最优化方法与策略 线性规划
- 格式:ppt
- 大小:1.46 MB
- 文档页数:28
线性规划解决最优化问题的数学方法线性规划是一种常见的数学方法,用来解决最优化问题。
它能够帮助我们在给定一组线性约束条件下,找到最优的目标函数值。
在实际应用中,线性规划方法被广泛用于制定优化决策、资源配置、生产计划等领域。
本文将介绍线性规划的基本概念、公式以及解决最优化问题的具体步骤。
一、线性规划的基本概念与公式线性规划的目标是在给定约束条件下,找到使目标函数(也称为优化函数)取得最大或最小值的解。
它包含三个基本要素:决策变量、约束条件和目标函数。
1. 决策变量:决策变量是问题中需要确定的变量,它们可以是实数、整数或布尔变量。
决策变量的取值范围和类型由问题的实际情况决定。
2. 约束条件:约束条件是对决策变量的限制条件,它们可以是线性等式或不等式。
约束条件用于描述问题的限制条件,例如资源约束、技术限制等。
3. 目标函数:目标函数是求解问题的目标,它可以是最小化或最大化一个线性函数。
目标函数的形式通常是关于决策变量的线性组合。
线性规划问题可以用如下的标准形式表示:最小化 Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束:x₁ ≥ 0, x₂ ≥ 0, ... , xₙ ≥ 0其中,Z为目标函数值,c₁, c₂, ... , cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ... , bₙ为约束条件的常数项,x₁, x₂, ... , xₙ为决策变量。
二、线性规划的解决步骤解决线性规划问题一般可以遵循以下步骤:1. 定义问题:明确问题的目标函数、约束条件和决策变量,并将其转化为标准形式。
2. 建立数学模型:根据问题的实际情况,根据标准形式建立数学模型,将问题转化为求解目标函数最大或最小值的数学问题。
数学中的最优化与线性规划最优化和线性规划是数学中的重要概念和工具,它们在多个领域中都起到了关键作用。
本文将介绍最优化和线性规划的基本概念、应用领域以及解决问题的方法。
一、最优化的概念与应用领域最优化是在给定一组约束条件下,寻找使得目标函数取得最大值或最小值的优化问题。
它广泛应用于经济学、工程学、物理学、运筹学等多个领域。
在经济学中,最优化方法可以用于确定最佳的生产方案、资源分配以及市场供需模型的分析。
在工程学中,最优化方法可以用于设计最佳的结构、调度最优的制造流程以及优化供应链管理。
在物理学中,最优化方法可以用于求解最短路径、最快速度、最小能耗等物理问题。
在运筹学中,最优化方法可以用于解决旅行商问题、背包问题,以及其他组合优化问题。
二、线性规划的概念与解决方法线性规划是最常见的最优化方法之一,它是一种特殊的最优化问题,目标函数为线性函数,约束条件为线性等式或不等式。
线性规划的解决方法主要包括图形法(几何法)和单纯形法。
图形法是一种直观的解决方法,它通过绘制目标函数和约束条件在二维或三维空间中的几何图形,找到最优解的位置。
然而,图形法只适用于简单的线性规划问题,并且对于高维空间的问题不实用。
单纯形法是一种高效的解决方法,它通过迭代计算来搜索最优解。
它利用线性规划问题的基本性质,不断调整可行解,直到找到最优解为止。
单纯形法被广泛应用于实际问题中,并在计算效率上有较好的表现。
三、最优化和线性规划的实例应用1. 生产计划假设一个工厂有多种产品需要生产,每种产品对应着不同的利润和生产成本。
最优化方法可以帮助工厂确定最佳的生产数量,使得利润最大化或成本最小化。
2. 投资与资产配置最优化方法可以运用于投资组合的选择和资产配置,根据不同的风险偏好和预期收益率,确定最佳的投资组合,并进行资金的分配。
3. 供应链管理在供应链管理中,最优化方法可以用于确定最佳的配送路径、最佳的库存水平以及最佳的订单量,以降低成本、提高效率。
最优化理论介绍最优化理论是数学与工程领域中一门重要的学科,它涉及寻找最优解的方法和策略。
在现实生活中,无论是工程设计、经济计划还是管理决策,都离不开最优化问题。
本文档旨在简要介绍最优化理论的基本概念、类型及应用。
基本概念最优化理论研究的是在一定约束条件下,如何使目标函数达到最大值或最小值的问题。
目标函数是衡量方案优劣的数学表达式,而约束条件则是对变量取值的限制。
最优化问题的分类1. 线性规划:当目标函数和约束条件均为线性时,这类问题称为线性规划问题。
它是最优化理论中研究最早、应用最广泛的一部分。
2. 非线性规划:如果目标函数或约束条件中至少有一个是非线性的,则问题属于非线性规划。
这类问题通常更复杂,需要特殊的算法来解决。
3. 动态规划:动态规划是一种用于解决多阶段决策过程的优化方法。
它将复杂问题分解为一系列相互关联的子问题,通过求解子问题来找到原问题的最优解。
4. 整数规划:当决策变量必须是整数时,这类问题称为整数规划。
它在许多实际应用中非常重要,如调度问题、资源分配等。
应用领域最优化理论广泛应用于各个领域,包括:- 工程设计:如结构设计中的材料使用最优化,电路设计中的功耗最小化。
- 经济管理:如成本控制、资源分配、投资组合选择等。
- 运输物流:如最短路径问题、货物装载优化等。
- 生产计划:如生产线平衡、生产调度等。
结论最优化理论为我们提供了一种系统的方法来处理各种最大化或最小化问题。
随着计算机技术的发展,复杂的最优化问题现在可以通过软件工具得到快速有效的解决。
了解最优化理论的基本知识,对于提高决策质量、优化资源配置具有重要意义。
