,T n +6=T n ,T n 有最大值9,T 2023=T 1=1.16.已知数列{a n }中,a n =1+1a +2n -1(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2, 最小项为a 4=0.(2)a n =1+1a +2n -1=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8.即a 的取值范围是(-10,-8).。
第六章 数 列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念. (2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用等差数列、等比数列的有关知识解决相应的问题.(4)了解等差数列与一次函数的关系、等比数列与指数函数的关系.§6.1 数列的概念与简单表示法1.数列的概念 (1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项.所以,数列的一般形式可以写成,其中a n 是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n }.(2)通项公式:如果数列{a n }的与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数,当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有__________、__________、__________、__________.2.数列的分类(1)数列按项数是有限还是无限来分,分为、. (2)按项的增减规律分为________、_________、_________和__________.递增数列⇔a n +1______a n ;递减数列⇔a n +1_______a n ;常数列⇔a n +1_______a n .递增数列与递减数列统称为__________.3.数列前n 项和S n 与a n 的关系已知S n ,则a n =⎩⎪⎨⎪⎧__________(n =1),__________(n ≥2).4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n =____________;(2)2,4,6,8,…的一个通项公式为a n =____________;(3)3,5,7,9,…的一个通项公式为a n =____________;(4)2,4,8,16,…的一个通项公式为a n =____________;(5)-1,1,-1,1,…的一个通项公式为a n=_________________________;(6)1,0,1,0,…的一个通项公式为a n =____________;(7)a ,b ,a ,b ,…的一个通项公式为a n =____________;(8)9,99,999,…的一个通项公式为a n =____________.注:据此,很易获得数列1,11,111;…;2,22,222,…;…;8,88,888,…的通项公式分别为19(10n -1),29(10n-1),…,89(10n -1).自查自纠:1.(1)项 首项 a 1,a 2,a 3,…,a n ,… (2)第n 项 n (3)函数值 (4)a n a n -1(5)通项公式(解析法) 列表法 图象法 递推公式2.(1)有穷数列 无穷数列 (2)递增数列 递减数列摆动数列 常数列 > < = 单调数列 3.S 1 S n -S n -14.(1)n (2)2n (3)2n +1 (4)2n(5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n-1数列-1,43,-95,167,…的一个通项公式是( )A.a n =(-1)n n (n +1)2n -1B.a n =(-1)nn 22n -1C.a n =(-1)nn 22n +1D.a n =(-1)n n 3-2n 2n -1解:-1=-11,数列1,4,9,16,…对应通项n 2,数列1,3,5,7,…对应通项2n -1,数列-1,1,-1,1,…对应通项(-1)n.故选B.下列有四个命题:①数列是自变量为正整数的一类函数;②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中正确的个数是( )A.1B.2C.3D.4解:易知①③正确,②④不正确.故选B.若数列a n =1n +1+1n +2+…+12n,则a 5-a 4=( )A.110B.-110C.190D.1990解:a 5-a 4=⎝ ⎛⎭⎪⎫16+17+…+110-(15+16+17+18)=19+110-15=190,故选C.数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为____________.解:当n =1时,a 1=S 1=4;当n ≥2时,a n =S n -S n -1=2n +1,∴a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).故填a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).(2014·全国课标Ⅱ)数列{a n }满足a n +1=11-a n,a 8=2,则a 1=________. 解:由递推公式a n +1=11-a n .∵a 8=2,∴a 7=12,a 6=-1,a 5=2,可得{a n }是以3为周期的数列.∴a 1=a 4=a 7=12.故填12.类型一 数列的通项公式已知数列:45,910,1617,2526,….(1)试写出该数列的一个通项公式;(2)利用你写出的通项公式判断0.98是不是这个数列中的一项.解:(1)各项的分子为22,32,42,52,…,分母比分子大1,因此该数列的一个通项公式为a n =(n +1)2(n +1)2+1. (2)不妨令(n +1)2(n +1)2+1=0.98,得n 2+2n -48=0,解得n =-8(舍)或n =6.故0.98是这个数列中的第6项a 6.点拨:①一个数列只知道前n 项,其通项公式是不能确定的,即使完全知道该数列,其通项公式的形式也不一定是惟一的,如数列1,0,1,0,…的通项公式可写成a n =1+(-1)n +12或a n =⎪⎪⎪⎪⎪⎪sin n π2甚至分段形式a n =⎩⎪⎨⎪⎧1,n 是奇数,0,n 是偶数等.②对于此类归纳猜想求通项的题目,一定要掌握一些常见数列的通项公式,如{n },{2n },{(-1)n },{2n },{n 2},{2n -1}等,在此基础之上还要掌握一定的方法,如将各项分解成若干个数的和、差、积、商,分离分子分母等.③由于数列是特殊的函数,因此判断某数是否为数列中的项,即是知a n 判断方程a n =f (n )是否有正整数解.写出下列数列的一个通项公式: (1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)3,33,333,3333,…; (4)23,-1,107,-179,2611,…. 解:(1)a n =(-1)n·1n;(2)a n =2n+1;(3)a n =13(10n-1);(4)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即{n 2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1.类型二 由前n 项和公式求通项公式(1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n+1,则此数列的通项公式为a n = .解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11.当n =1时,2×1-11=-9=a 1.∴a n =2n -11. 故填2n -11.(2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -2n -1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).点拨:任何一个数列,它的前n 项和S n 与通项a n 都存在关系:a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).若a 1适合S n -S n -1,则应把它们统一起来,否则就用分段函数表示.另外一种快速判断技巧是利用S 0是否为0来判断:若S 0=0,则a 1=S n -S n -1,否则不符合,这在解小题时比较有用.已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n .(1)S n =2n 2+3n ; (2)S n =3n+1.解:(1)当n =1时,a 1=S 1=2×12+3×1=5;当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4;当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,∴a n =⎩⎪⎨⎪⎧4(n =1),2·3n -1(n ≥2).类型三 由递推公式求通项公式写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n +1=2n·a n (n ≥1);(2)a 1=1,a n =a n -1+1n (n -1)(n ≥2).解:(1)解法一:∵a n +1=2n·a n ,∴a n +1a n=2n, ∴a 2a 1=2,a 3a 2=22,a 4a 3=23,…,a n a n -1=2n -1. 