第九章 投资组合理论 portfolio selection theory
- 格式:ppt
- 大小:377.00 KB
- 文档页数:52
投资组合理论(重定向自投资组合)投资组合理论(Portfolio Theory)投资组合理论简介投资组合理论有狭义和广义之分。
狭义的投资组合理论指的是马柯维茨投资组合理论;而广义的投资组合理论除了经典的投资组合理论以及该理论的各种替代投资组合理论外,还包括由资本资产定价模型和证券市场有效理论构成的资本市场理论。
同时,由于传统的EMH不能解释市场异常现象,在投资组合理论又受到行为金融理论的挑战。
投资组合理论的提出美国经济学家马考维茨(Markowitz)1952年首次提出投资组合理论(Portfolio Theory),并进行了系统、深入和卓有成效的研究,他因此获得了诺贝尔经济学奖。
该理论包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。
在发达的证券市场中,马科维茨投资组合理论早已在实践中被证明是行之有效的,并且被广泛应用于组合选择和资产配置。
但是,我国的证券理论界和实务界对于该理论是否适合于我国股票市场一直存有较大争议。
从狭义的角度来说,投资组合是规定了投资比例的一揽子有价证券,当然,单只证券也可以当作特殊的投资组合。
人们进行投资,本质上是在不确定性的收益和风险中进行选择。
投资组合理论用均值—方差来刻画这两个关键因素。
所谓均值,是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。
当然,股票的收益包括分红派息和资本增值两部分。
所谓方差,是指投资组合的收益率的方差。
我们把收益率的标准差称为波动率,它刻画了投资组合的风险。
人们在证券投资决策中应该怎样选择收益和风险的组合呢?这正是投资组合理论研究的中心问题。
投资组合理论研究“理性投资者”如何选择优化投资组合。
所谓理性投资者,是指这样的投资者:他们在给定期望风险水平下对期望收益进行最大化,或者在给定期望收益水平下对期望风险进行最小化。
因此把上述优化投资组合在以波动率为横坐标,收益率为纵坐标的二维平面中描绘出来,形成一条曲线。
投资组合理论投资组合理论(Portfolio Theory)投资组合理论简介投资组合理论有狭义和广义之分。
狭义的投资组合理论指的是马柯维茨投资组合理论;而广义的投资组合理论除了经典的投资组合理论以及该理论的各种替代投资组合理论外,还包括由资本资产定价模型和证券市场有效理论构成的资本市场理论。
同时,由于传统的EMH不能解释市场异常现象,在投资组合理论又受到行为金融理论的挑战。
[编辑]投资组合理论的提出[1]美国经济学家马考维茨(Markowitz)1952年首次提出投资组合理论(Portfolio Theory),并进行了系统、深入和卓有成效的研究,他因此获得了诺贝尔经济学奖。
该理论包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。
在发达的证券市场中,马科维茨投资组合理论早已在实践中被证明是行之有效的,并且被广泛应用于组合选择和资产配置。
但是,我国的证券理论界和实务界对于该理论是否适合于我国股票市场一直存有较大争议。
从狭义的角度来说,投资组合是规定了投资比例的一揽子有价证券,当然,单只证券也可以当作特殊的投资组合。
人们进行投资,本质上是在不确定性的收益和风险中进行选择。
投资组合理论用均值—方差来刻画这两个关键因素。
所谓均值,是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。
当然,股票的收益包括分红派息和资本增值两部分。
所谓方差,是指投资组合的收益率的方差。
我们把收益率的标准差称为波动率,它刻画了投资组合的风险。
人们在证券投资决策中应该怎样选择收益和风险的组合呢?这正是投资组合理论研究的中心问题。
投资组合理论研究“理性投资者”如何选择优化投资组合。
所谓理性投资者,是指这样的投资者:他们在给定期望风险水平下对期望收益进行最大化,或者在给定期望收益水平下对期望风险进行最小化。
因此把上述优化投资组合在以波动率为横坐标,收益率为纵坐标的二维平面中描绘出来,形成一条曲线。
投资组合理论与资本资产定价模型投资组合理论(Portfolio Theory)是现代金融学的核心理论之一,旨在帮助投资者最大化投资回报,并在给定风险水平下进行资产配置。
该理论的核心概念是,通过将资金分散投资于多种不同的资产,可以降低整体投资风险,同时增加预期回报。
投资组合理论的最重要的贡献之一是投资者可以通过组合多种投资资产,构建一个具有高回报和低风险的投资组合。
根据马科维茨(Harry Markowitz)在1952年提出的理论,投资者可以通过权衡预期回报和风险来选择最佳投资组合。
他的研究表明,只要资产之间的收益率不是完全相关,投资组合的风险是可以被分散的,从而降低整体风险。