请注意,本文仅作为最优化理论的入门简介,深入学习还需参考专业书籍和资料。
五种最优化方法范文最优化方法是指为了在给定的条件和约束下,找到一个最优解或者接近最优解的问题求解方法。
这些方法可以用于解决各种实际问题,例如优化生产计划、项目管理、机器学习、数据分析等。
下面将介绍五种常见的最优化方法。
1. 线性规划(Linear Programming):线性规划是一种数学优化技术,用于解决线性目标函数和线性约束条件下的问题。
线性规划方法可以用于优化生产计划、资源分配、供应链管理等问题。
它的基本思想是将问题转化为一个线性目标函数和线性约束条件的标准形式,然后使用线性规划算法求解最优解。
2. 非线性规划(Nonlinear Programming):与线性规划不同,非线性规划处理非线性目标函数和约束条件。
非线性规划方法适用于一些复杂的问题,例如优化机器学习模型、最优化投资组合配置等。
非线性规划方法通常使用梯度下降、牛顿法等迭代算法来逐步优化目标函数,找到最优解。
3. 整数规划(Integer Programming):整数规划是一种数学优化技术,用于求解在决策变量为整数的情况下的优化问题。
整数规划方法通常用于优化工程排程、选址和布局问题等。
整数规划在求解时需要考虑变量取值范围的整数要求,使用分支定界、割平面等方法求解,保证最优解是整数。
4. 动态规划(Dynamic Programming):动态规划是一种将复杂问题分解为一系列子问题来求解的最优化方法。
它通常用于处理具有重叠子问题和最优子结构特性的问题,例如最优路径问题、背包问题等。
动态规划方法通过记忆化或者状态转移的方式来求解最优解,可以有效避免重复计算,提高求解效率。
5. 元启发式算法(Metaheuristic Algorithm):元启发式算法是一类基于启发式的最优化方法。
与传统的优化方法不同,元启发式算法通常不需要依赖目标函数的导数信息,适用于处理复杂问题和无法建立数学模型的情况。
常见的元启发式算法包括遗传算法、蚁群算法、粒子群算法等,它们通过模拟自然界中的生物群体行为来最优解。
第五章线性规划线性规划(Linear Programming,简记为LP)是数学规划的一个重要的分支,其应用极其广泛.1939年,前苏联数学家康托洛维奇(Л.B.Kah )在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题.1947年美国数学家丹泽格(G. B. Dantzig)提出了一般线性规划的数学模型及求解线性规划的通用方法─单纯形方法,为这门科学奠定了基础.此后30年,线性规划的理论和算法逐步丰富和发展.1979年前苏联数学家哈奇扬提出了利用求解线性不等式组的椭球法求解线性规划问题,这一工作有重要的理论意义,但实用价值不高.1984年在美国工作的印度数学家卡玛卡(N. Karmarkar)提出了求解线性规划的一个新的内点法,这是一个有实用价值的多项式时间算法.这些为线性规划更好地应用于实际提供了完善的理论基础和算法.第一节线性规划问题及其数学模型一、问题的提出例1 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知条件如表所示。
问应如何安排计划使该工厂获利最多?ⅠⅡ现有资源设备原材料A 原材料B 14248台时16kg12kg每件利润23ⅠⅡ现有资源设备原材料A 原材料B 1402048台时16kg12kg每件利润23解: 设x 1、x 2 分别表示在计划期内产品Ⅰ、Ⅱ的产量。
12max 23z x x =+..s t 1228x x +≤1416x ≤2412x ≤12,0x x ≥二、线性规划问题的标准型112211112211211222221122123max ..,,0n nn n n n m m m mn n mn z c x c x c x s t a x a x a x b a x a x a x b a x a x a x b x x x x =+++⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪≥⎩,,其中1,,0m b b ≥11max ..,1,2,,0,1,2,,nj jj nij j i j j z c x s t a x b i mx j n=====≥=∑∑ 12(,,,)T n c c c =c 12(,,,)Tn x x x =x 12(,,,)Tm b b b =b 111212122212n nm m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 12[,,,]n = p p pmax ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 001max ..()Tnj j j z s tx =⎧=⎪⎪=≥⎨⎪⎪≥⎩∑c xp bb x 00对于不是标准形式的线性规划问题,可以通过下列方法将线性规划的数学模型化为标准形式:(1)目标函数的转换对min z 可以化max()z -(2)右端项的转换对0i b <,给方程两边同时乘以1-(3)约束条件的转换约束条件为≤方程左边加上一个变量,称为松弛变量约束条件为≥方程左边减上一个变量,称为剩余变量(4)变量的非负约束变量j x 无限制时,令,,0j j j j j x x x x x ''''''=-≥变量0j x ≤时,令j jx x '=-例将下列线性规划模型转化为标准形式12312312312312min 23..7232500x x x s t x x x x x x x x x x x -+-⎧⎪++≤⎪⎪-+≥⎨⎪--=-⎪≥≥⎪⎩,解(1)变量的非负约束令345x x x =-1245max 233x x x x -+-..s t 612457x x x x x ++-+=712452x x x x x -+--=12453225x x x x -++-=§2 两变量线性规划问题的图解法例1 求下列线性规划的解12121212max ..