将上述n -1个式子累乘,得a na 1=21+2+3+…+(n -1),即a n =2n (n -1)2(n ∈N *). 解法二:a n +1=2n ·a n =2n ·2n -1a n -1=…=2n ·2n -1·…·22·21a 1=21+2+…+n -1+n a 1=2n (n +1)2. ∴a n =2n (n -1)2. (2)由递推关系a n =a n -1+1n (n -1)(n ≥2),有a n -a n -1=1n -1-1n (n ≥2).于是有a 2-a 1=11-12,a 3-a 2=12-13,…,a n -a n -1=1n -1-1n.将上述n -1个式子累加,得a n =2-1n.当n =1时,a 1=1也满足,故a n =2-1n(n ∈N *).点拨:已知a 1和数列递推关系求通项时,可先计算出前若干项,通过分析这些项与序号的关系,归纳猜想出数列的通项公式,但这种不完全归纳得到的结论往往需要进行验证;但对于“a na n -1=f (n )”型递推关系常用“累乘法”求通项;对于“a n -a n -1=f (n )”型递推关系常用累加法求通项;以上两种情形皆可用迭代法求通项.还须注意检验n =1时,是否适合所求.写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=1,a n =3n -1+a n -1;(2)a 1=4,a n +1=n +2na n .解:(1)由a 1=1,a n -a n -1=3n -1(n ≥2),得 a 1=1,a 2-a 1=31,a 3-a 2=32,…, a n -1-a n -2=3n -2,a n -a n -1=3n -1,以上等式两边分别相加得a n =1+3+32+…+3n -1=3n-12,n =1时,a 1=1也适合,∴a n =3n-12.也可直接利用递推公式,逐项代替等式右边出现的a n -1,直至a 1:由a n =3n -1+a n -1=3n -1+3n -2+a n -2=…=3n -1+3n -2+…+32+31+a 1=3n-12.当n =1时,a 1=1也适合,∴a n =3n-12.(2)由递推关系a 1=4,a n +1=n +2na n ,有a n +1a n=n +2n ,于是有a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=nn -2,a n a n -1=n +1n -1,将这(n -1)个式子累乘,得a na 1=n (n +1)2,即当n ≥2时,a n =n (n +1)2a 1=2n (n+1),当n =1时,a 1=4也满足.所以a n =2n (n +1).类型四 数列通项的性质在数列{a n }中,a n =(n +1)⎝ ⎛⎭⎪⎫1011n(n ∈N *).(1)求证:数列{a n }先递增,后递减; (2)求数列{a n }的最大项.解:因a n =(n +1)⎝ ⎛⎭⎪⎫1011n是积幂形式的式子且a n >0,所以可用作商法比较a n 与a n -1的大小.(1)证明:令a n a n -1≥1(n ≥2),即(n +1)⎝ ⎛⎭⎪⎫1011n n ·⎝ ⎛⎭⎪⎫1011n -1≥1,整理得n +1n ≥1110,解得n ≤10. 令a na n +1≥1,即(n +1)⎝ ⎛⎭⎪⎫1011n(n +2)⎝ ⎛⎭⎪⎫1011n +1≥1,整理得n +1n +2≥1011,解得n ≥9.∴从第1项到第9项递增,从第10项起递减.(2)解:由(1)知a 9=a 10=1010119最大.点拨:要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.注意数列的单调性是探索数列的最大、最小项及解决其他许多数列问题的重要途径,因此要熟练掌握上述求数列单调性的方法.设函数f (x )=log 2x -log x 2(0<x <1),数列{a n }满足f 2an =2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判断数列{a n }的单调性.解:(1)∵f 2an =log22an -log2an 2=a n -1a n,∴a n -1a n=2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1,∵x ∈(0,1),∴2an ∈(0,1),a n <0.∴a n =n -n 2+1.(2)a n +1-a n =(n +1)-(n +1)2+1-(n -n 2+1)=1-(n +1)2+1-n 2+1=1-2n +1(n +1)2+1+n 2+1>1-2n +1(n +1)+n=0,∴a n +1>a n ,则数列{a n}是递增数列.也可由a n =-1n +n 2+1直接判断.1.已知数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑:(1)如果符号正负相间,则符号可用(-1)n或 (-1)n +1来调节.(2)分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系来解决.(3)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差、等比或其他特殊数列)等方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),注意a n =S n -S n -1的条件是n ≥2,还须验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项掌握先由a 1和递推关系求出前几项,再归纳、猜想a n 的方法,以及“累加法”“累乘法”等.(1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得:a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ).(2)已知a 1且a na n -1=f (n ),可以用“累乘法”得: a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ). 4.数列的简单性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.1.数列0.9,0.99,0.999,…的一个通项公式是( )A.1+⎝ ⎛⎭⎪⎫110nB.-1+⎝ ⎛⎭⎪⎫110nC.1-⎝ ⎛⎭⎪⎫110nD.1-⎝ ⎛⎭⎪⎫110n +1解:原数列前几项可改写为1-110,1-1102,1-1103,…,故通项a n =1-⎝ ⎛⎭⎪⎫110n .故选C.2.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+1a n -2(n ≥3),则a 4等于( )A.5512B.133C.4D.5 解:令n =3,4,即可求得a 4=133.故选B.3.(2014·陕西)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,真,真B.假,假,真C.真,真,假D.假,假,假解:∵a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列(n ∈N *),∴原命题为真,从而其逆否命题为真.逆命题为:若{a n }(n ∈N *)为递减数列,则a n +a n +12<a n ,为真命题,而逆命题与否命题互为逆否命题,从而否命题为真.故选A .4.已知数列{a n }的前n 项和S n =n (n -40),则下列判断中正确的是( )A.a 19>0,a 21<0B.a 20>0,a 21<0C.a 19<0,a 21>0D.a 19<0,a 20>0 解:当n =1时,a 1=S 1=-39; 当n ≥2时,a n =S n -S n -1=n (n -40)-(n -1)(n -41)=2n -41.将n =1代入满足上式. 综上有a n =2n -41.所以a 19=2×19-41=-3<0,a 20=2×20-41=-1<0,a 21=2×21-41=1>0.故选C.5.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝ ⎛⎭⎪⎫1+1n ,则a n 的值为( )A.2+lg nB.2+(n -1)lg nC.2+n lg nD.1+n lg n解法一:∵a n +1-a n =lg n +1n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=lgnn -1+lg n -1n -2+…+lg 21+2 =lg ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·32·21+2 =lg n +2.解法二:a n +1=a n +lg(n +1)-lg n ,a n +1-lg(n +1)=a n -lg n ,所以数列{a n -lg n }是常数列,a n -lg n =a 1-lg1=2,a n =2+lg n.故选A.6.(2013·北京东城区一模)对于函数y =n 1n x n +1)都在函数y =f (x )的图象上,则x 1+x 2+x 3+x 4+…+x 2012+x 2013的值为( )A.9394B.9380C.9396D.9400解:∵x 1=2,x 2=f (x 1)=f (2)=4,x 3=f (x 2)=f (4)=8,同理,x 4=2,x 5=4,x 6=8,因此,x 3k +1=2,x 3k +2=4,x 3k +3=8,k ∈N .