投资组合理论的关键概念是资产间的协方差和波动率。
协方差衡量了资产之间的相关性,即它们的收益是否同时上涨或下跌。
当资产之间的协方差为正时,它们的收益趋势一致,而当协方差为负时,它们的收益趋势相反。
波动率则是衡量资产收益的变异程度,即资产价格的波动。
资本资产定价模型(Capital Asset Pricing Model,CAPM)是另一个重要的金融理论,旨在为投资者提供估计资产预期收益的工具。
CAPM的核心思想是,一个资产的预期收益应该与市场整体风险相关,而不是与该资产个体的风险相关。
根据CAPM,一个资产的预期收益应该等于无风险利率加上该资产的风险溢价,风险溢价根据市场整体风险水平来确定。
CAPM的公式为:期望收益率 = 无风险利率+ β(市场风险溢价)其中,无风险利率代表没有投资风险的利率,β(Beta)则是资产相对于市场整体风险的度量。
如果一个资产的β值为1,则表示该资产与整个市场具有相同的风险水平。
如果β大于1,说明该资产的波动性超过市场的平均波动性,而当β小于1时,说明该资产的波动性低于市场平均波动性。
投资组合理论和CAPM为投资者提供了一套科学的方法来评估和构建投资组合,以实现预期回报和控制风险。
然而,这些理论都是基于一些假设,如市场处于有效状态、投资者理性等。
投资组合理论简析:美国经济学家马考维茨(Markowitz)1952年首次提出投资组合理论(Portfolio Theory),并进行了系统、深入和卓有成效的研究,他因此获得了诺贝尔经济学奖。
该理论也称证券投资组合理论或资产组合理论。
马克维茨投资组合理论的基本假设为:(1)投资者是风险规避的,追求期望效用最大化;(2)投资者根据收益率的期望值与方差来选择投资组合;(3)所有投资者处于同一单期投资期。
马克维茨提出了以期望收益及其方差(E,δ2)确定有效投资组合。
以期望收益E来衡量证券收益,以收益的方差δ2表示投资风险。
资产组合的总收益用各个资产预期收益的加权平均值表示,组合资产的风险用收益的方差或标准差表示,则马克维茨优化模型如下:式中:rp——组合收益;ri、rj——第i种、第j种资产的收益;wi、wj——资产i和资产j在组合中的权重;δ2(rp)——组合收益的方差即组合的总体风险;cov(r,rj)——两种资产之间的协方差。
马克维茨模型是以资产权重为变量的二次规划问题,采用微分中的拉格朗日方法求解,在限制条件下,使得组合风险铲δ2(rp)最小时的最优的投资比例Wi。
从经济学的角度分析,就是说投资者预先确定一个期望收益率,然后通过确定投资组合中每种资产的权重,使其总体投资风险最小,所以在不同的期望收益水平下,得到相应的使方差最小的资产组合解,这些解构成了最小方差组合,也就是我们通常所说的有效组合。
有效组合的收益率期望和相应的最小方差之间所形成的曲线,就是有效组合投资的前沿。
投资者根据自身的收益目标和风险偏好,在有效组合前沿上选择最优的投资组合方案。
根据马克维茨模型,构建投资组合的合理目标是在给定的风险水平下,形成具有最高收益率的投资组合,即有效投资组合。
此外,马克维茨模型为实现最有效目标投资组合的构建提供了最优化的过程,这种最优化的过程被广泛地应用于保险投资组合管理中。
在马可维茨的理论基础上又出现了致力于寻求新的度量标准和新的投资准则的现代投资组合理论:均值-V aR投资组合模型最早应用V aR风险测量方法的是Jm Morgan公司,1994年10月JP Morgan公司开发的“风险度量"(Riskmetrics)系统中提出了V aR风险测量方法;1995年4月,巴塞尔银行监管委员会宣布商业银行的资本充足性要求必须建立在V aR基础上;1995年6月,美联储提出相似的预案;1995年12月,美国证券交易委员会建议上市交易的美国公司将V aR 值作为信息披露的一项指标。
theory of portfolio choice投资组合理论是资产组合选择领域的核心理论。
它是指在资产选择中,基于投资者的风险偏好和预期收益率,选择现有资产的各种组合,以达到收益最大化或风险最小化的目的。
本文将围绕投资组合理论展开,分步骤阐述相关问题。
1. 投资者的风险偏好投资者不同的风险偏好会对资产选择和投资组合的构建产生影响。
理性的投资者往往会根据自己的风险承受能力和投资目标确定所希望承担的风险程度,进一步选择相应的投资组合。
例如,一些保守型投资者会选择低风险、稳健回报的投资组合,而一些激进型投资者则会选择高风险、高回报的投资组合。
2. 资产配置的权衡在确定对不同资产的配置时,投资者需要权衡每种资产的预期风险和预期收益,在风险承受度的范围内,选择最佳的资产组合。
例如,投资者可以将资本分配给股票、债券、基金等不同的资产种类,通过调整资产的仓位和比例来平衡风险和回报。
3. 投资组合的多样化在建立投资组合时,多样性是非常重要的。
投资者应该选择有不同特征和风险程度的资产,以便在市场波动时,避免资金损失。
例如,投资者可以通过买入不同行业、不同地区和不同类型的证券来达到投资多样化的目的。