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,120x x z +=将等值线沿梯度方向移动当等值线即将离开可行例2 求下列线性规划的解12121212max 2..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,1202x x z +=将等值线沿梯度方向移动当等值线即将离开可行域时与可行域“最后的交点点为问题的最优解例3 求下列线性规划的解12121212max ..2200z x x s t x x x x x x =+⎧⎪-≤⎪⎨-≥-⎪⎪≥≥⎩,c2x 1x O无解例4 求下列线性规划的解12121212min 3..123600z x x s t x x x x x x =-⎧⎪≤⎪⎨≥⎪⎪≥≥⎩++,2x 1x O线性规划问题的性质:(1)线性规划的可行域为凸集,顶点个数有限.若可行域非空有界,则可行域为凸多边形.(2)线性规划可能有唯一最优解,可能有无数多个最优解,也可能无解最优解.无最优解可能是目标函数在可行域上无界,也可能可行域为空集.(3)若线性规划有最优解,则最优解必可在可行域的某个顶点达到.若两个顶点都为最优解,那么这两点连线上的所有点都是线性规划的最优解.§3 线性规划解的概念及其性质1 线性规划解的概念考虑线性规划问题max ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 00定义.1 矩阵A 中任何一组m 个线性无关的列向量构成的可逆矩阵B 称为线性规划的一个基矩阵与这些列向量对应的变量称为基变量(basis variable )其余变量称为基对应的非基变量(nonbasis variable )B 若设一个基为12(,,)m B p p p = ,12,,,m x x x ——为基B 对应的基变量1,,m n x x + ——为基B 对应的非基变量1B m x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1m N n x x x +⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦12(,,,)m m n ++= N p p p (,)=A B N 从而令=Ax b 则(,)N x ⎡⎤=⎢⎥⎣⎦B x B N b11B Nx B b B Nx --=-B N Bx Nx b+=令0N x =则1B x B b-=10B b -⎡⎤⎢⎥⎣⎦——基本解(basis solution )满足10B b -⎡⎤≥⎢⎥⎣⎦,=≥0Ax b x 的基本解——基本可行解(basis feasible solution )对应的基称为可行基(feasible basis ).B 可以写成即:定义4 若基本可行解中所有基变量都为正,这样的基本可行解称为非退化解(non-degenerate solution).若基本可行解中某基变量为零,这样的基本可行解称为退化解(degenerate solution).例1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:12123141234max ..28400,00z x x s t x x x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥≥≥⎩,,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点2 解的判别定理定理1 最优解的判别准则设B 为线性规划LP 的一个基,1(1)0-≥B b 1(2)T T--≥0Bc B A c 则基对应的基本可行解1-⎡⎤⎢⎥⎣⎦0B b 是LP 的最优解.1(1,2,,)σ--== TBj j j c B p c j n 为变量对应的检验数j x 112[0,,0,,,]σσσ-++-= ,T TBm m n c B A c 显然基变量对应得检验数为零.定理2 无穷多个最优解的判别定理在线性规划的最优解中,某个非基变量对应的检验数为零,则线性规划有无数多最优解.定理3 无界解的判别定理设B 为线性规划的一个可行基,若基本可行解中s x 对应的检验数0σ<s ,且1-≤0s B p 则线性规划具有无界解(或称无解).