∴x 1+x 2+x 3+…+x 2012+x 2013=(x 1+x 2+x 3)+…+(x 2011+x 2012+x 2013) =(2+4+8)×671=9394.故选A.7.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.解:a 8=S 8-S 7=82-72=15.故填15.8.若数列{a n }的通项公式为a n =|3n -19|,数列{a n }的最小项是________.解:a n =⎩⎪⎨⎪⎧19-3n ,(n ≤6),3n -19,(n ≥7). 数列{a n }具有性质a 1>a 2>…>a 6,而a 7<a 8<a 9<…,由于a 6=1,a 7=2,∴数列的第6项最小,其最小值为1.故填1.9.根据数列{a n } 的前几项,分别写出下列数列的一个通项公式.(1)7,77,777,7777,…;(2)4,-52,2,-74,85,…;(3)3,5,3,5,…; (4)1,2,2,4,3,8,4,16,…. 解:(1)将各项改写如下 79(10-1),79(102-1),79(103-1),79(104-1),… 易知a n =79(10n-1).(2)将各项绝对值改写如下41,52,63,74,85,…综合考查分子、分母,以及各项符号可知a n =(-1)n -1n +3n.(3)a n =⎩⎪⎨⎪⎧3(n 为奇数),5(n 为偶数),或a n =(3+5)+(-1)n -1(3-5)2=4+(-1)n.(4)观察数列{a n }可知,奇数项成等差数列,偶数项成等比数列,∴a n =⎩⎪⎨⎪⎧n +12(n 为奇数),2n 2(n 为偶数).10.(2014·四川模拟)观察下列三角形数表,假设第n 行的第二个数为a n (n ≥2,n ∈N *).(1)依次写出第六行的所有6个数; (2)归纳出a n +1与a n 的关系式,并求出{a n }的通项公式.解:(1)第六行的所有6个数分别是6,16,25,25,16,6.(2)依题意a n +1=a n +n (n ≥2),a 2=2,a n =a 2+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+2+3+…+(n -1)=2+(n -2)(n +1)2.所以a n =12n 2-12n +1(n ≥2,n ∈N *).11.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解:(1)由题设,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2,即a 1=-3或2,又a n 为正数,所以a 1=2.(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n = -3,又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1), 所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n.又a 1=2=2×1,所以a n =2n.(n ∈N *)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a2.若对任意的n ∈N *,都有a n ≤a 6成立,结合函数f(x)=1+12x-2-a2的单调性,有5<2-a2<6,∴-10<a<-8.§6.2 等差数列1. 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的________都等于同一个________,那么这个数列就叫做等差数列,这个常数叫做等差数列的________,通常用字母d 表示,即________=d (n ∈N +,且n ≥2)或________=d (n ∈N +).2.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的____________.3.等差数列的通项公式若{a n }是等差数列,则其通项公式a n =_______.①{a n }成等差数列⇔a n =pn +q ,其中p =________,q =________,点(n ,a n )是直线上一群孤立的点.②单调性:d >0时,{a n }为________数列;d <0时,{a n }为________数列;d =0时,{a n }为________.4.等差数列的前n 项和公式(1)等差数列前n 项和公式S n =________=________.其推导方法是________.(2){a n }成等差数列,求S n 的最值:若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ________,a n +1________时,S n最大;若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ________,a n +1________时,S n最小;或利用二次函数求最值;或利用导数求最值. 5.等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列;(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列;(3)通项公式法:a n =kn +b (k ,b 是常数)(n ∈N *)⇔{a n }是等差数列;(4)前n 项和公式法:S n =An 2+Bn (A ,B 是常数)(n ∈N *)⇔{a n }是等差数列.6.等差数列的性质(1)a m -a n =________d ,即d =a m -a nm -n.(2)在等差数列中,若p +q =m +n ,则有a p +a q =a m +________;若2m =p +q ,则有________a m=a p +a q (p ,q ,m ,n ∈N *).(3)若{a n },{b n }均为等差数列,且公差分别为d 1,d 2,则数列{pa n },{a n +q },{a n ±b n }也为________数列,且公差分别为________,________,________.(4)在等差数列中,按序等距离取出若干项也构成一个等差数列,即a n ,a n +m ,a n +2m ,…为等差数列,公差为md.(5)等差数列的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…为等差数列,公差为n 2d.(6)若等差数列的项数为2n ,则有S 偶-S 奇=nd ,S 奇S 偶=a na n +1.(7)等差数列{a n }前m 项与后m 项的和等于m (a 1+a n ).自查自纠:1.差 常数 公差 a n -a n -1 a n +1-a n2.等差中项3.a 1+(n -1)d ①d a 1-d y =dx +(a 1-d ) ②单调递增 单调递减 常数列4.(1)n (a 1+a n )2 na 1+n (n -1)d 2倒序相加法(2)≥0 ≤0 ≤0 ≥0 6.(1)(m -n ) (2)a n 2 (3)等差 pd 1 d 1 d 1±d 2(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A.8B.10C.12D.14解:设公差为d ,由a 1=2,S 3=12得3×2+12×3×2d =12,解得d =2.故a 6=2+(6-1)×2=12.故选C.已知等差数列{a n }中,a 2=7,a 4=15,则其前10项的和为( )A.100B.210C.380D.400解:在等差数列{a n }中,∵a 2=7,a 4=15,∴d =a 4-a 22=4,a 1=a 2-d =3,∴S 10=10×3+10×92×4=210.故选B.等差数列{a n }中,S n 是{a n }前n 项和,已知S 6=2,S 9=5,则S 3=( )A.-1B.-13C.13D.1解:由S 3,S 6-S 3,S 9-S 6成等差数列得:2(2-S 3)=S 3+(5-2).解得S 3=13.故选C.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解:因为a 3+a 7=a 4+a 6=a 2+a 8=37,所以a 2+a 4+a 6+a 8=74,故填74.(2014·江西)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.解:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.故填⎝⎛⎭⎪⎫-1,-78.类型一 等差数列的判定与证明设数列{a n }的前n 项和为S n ,若对于所有的正整数n ,都有S n =n (a 1+a n )2,证明{a n }是等差数列.证明:当n ≥2时,由题设知a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2=12[a 1+na n -(n -1)a n -1], 同理a n +1=12[a 1+(n +1)a n +1-na n ].从而a n +1-a n =12[(n +1)a n +1-2na n +(n -1)a n -1].整理得(n -1)a n +1+(n -1)a n -1=2(n -1)a n , ∵n ≥2,∴a n +1+a n -1=2a n . 所以{a n }是等差数列.点拨:判定数列是等差数列的方法可参看本节“考点梳理”,证明一个数列是等差数列只能用前两种方法,做客观题时可用后两种方法判断数列是否为等差数列.已知数列{a n }的通项公式为a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.