4. 风险度量和收益率预期对于投资者来说,正确估计预期收益和风险至关重要。
了解不同资产的风险与收益之间的关系,有利于投资者合理分配资产、实现资产最优化组合。
风险和回报的预期可以通过计算和分析历史数据、经济指标、金融事件以及市场趋势等方式来得到。
5. 动态投资策略动态投资策略是根据市场形势和投资者的投资目标进行调整的投资组合。
当市场出现波动和变化时,动态投资策略可以帮助投资者及时调整资产配置,并优化投资组合,以达到长期投资目标。
投资组合理论是资产组合选择的核心理论。
在实际投资中,投资者应该根据自己的风险偏好、资产配置、多样化程度、风险度量和收益率预期、动态投资策略等方面来制定投资计划,以获得最大化的收益和最小化的风险。
一、投资组合理论1952年3月,马科维茨在《财务杂志》上发表了一篇题为“组合选择”的长篇论文,提出了投资组合理论(portfolio theory)的基本原则。
文章中主要运用了统计分析方法,其中“不要把鸡蛋放在一个篮子里”的思想深刻地揭示了合理投资组合设计的核心。
为表彰马科维茨为发展和推动投资组合理论所作出的杰出贡献,瑞典皇家科学院授予他和其他两位财务经济学家(夏普、米勒)1990 年度的诺贝尔经济学奖。
(一)、投资组合理论的假设前提首先以理性投资者投资行为的某些特定假设条件为前提。
这些假设条件包括:1.每一个投资机会都可以投资期间预期投资收益率的概率分布来表示;2.投资者所具有的效用曲线都遵循边际效用递减规律;3.每个人都根据预期收益的变化来估量风险;4.投资者仅仅依据预期投资收益和风险作出投资决策;5.在给定的收益水平下,投资者会优先选择风险低的投资方案。
(二)、理论1、投资组合理论的基本目标马科维茨通过“预期报酬方差分析”方法得出在各种证券组合情况下的一般规则,在给定的预期报酬下期望组合风险最小;在给定的组合风险下,期望投资收益最大。
上述要求体现了投资组合理论的基本目标。
2、马科维茨还提出,证券组合的风险不仅依赖其所含的个别证券的特征,而且还依赖于它们之间的关系。
在投资组合中,须考虑每一种证券的期望收益与证券组合的期望收益的相互关系;每一种证券的标准差,以及各种证券的相互关系与投资组合标准差之间的关系。
3.相关指标期望收益、方差、标准差、协方差cov(r1,r2)、相关系数ρA B=cov(r1,r2)/sdr1*sdr2投资组合的期望收益=R p = X A× R A+ X B× R B投资组合的方差=X2A×σ2A+ 2 X A X BσA B+ X2B ×σ2 BρA B<1,投资组合的标准差小于组合中各种证券标准差的加权平均数。
贝塔系数βi =Cov( Ri , RM )/ σ2(R M)二、资本资产定价模型资本资产定价模型就是在投资组合理论和资本市场理论基础上形成发展起来的证券投资理论,主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的。
组合投资理论及其投资组合理论的制胜要素建议分析组合投资即投资组合理论。
投资组合理论有狭义和广义之分。
狭义的投资组合理论指的是马柯维茨投资组合理论。
从狭义的角度来说,投资组合是规定了投资比例的一揽子有价证券,当然,单只证券也可以当作特殊的投资组合;而广义的投资组合理论除了经典的投资组合理论以及该理论的各种替代投资组合理论外,还包括由资本资产定价模型和证券市场有效理论构成的资本市场理论。
同时,由于传统的EMH不能解释市场异常现象,投资组合理论又受到行为金融理论的挑战。
简单的,我们可以理解为——“不要把鸡蛋放在同一个篮子里”。
投资组合理论(portfolio theory)投资组合理论风险管理的数量分析。
投资组合理论被定义为最佳风险管理的定量分析。
无论分析的单位是家庭、公司,还是其他经济组织,为了找到最优的行动方案,需要在减少风险的成本与收益之间进行权衡,对这些内容阐述并估计的过程,即投资组合理论的应用。
对家庭而言,消费和风险偏好是已知的。
偏好会随着时间而改变,但这些变化的机制和原因并非投资组合理论阐述的内容。
投资组合理论阐述了如何在金融工具中进行选择,以使其特定的偏好最大化。
通常,最佳选择包括对获取较高预期回报和承担较大风险之间权衡的评估。
投资组合理论运用投资组合理论为有效投资组合的构建和投资组合的分析提供了重要的思想基础和一整套分析体系,其对现代投资管理实践的影响主要表现在以下4个方面:1.马考威茨首次对风险和收益这两个投资管理中的基础性概念进行了准确的定义,从此,同时考虑风险和收益就作为描述合理投资目标缺一不可的两个要件(参数)。
在马考威茨之前,投资顾问和基金经理尽管也会顾及风险因素,但由于不能对风险加以有效的衡量,也就只能将注意力放在投资的收益方面。
马考威茨用投资回报的期望值(均值)表示投资收益(率),用方差(或标准差)表示收益的风险,解决了对资产的风险衡量问题,并认为典型的投资者是风险回避者,他们在追求高预期收益的同时会尽量回避风险。