某非基变量§3.4 单纯形表设B 为线性规划的一个基,x 为对应的可行解,则=Ax b两边同乘得1-B 11--=B Ax B b两边同乘得T Bc 11T T --=BBc B Ax c B b T z =c xTz -=c x 11T T --+-=TBBz c B Ax c x c B b 11(T T --+-=)TBBz c B A c x c B b1111()T TT z ----⎧+-=⎨=⎩BBc B A c x c B b B Ax B b 11111T T Tz ----⎡⎤⎡⎤-⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0BBc B b c B A c x B A B b 定义矩阵1111TT----⎡⎤-⎢⎥⎣⎦T BBc B b c B A c B bB A 为基B 对应的单纯形表(table of simplex ),记为()T B1111()T T----⎡⎤-=⎢⎥⎣⎦T BBc B b c B A c T B B bB A 检验数函数值基变量的值各变量的系数100T b -=Bc B b 101020(,,,)--= T TBn c B A c b b b 10201-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥ b b B b则单纯形表可写成000101011102()⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦B n n m m mn b b b b b b T b b b 1112121222111112(,,)---⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦n n n m m mn b b b b b b B A B p B p bb b上例中1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:121231412max ..28400z x x s t x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥⎩,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点13410(,)01⎡⎤==⎢⎥⎣⎦B p p 231(,)=B p p 12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p T(0,0)=B C 10()T⎡⎤-=⎢⎥⎣⎦c T B b A 34011008121041001z x x -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦23140101()4021141001x x ⎡⎤⎢⎥=-⎢⎥⎢⎥z T B 121101--⎡⎤=⎢⎥⎣⎦B 31401014021141001z x x ⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦T(0,1)=B C单纯形表的特点:1、基变量对应的检验数为零2、基变量的系数构成单位阵§5旋转变换(基变换)设已知12(,,,,,)= r m j j j j B p p p p T()=B 1 r m j j j z x x x 1sn x x x 0001001011110102⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦sn s n r r rs rn m m ms mn b b b b b b b b b b b b b b b b为了将s x 变为基变量,而将r j x 变为非基变量,必须使表中的第s 列向量变为单位向量,变换按下列步骤进行:(1)将()T B 中第r 行,第s 列的元素化为1.01(,,,,,1,,) rj r rnr rs rs rs rsb b b b b b b b (2)将()T B 中第s 列的的其余元素化为0.0101(,,,,,0,,)---- is rn is rj is r is r i i ij in rs rs rs rsb b b b b b b b b b b b b b b b由此得出变换后矩阵中各元素的变换关系式如下,其中,01== ,,,rjrj rsb b j nb ,,01,01=-≠== ,,,,,,is rjij ij rsb b b b i r i m j nb 变换式称为旋转变换rs b 称为旋转元,r称为旋转行称为旋转列,s s x 称为入基变量,称为出基变量,r j x {,}r s定理3.5.1,01== ,,,rj rj rsb b j n b ,,0,01=-≠== ,,,,,is rj ij ij rsb b b b i r i m j n b 在变换之下,将基12(,,,,,)= r m j j j j B p p p p 的单纯形表变为基12(,,,,,)= m j s j j B p p p p 的单纯形表第6节单纯形法基本思路是:线性规划(通常是求最小值的形式)若有最优解,其必定在可行域(在相应几何空间中是一个凸多面体)的顶点达到,故从某一个顶点出发,沿着凸多面体的棱向另一顶点迭代,使得目标函数的值增加,经过有限次迭代,将达到最优解点.1.入基变量及出基变量的确定入基变量的确定由上面可知,目标函数用非基变量表示的形式为01n j jj m z z x σ=+=-∑若某检验数0j σ<则j x 的系数大于零,将j x 由零变为非零,目标函数值增大.所以,为了使的取值目标函数值增加,可以将某检验数0j σ<对应的非基变量j x 中的某个变为基变量.{}min 0j s j σ=<则s x 可选作为入基变量.即:在负检验数中,列标最小的检验数对应的非基变量入基.2.