解:(1)欲使{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q 应是一个与n 无关的常数,∴只有2p =0,即p =0时,数列{a n }是等差数列.(2)∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q.又(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数,∴数列{a n +1-a n }是等差数列.类型二 等差数列基本量的计算在等差数列{a n }中,(1)已知a 15=33,a 45=153,求a n ; (2)已知a 6=10,S 5=5,求S n ;(3)已知前3项和为12,前3项积为48,且d >0,求a 1.解:(1)解法一:设首项为a 1,公差为d ,依条件得⎩⎪⎨⎪⎧33=a 1+14d ,153=a 1+44d , 解得⎩⎪⎨⎪⎧a 1=-23,d =4. ∴a n =-23+(n -1)×4=4n -27.解法二:由d =a n -a m n -m ,得d =a 45-a 1545-15=153-3330=4,由a n =a 15+(n -15)d ,得a n =4n -27.(2)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解得a 1=-5,d =3.∴S n =-5n +n (n -1)2·3=32n 2-132n.(3)设数列的前三项分别为a 2-d ,a 2,a 2+d ,依题意有:⎩⎪⎨⎪⎧(a 2-d )+a 2+(a 2+d )=12,(a 2-d )·a 2·(a 2+d )=48, 即⎩⎪⎨⎪⎧a 2=4,a 2(a 22-d 2)=48, 解得⎩⎪⎨⎪⎧a 2=4,d =±2.∵d >0,∴d =2,∴a 1=a 2-d =2.点拨:在等差数列五个基本量a 1,d ,n ,a n ,S n 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.(1)(2013·四川)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.解:设该数列公差为d ,前n 项和为S n .由已知可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ). 所以a 1+d =4,d (d -3a 1)=0, 解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以数列{a n }的前n 项和S n =4n 或S n =3n 2-n2.(2)(2014·浙江)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(Ⅰ)求d 及S n ;(Ⅱ)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.解:(Ⅰ)在等差数列{a n }中, S 2·S 3=(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式得d =2或-5. 又∵d >0,∴d =2.从而a n =2n -1,S n =n 2(n ∈N *).(Ⅱ)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),若(2m +k -1)(k +1)=65.则由m ,k ∈N *知2m +k -1≥k +1>1, 故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5, 所以⎩⎪⎨⎪⎧m =5,k =4. 类型三 等差数列的性质(1)已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;(2)设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________;(3)若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,则这个数列的项数为________;(4)已知S n 为等差数列{a n }的前n 项和,S n =m ,S m =n (n ≠m ),则S m +n =________.解:(1)S 11=11(a 1+a 11)2=11a 6=1100.故填1100.(2)因为数列{}a n ,{}b n 都是等差数列,所以数列{}a n +b n 也是等差数列.故由等差中项的性质,得()a 5+b 5+()a 1+b 1=2()a 3+b 3,即a 5+b 5+7=2×21,解得a 5+b 5=35.故填35.(3)设该等差数列的项数为n ,则a 1+a 2+a 3+a 4=36,a n +a n -1+a n -2+a n -3=124,a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3, ∴4(a 1+a n )=160,即a 1+a n =40.∴S n =n (a 1+a n )2=20n =780,解得n =39.故填39.(4)解法一:令S n =An 2+Bn ,则 ⎩⎪⎨⎪⎧An 2+Bn =m ,Am 2+Bm =n⇒A (n 2-m 2)+B (n -m )=m -n. ∵n ≠m ,∴A (n +m )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ). 解法二:不妨设m >n ,S m -S n =a n +1+a n +2+a n +3+…+a m -1+a m =(m -n )(a n +1+a m )2=n -m ,∴a 1+a m +n =a n +1+a m =-2.∴S m +n =(m +n )(a 1+a m +n )2=-(m +n ).解法三:∵{a n }是等差数列,∴⎩⎨⎧⎭⎬⎫S n n 为等差数列,D 为公差. ∴S m +n m +n -S m m =nD ,S n n -S m m =(n -m )D. ∴m n -n m n -m =S m +n m +n -n m n ,解得S m +n =-(m +n ). 故填-(m +n ).点拨:(1)可利用等差数列的性质S 2n +1=(2n +1)a n +1来求解,这一性质表明:若等差数列有奇数项,则正中间一项是该数列的和的平均数;(2)利用等差数列的性质及等差中项来求;(3)可利用“等差数列前m 项与后m 项的和等于m (a 1+a n )”这一性质来求解;(4)可利用等差数列下标和性质:若“p +q =m +n ,则a p +a q =a m +a n ”来求解.等差数列的性质是其定义、通项公式及前n 项和公式等基础知识的推广与变形,解题时灵活应用这些性质常常可化繁为简,起到事半功倍的效果.(1)(2013·贵州六校联考)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则a 9=( )A.8B.12C.16D.24解:在等差数列中,S 3=3a 2=6⇒a 2=2. ∴3d =a 5-a 2=6⇒d =2. 所以a 9=a 5+4d =16.故选C.(2)含2n +1个项的等差数列其奇数项的和与偶数项的和(非零)之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n解:∵S 奇=a 1+a 3+a 5+…+a 2n +1=(n +1)(a 1+a 2n +1)2,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2,a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n.故选B.类型四 等差数列的最值问题在等差数列{a n }中,已知a 1=20,前n项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解法一:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,解得d =-53.∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. ∴a 13=0,而d <0,故当n ≤12时,a n >0,n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.解法二:同解法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三:同解法一求得d =-53.∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+312524.∵n ∈N +,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.点拨:求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值.(1)(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解:在等差数列{a n }中,a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0.∴当n =8时,其前n 项和最大.故填8.(2)(2013·全国新课标Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________.解:设S n =an 2+bn (a ,b ∈R ). 则⎩⎪⎨⎪⎧100a +10b =0,225a +15b =25,解得a =13,b =-103,∴S n =13n (n -10),nS n =13(n 3-10n 2).考查函数f (x )=x 3-10x 2(x ≥1),f ′(x )=3x 2-20x ,∴f (x )的极小值点为203,当n =6时,nS n =-48,n =7时,nS n =-49,∴nS n 的最小值为-49.故填-49.1.等差数列中,已知五个元素a 1,a n ,n ,d ,S n 中的任意三个,便可求出其余两个.2.求等差数列{a n }前n 项的绝对值{|a n |}之和,首先应分清这个数列哪些项是负的,哪些项是非负的,然后再分段求和.3.等差数列前n 项和的最值通常是在正负项分界的位置产生,利用这一性质可求其最值;另一种方法是利用二次函数的性质.4.灵活运用等差数列的性质,如等差中项的性质,可简化运算.5.等差数列{a n }的前n 项和满足:⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且首项与{a n }的首项相同,公差为{a n }公差的一半.6.数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 是常数,n ∈N *).1.(2014·重庆)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A.5B.8C.10D.14解:在等差数列{a n }中,a 1+a 7=a 3+a 5=10,又a 1=2,∴a 7=8.故选B.2.(2013·昆明模拟)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1等于( )A.-65B.-35C.65D.35解:由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9,解得a 1=35.故选D.3.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( )A.-23B.-13C.13D.23解:a 10=a 1+9d =10,S 10=10(a 1+10)2=70,解得d =23.故选D.4.(2013·北京海淀模拟)已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A.16B.8C.2 2D.4解:由2a 2n =a 2n +1+a 2n -1(n ≥2)可知数列{a 2n }是等差数列,且以a 21=1为首项,以a 22-a 21=4-1=3为公差,所以数列{a 2n }的通项公式为a 2n =1+3(n -1)=3n -2,所以a 26=3×6-2=16,即a 6=4.故选D.5.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( )A.94B.32C.53D.4 解:设S 2=x ,则S 4=4x ,因为S 2,S 4-S 2,S 6-S 4成等差数列,所以S 6-S 4=5x ,即S 6=9x ,所以S 6S 4=9x 4x =94.故选A. 6.(2014·辽宁)设等差数列{a n }的公差为d.若数列{2a 1a n }为递减数列,则( )A.d <0B.d >0C.a 1d <0D.a 1d >0解:易知b n =2a 1a n >0,∵数列{2a 1a n }递减,∴b n +1b n =2a 1a n +12a 1a n =2a 1(a n +1-a n )=2a 1d <1,a 1d <0.故选C.7.一个木制梯形架的上、下两底边分别为33 cm ,75 cm ,把梯形的两腰各6等分,用平行木条连接各对应分点,构成梯形架的各级,则梯形架自上而下第4级的宽度是________ cm .解:设梯形架自上而下各级宽度所构成数列为{a n },则由梯形中位线的性质,易知每相邻三项均成等差数列.易得a 1=33 cm ,a 7=75 cm ,则d =a 7-a 17-1=7 cm .故a 4=33+7×3=54 cm(亦可利用等差中项性质求).故填54.8.(2013·全国新课标Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________.解法一:a m =S m -S m -1=2,a m +1=S m +1-S m =3,公差d =a m +1-a m =3-2=1.又S m +1=(m +1)a 1+(m +1)m2=3,①,a m +1=a 1+m =3.将a 1=3-m 代入①得m 2-5m =0,解得m =5或0(舍去).解法二:设S n =an 2+bn ,通过题意建立并解方程组获解.故填5.9.(2014·全国大纲)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n +2=2a n +1-a n +2得a n +2-a n +1=a n+1-a n +2,即b n +1=b n +2,又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.(2)由(1)得b n =a n +1-a n =1+2(n -1)=2n -1.于是∑=+-nk k k a a 11)(=∑=-nk k 1)12(,所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n=n 2-2n +2.10.已知S n 为等差数列{a n }的前n 项和,a 1=25,a 4=16.(1)当n 为何值时,S n 取得最大值; (2)求a 2+a 4+a 6+a 8+…+a 20的值.解:(1)∵等差数列{a n }中,a 1=25,a 4=16,∴ 公差d =a 4-a 14-1=-3.∴a n =-3n +28.令a n =-3n +28>0,则n ≤9.∴当n ≤9时,a n >0;当n >9时,a n <0. ∴当n =9时,S n 取得最大值. (2)∵数列{a n }是等差数列,∴a 2+a 4+a 6+a 8+…+a 20=10(a 2+a 20)2=10a 11=10×(-5)=-50.11.(2013·浙江)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.解:(1)由题意得a 1×5a 3=(2a 2+2)2,即d 2-3d -4=0. 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n ,因为d <0,由(1)得d =-1,a n =-n +11,则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a n =S n =-12n 2+212n.当n ≥12时,S 11=55.|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a 11-a 12-a 13-…-a n =2(a 1+a 2+a 3+…+a 11)-a 1-a 2-…-a n =2S 11-S n =12n 2-212n +110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n+2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1,由于a n +1≠0,所以a n +2-a n =λ.(2)存在λ使得{a n }为等差数列,理由如下: 由题设a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1,由(1)知a 3=λ+1.假设{a n }为等差数列,则a 1,a 2,a 3成等差数列,∴a 1+a 3=2a 2,解得λ=4.以下证明λ=4时,{a n }为等差数列. 由a n +2-a n =4知,数列奇数项构成的数列{a 2m -1}是首项为1,公差为4的等差数列,a 2m -1=4m -3,令n =2m -1,则m =n +12,∴a n =2n -1(n =2m -1).数列偶数项构成的数列{a 2m }是首项为3,公差为4的等差数列,a 2m =4m -1,m ∈N *.令n =2m ,则m =n2,∴a n =2n -1(n =2m ).∴a n =2n -1(n ∈N *),a n +1-a n =2.因此,存在λ=4,使得{a n }为等差数列.§6.3 等比数列1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的________等于同一个________,那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母q 表示(q ≠0).2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b成等比数列,那么G 叫做a 与b 的________,且G 2=________或G =________.3.等比数列的通项公式(1)若{a n }是等比数列,则通项a n =________或a n =________.当n -m 为大于1的奇数时,q 用a n ,a m 表示为q = ;当n -m 为正偶数时,q = .(2)a n =a 1q n -1可变形为a n =Aq n,其中A = ;点(n ,a n )是曲线 上一群孤立的点.4.等比数列的前n 项和公式等比数列{a n }中,S n =⎩⎨⎧ ,q =1,= ,q ≠1. 求和公式的推导方法是:,为解题的方便,有时可将求和公式变形为S n=Bq n-B (q ≠1),其中B = 且q ≠0,q ≠1.5.等比数列的判定方法 (1)定义法:a n +1=a n q 且a 1≠0(q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cq n(c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.(4)前n 项和公式法:S n =a 1q -1q n -a 1q -1=Bq n-B ⎝ ⎛⎭⎪⎫B =a 1q -1是常数,且q ≠0,q ≠1⇔{a n }是等比数列.6.等比数列的性质(1)在等比数列中,若p +q =m +n ,则a p ·a q=a m ·a n ;若2m =p +q ,则a 2m =a p ·a q (p ,q ,m ,n ∈N *). (2)若{a n },{b n }均为等比数列,且公比为q 1,q 2,则数列⎩⎨⎧⎭⎬⎫1a n ,{p ·a n }(p ≠0),{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍为等比数列且公比为 , , , . (3)在等比数列中,按序等距离取出若干项,也构成一个等比数列,即a n ,a n +m ,a n +2m …仍为等比数列,公比为 .(4)等比数列前n 项和为S n (≠0),则S n ,S 2n -S n ,S 3n -S 2n ,…构成等比数列,且公比为 .(5)对于一个确定的等比数列,在通项公式a n =a 1q n -1中,a n 是n 的函数,这个函数由正比例函数a n =a 1q·u 和指数函数u =q n (n ∈N *)复合而成.①当a 1>0, 或a 1<0, 时,等比数列{a n }是递增数列;②当a 1>0, 或a 1<0, 时,等比数列{a n }是递减数列;③当 时,它是一个常数列; ④当 时,无法判断数列的单调性,它是一个摆动数列.自查自纠:1.比 常数 公比2.等比中项 ab ±ab3.(1)a 1q n -1a m q n -mn -m a n a m ±n -m a na m(2)a 1q y =⎝ ⎛⎭⎪⎫a 1q q x4.na 1 a 1(1-q n )1-q a 1-a n q1-q乘公比,错位相减 a 1q -16.(2)1q 1 q 1 q 1q 2 q 1q 2(3)q m (4)q n(5)①q >1 0<q <1 ②0<q <1 q >1 ③q=1 ④q <0公比为2的等比数列{}a n 的各项都是正数,且a 3a 11=16,则a 5=( )A.1B.2C.4D.8解:由等比数列的性质知a 3a 11=a 27=16,又 a n>0,所以解得a 7=4,由a 7=a 5·22=4a 5,得 a5=1.故选A.(2014·重庆)对任意等比数列{a n },下列说法一定正确的是( )A.a 1,a 3,a 9成等比数列B.a 2,a 3,a 6成等比数列C.a 2,a 4,a 8成等比数列D.a 3,a 6,a 9成等比数列解:由等比数列的性质,得a 9a 6=a 6a 3=q 3≠0,因此,a 3,a 6,a 9一定成等比数列.故选D.(2013·大纲)已知数列{a n }满足3a n +1+a n=0,a 2=-43,则{a n }的前10项和等于( )A.-6(1-3-10)B.19(1-3-10)C.3(1-3-10)D.3(1+3-10)解:由3a n +1+a n =0,得a n +1=-13a n ,所以{a n }为等比数列,公比为-13.由a 2=-43得a 1=4,由等比数列前n 项和公式得S 10=3(1-3-10).故选C.(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解:设等比数列{a n }的公比为q (q >0),则由a 8=a 6+2a 4得a 6q 2=a 6+2a 6q2,解得q 2=2(舍去负值).又a 2=1,∴a 6=a 2q 4=4.故填4.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.解:由题意⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40, 解得⎩⎪⎨⎪⎧q =2,a 1=2. 故S n =2(1-2n)1-2=2n +1-2.故填2;2n +1-2.类型一 等比数列的判定与证明已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n(a n -3n +21),其中λ为实数,n ∈N *.(1)对任意实数λ,证明数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列,并证明你的结论.解:(1)证明:假设存在一个实数λ,使{a n }是等比数列 ,则有a 22=a 1·a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾.所以数列{a n }不是等比数列.(2)因为b n =(-1)n(a n -3n +21), b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎣⎢⎡⎦⎥⎤23a n +n -4-3(n +1)+21=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14 =23(-1)n +1(a n -3n +21)=-23b n . 又b 1=-(λ+18),所以当λ=-18,b 1=0,易得b n =0(n ∈N *),此时数列{b n }不是等比数列;当λ≠-18,b 1≠0,由上可知b n ≠0, ∴b n +1b n =-23(n ∈N *),此时数列{b n }是等比数列.点拨:(1)证明数列{a n }不是等比数列,只需举一个反例;(2)证明数列{b n }是等比数列,常用方法:①定义法;②等比中项法.(2013·陕西) 设{}a n 是公比为q 的等比数列.(1)推导{}a n 的前n 项和公式;(2)设q ≠1, 证明数列{a n +1}不是等比数列. 解:(1) 设{}a n 的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n,②①-②得,()1-q S n =a 1-a 1q n.∴S n =a 1()1-q n1-q ,∴S n =⎩⎪⎨⎪⎧na 1, q =1,a 1()1-q n 1-q, q ≠1.(2) 证明:(反证法),假设数列{a n +1}是等比数列,则对任意的k ∈N +,()a k +1+12=()a k +1()a k +2+1,a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1, a 21q 2k +2a 1q k +1=a 1q k -1a 1q k +1+a 1q k -1+a 1q k +1+1,∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0. ∴q =1,与已知矛盾.∴数列{a n +1}不是等比数列.类型二 等比数列基本量的计算设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .解:由⎩⎪⎨⎪⎧a 2=a 1q =6,6a 1+a 3=6a 1+a 1q 2=30, 解得⎩⎪⎨⎪⎧a 1=2,q =3, 或⎩⎪⎨⎪⎧a 1=3,q =2.。
1.数列{a n }的通项公式是a n =1n +n +1,若S n =10,则n 的值是( )点击观看解答视频 A .11 B .99 C .120 D .121答案 C 解析 ∵a n =1n +n +1=n +1-n ,∴S n =(2-1)+(3-2)+(4-3)+…+(n -n -1)+(n +1-n )=n +1-1.令S n =10,解得n =120.故选C.2.在正项等比数列{a n }中,a 1=1,前n 项和为S n ,且-a 3,a 2,a 4成等差数列,则S 7的值为( )A .125B .126C .127D .128 答案 C解析 设数列{a n }的公比为q (q >0), ∵-a 3,a 2,a 4成等差数列, ∴2a 2=a 4-a 3, ∴2a 1q =a 1q 3-a 1q 2, 解得q =2或q =-1(舍去), ∴S 7=a 1-q 71-q =1-271-2=27-1=127.故选C.3.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.点击观看解答视频(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n ,求数列{c n }的前n 项和T n .解 (1)由题意有,⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2, 解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎨⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎨⎧a n =19n +,b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.4.数列{a n }满足:a 1+2a 2+…+na n =4-n +22n -1,n ∈N *.(1)求a 3的值;(2)求数列{a n }的前n 项和T n ;(3)令b 1=a 1,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n (n ≥2),证明:数列{b n }的前n项和S n 满足S n <2+2ln n .解 (1)当n =1时,a 1=4-1+221-1=1; 当n ≥2时,由a 1+2a 2+…+na n =4-n +22n -1知,a 1+2a 2+…+(n -1)a n -1=4-n -1+22n -2,两式相减得na n =⎝ ⎛⎭⎪⎫4-n +22n -1-⎝ ⎛⎭⎪⎫4-n +12n -2=n +12n -2-n +22n -1=n 2n -1,此时a n =12n -1.经检验知,a 1=1也满足a n =12n -1.综上,a n =12n -1,故a 3=123-1=14.(2)由(1)知,a n =12n -1,故数列{a n }是以1为首项,12为公比的等比数列,故T n =1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1.(3)证明:由(1)(2)知,b 1=a 1=1, 当n ≥2时,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n=2-12n -2n +⎝ ⎛⎭⎪⎫1+12+13+…+1n ·12n -1=2n +⎝⎛⎭⎪⎫1+12+13+…+1n -1-1n ·12n -1. 当n =1时,S 1=1<2+2ln 1=2,成立; 当n ≥2时,S n=1+⎣⎢⎡⎦⎥⎤2+⎝ ⎛⎭⎪⎫1-12·1+⎣⎢⎡⎦⎥⎤2+⎝ ⎛⎭⎪⎫1+12-13·1+…+⎣⎢⎡⎦⎥⎤2n +⎝ ⎛⎭⎪⎫1+12+13+…+1n -1-1n ·12n -1 =1+2⎝ ⎛⎭⎪⎫12+13+…+1n +⎝ ⎛⎭⎪⎫12+122+…+12n -1+12⎝ ⎛⎭⎪⎫122+123+…+12n -1-12+13⎝ ⎛123+124+…+12n -1⎭⎪⎫-122+…+1n -1·⎝ ⎛⎭⎪⎫12n -1-12n -2+1n ⎝ ⎛⎭⎪⎫-12n -1 =1+2⎝ ⎛⎭⎪⎫12+13+…+1n +⎝ ⎛⎭⎪⎫1-12n -1+12⎝⎛⎭⎪⎫122·1-12n -21-12-12+13⎝⎛⎭⎪⎫123·1-12n -31-12-122+…+ 1n -1⎝ ⎛⎭⎪⎫1-1+1n ⎝ ⎛⎭⎪⎫-1=1+2⎝ ⎛⎭⎪⎫12+13+…+1n +⎝ ⎛⎭⎪⎫1-12n -1+12⎝ ⎛⎭⎪⎫-12n -1+13⎝ ⎛⎭⎪⎫-12n -1+…+1n -1⎝ ⎛⎭⎪⎫-12n -1+1n ·⎝ ⎛⎭⎪⎫-12n -1 =2+2⎝ ⎛⎭⎪⎫12+13+…+1n -⎝ ⎛ 1+12+⎭⎪⎫13+…+1n ·12n -1<2+2⎝ ⎛⎭⎪⎫12+13+…+1n . 构造函数f (x )=ln (1+x )-x x +1,x ≥0,则f ′(x )=11+x-1x +2=x x +2≥0,故函数f (x )在[0,+∞)上单调递增,所以当x >0时,f (x )>f (0)=0,即xx +1<ln (1+x ).令x =1n -1,n ≥2,则1n <ln ⎝ ⎛⎭⎪⎫1+1n -1,从而可得12<ln ⎝ ⎛⎭⎪⎫1+12-1,13<ln ⎝ ⎛⎭⎪⎫1+13-1,…,1n <ln ⎝ ⎛⎭⎪⎫1+1n -1,将以上n -1个式子同向相加即得12+13+…+1n <ln ⎝ ⎛⎭⎪⎫1+12-1+ln ⎝ ⎛⎭⎪⎫1+13-1+…+ln ⎝ ⎛⎭⎪⎫1+1n -1=ln⎝ ⎛⎭⎪⎫21×32×…×n n -1=ln n ,故S n <2+2⎝ ⎛⎭⎪⎫12+13+…+1n <2+2ln n . 综上可知,S n <2+2ln n .5.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1,所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14nn -n +=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1.当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.所以T n=⎩⎨⎧2n +2n ,n 为奇数,2n2n +1,n 为偶数.。
第六章 数列第一节 等差数列与等比数列题型67 等差(等比)数列的公差(公比)1.(2017北京理10)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =_______. 解析由11a =-,48a =,则21132a a d =+=-+=,由11b =-,48b =,则2q =-,则212b b q ==.故22212a b ==. 2.(2017全国1理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ). A .1B .2C .4D .8解析 45113424a a a d a d +=+++=,61656482S a d ⨯=+=,联立112724 61548 a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②,得()211524-=d ,即624d =,所以4d =.故选C.3.(2017全国2理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ).A .1盏B .3盏C .5盏D .9盏 解析 设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.故选B.4.(2017全国3理14)设等比数列{}n a 满足12–1a a +=, 13––3a a =,则4a = ___________. 解析 因为{}n a 为等比数列,设公比为q .由题意得121313a a a a +=-⎧⎨-=-⎩,即112111 3 a a q a a q +=-⎧⎪⎨-=-⎪⎩①② 显然1q ≠,10a ≠,式式②①,得13q -=,即2q =-,代入①式可得11a =, 所以()3341128a a q ==⨯-=-.题型68 等差、等比数列求和问题的拓展1.(2017全国1理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数100N N >:且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ). A.440B.330C.220D.110解析 设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. 设第n 组的项数为n ,则n 组的项数和为()12n n +,由题意得,100N >,令()11002n n +>,得14n ≥且*n ∈N ,即N 出现在第13组之后,第n 组的和为122112nn -=--,n 组总共的和为()12122212n n n n +--=---,若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数,即()*21214k n k n -=+∈N ,≥,()2log 3k n =+,得n 的最小值为295n k ==,, 则()2912954402N ⨯+=+=.故选A.2.2017山东理19)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=, (1)求数列{}n x 的通项公式;(2)如图所示,在平面直角坐标系xOy 中,依次联结点()111P x ,,()222P x ,,…,()11,1n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T.解析 (1)设数列{}n x 的公比为q ,由已知0q >.由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=,因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过1231,,,,n P P P P +向x 轴作垂线,垂足分别为1231,,,,n Q Q Q Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n n T b b b b =++++=10132325272(21)2(21)2n n n n ---⨯+⨯+⨯++-⨯++⨯ ①又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯ ②-①②,得121132(222)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=题型69 等差、等比数列的性质及其应用1.(2017江苏09)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = .解析 解法一:由题意等比数列公比不为1,由()()313616171416314a q S q a q S q ⎧-==⎪-⎪⎨-⎪==⎪-⎩,因此36319S q S =+=,得2q =.又3123S a a a =++()2117174a q qa=++==,得114a =,所以78132a a q ==.故填32. 解法二(由分段和关系):由题意3363374634S S S q S ⎧=⎪⎪⎨⎪=+=⎪⎩,所以38q =,即2q =.下同解法一.2.(2017全国2理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 解析 设{}n a 首项为1a ,公差为d .由3123a a d =+=,414610S a d =+=,得11a =,1d =,所以n a n =,()12n n n S +=,()()112222122311nk kS n n n n ==++++=⨯⨯-+∑11111112122311n n n n ⎛⎫-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-= ⎪++⎝⎭.题型70 判断或证明数列是等差、等比数列1.(2017江苏19)对于给定的正整数k ,若数列{}n a 满足111+n knk n nn k a aa a a --+-++-++⋅⋅⋅+++⋅⋅⋅+2n k n a k a +=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“()3P 数列”;(2)若数列{}n a 既是“()2P 数列”,又是“()3P 数列”,证明:{}n a 是等差数列.解析 (1)因为{}n a 是等差数列,设其公差为d ,则()11n a a n d =+-, 从而当4n …时,()()1111=n k n k a a a n k d a n k d -++=+--+++-()12212n a n d a +-=,1,2,3k =,所以321123+++6n n n n n n n a a a a a a a ---+++++=,因此等差数列{}n a 是“()3P 数列”. (2)由数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n …时,21124n n n n n a a a a a --+++++= ① 当4n …时,3211236n n n n n n n a a a a a a a ---++++++++= ② 由①知,()()321144n n n n n a a a a a n ---++=-+≥ ③()()231142n n n n n a a a a a n +++-+=-+≥ ④将③④代入②,得112n n n a a a -++=,其中4n …, 所以345,,,a a a ⋅⋅⋅是等差数列,设其公差为d '.在①中,取4n =,则235644a a a a a +++=,所以23a a d '=-, 在①中,取3n =,则124534a a a a a +++=,所以312a a d '=-, 从而数列{}n a 是等差数列.评注 这是数列新定义的问题,其实类似的问题此前我们也研究过,给出仅供参考.(2015南通基地密卷7第20题)设数列{}n a 的各项均为正数,若对任意的*n ∈N ,存在*k ∈N , 使得22n k n n k a a a ++=成立,则称数列{}n a 为“k J 型”数列.(1)若数列{}n a 是“2J 型”数列,且28a =,81a =,求2n a ;(2)若数列{}n a 既是“3J 型”数列,又是“4J 型”数列,证明数列{}n a 是等比数列. 解析 (1)由题意得,2468,,,,a a a a ⋅⋅⋅成等比数列,且公比138212a q a ⎛⎫== ⎪⎝⎭,所以412212n n n a a q --⎛⎫== ⎪⎝⎭.(2)由{}n a 是“4J 型”数列得159131721,,,,,,a a a a a a ⋅⋅⋅成等比数列,设公比为t , 由{}n a 是“3J 型”数列得1471013,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为1α;2581114,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为2α; 3691215,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为3α;则431311a t a α==,431725a t a α==,432139a t a α==, 所以123ααα==,不妨令123αααα===,则43t α=.所以()32113211k k k a a a α----==,()2311223315111k k k k k aa a t a a ααα------====,所以131323339111k k k k kaa a t a a ααα----====,综上11n n a a -=,从而{}n a 是等比数列. 2.(2017北京理20)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.解析 (1)111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-. 当3n …时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减.从而{}112211max ,,,1n n n c b a n b a n b a n b a n n =---=-=-,将1,2,3n =代入,满足此式,所以对任意1n …,1n c n =-,于是11n n c c +-=-,得{}n c 是等差数 列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则()[]()()121111211(1)1k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以()()11212111211,,n b a n n d nd d nd c b a n d nd ⎧-+-->⎪=⎨-⎪⎩当时当时….①当10d >时,取正整数21d m d >,则当n m …时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n …, (){}(){}()11211211max ,01max ,0n c b a n n d b a n d a =-+-=-+--.此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <,所以()()()11211211121n b a n n d nd c b d n d d a d n n n-+---==-+-++…()111212||n d d a d b d -+-+--.对任意正数M ,取正整数12112211||max ,M b d a d d d m d d ⎧⎫+-+-->⎨⎬-⎩⎭,故当n m …时,nc M n>. 题型71 等差数列与等比数列的交汇问题——暂无第二节 数列的通项公式与求和题型72 数列通项公式的求解 题型73 数列的求和1.(2017天津理18)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N .解析 (1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以2nn b =.由3412b a a =-,可得138d a -= ① 由114=11S b ,可得1516a d += ② 联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯=1112(14)4(31)4=(32)4814n n n n n ++⨯----⨯--⨯--,得1328433n n n T +-=⨯+.所以数列{}221n n a b -的前n 项和为1328433n n +-⨯+. 2.(2017全国3理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则数列{}n a 前6项的和为( ). A .24-B .3-C .3D .8解析 因为{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d ,则2326a a a =,即()()()211125a d a d a d +=++.因为11a =,代入上式可得220d d +=,又0d ≠,则2d =-,所以()61656561622422S a d ⨯⨯=+=⨯+⨯-=-.故选A.第三节 数列的综合题型74 数列与不等式的综合1.(2017浙江理22)已知数列{}n x 满足:11x =,()()*11ln 1n n n x x x n ++=++∈N .证明:当*n ∈N 时. (1)10n n x x +<<; (2)1122n n n n x x x x ++-…; (3)1-21122n n n x -剟. 解析 (1)用数学归纳法证明:0n x >.当1n =时,110x =>,假设n k =时,0k x >,那么1n k =+时,若10k x +…,则()110ln 10k k k x x x ++<=++…,矛盾,故10k x +>. 因此()*0n x n >∈N ,所以()111ln 1n n n n x x x x +++=++>. 因此()*10n n x x n +<<∈N.(2)由()111ln 1n n n n x x x x +++=++>,得()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++. 记函数()()()()222ln 10f x x x x x x =-+++….()()()()()222122222ln 1ln 1ln 10111x x x x xf x x x x x x x x -++++'=-+++=++=+++++…,知函数()f x 在[)0,+∞上单调递增,所以()()00f x f =…, 因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=…,即()*1122n n n n x x x x n ++-∈N …. (3)因为()()*11111l n 12n n n n n n x x x x x x n+++++=+++=∈N …,得112n n x x +…,以此类推,21111,,22n n x x x x -厖,所以112112112n n n n n n x x x x x x x x ----⎛⎫=⋅⋅⋅⋅ ⎪⎝⎭=x ?,故112n n x -…. 由(2)知,()*1122n n n n x x x x n ++-∈N …,即111112022n n x x +⎛⎫--> ⎪⎝⎭…, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎝⎭⎝⎭厖?,故212n n x -….综上,()*121122n n n x n --∈N 剟.。