出基变量的确定在确定出基变量时应满足两个原则:(1)目标函数值不减;(2)保证新的基本解为基本可行解.0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,2 单纯形法设已知一个初始可行基及B T()B 基变量指标集合为{}1,,B m J j j = 非基变量的指标集合为{}1,2,,\N BJ n J =单纯形法若所有()00j N b j J ≥∈,则停止,最优解为0,1,,0,ij i j N x b i m x j J **⎧==⎪⎨=∈⎪⎩否则转(2).(1)最优性检验(2)选入基变量{}0min 0,j N s j b j J =<∈若()01~is b i m ≤=,则停止,(LP)无最优解,否则转(3)(3)选出基变量0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭0min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,(4)作{},r s 旋转运算,01rj rj rsb b j n b == ,,,,,01,01is rj ij ij rsb b b b i r i m j n b =-≠== ,,,,,,得B 的单纯形表()()ijT B b =,以ij b 代替ij b ,转(1)例1 求线性规划问题的解解标准型为:121231425max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 2328416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/408-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x08-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/40140244011/201001/40002-15z x 12345x x x x x 3/21/80⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 1/2例2求线性规划问题的解解标准型为:121231425max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 228416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/404-2441202101001/400400135z x x 12345x x x x x 01/40⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x0-2441202101001/400400135z x x 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/4080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 41/42-1/2080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 2x 2T 0803280101/410101/2-004-12z 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣01x 2x 42-1/25x 11212x k x k x =+12120,1,1k k k k ≤≤+=全部最优解为§7 两阶段法第二阶段从初始可行基开始,用单纯形法求解原问题.(LP )max ..(0)0T z c x s t Ax b b x ⎧=⎪=≥⎨⎪≥⎩(ALP )max ..0()T w s t z ⎧=-⎪-=⎪⎨+≥⎪⎪≥⎩00T e y c x A =b b x y x 第一阶段引入人工变量,构造辅助问题,求辅助问题的最优解,得出原问题的初始可行基及对应的基本可行解.(ALP)12112211112211121122222211212312max..0 ,,,,0mn nn nn nm m mn n m mn mw y y ys t z c x c x c xa x a x a x y ba x a x a x y ba x a x a x y bx x x x y y y=----⎧⎪----=⎪⎪++++=⎪++++=⎨⎪⎪++++=⎪⎪≥⎩,,,,,121111211112122122212000000100()010001m m m m i i i in i=1i i i n n n m m m mn b a a a c c c b a a a T B b a a a b a a a ===⎡⎤----⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑∑。
线性规划和最优化问题在我们的日常生活和工作中,经常会面临各种各样的决策问题。
如何在有限的资源条件下,实现最佳的效果或者达成最优的目标,这就涉及到线性规划和最优化问题。
线性规划是数学规划的一个重要分支,它是一种用于解决在一定约束条件下,如何优化线性目标函数的方法。
简单来说,就是在一些限制条件下,找到一个最好的解决方案。
想象一下,你是一家工厂的经理,你有一定数量的原材料、工人工作时间和机器设备。
同时,你生产的不同产品有着不同的利润。
你需要决定每种产品生产多少,才能使总利润最大。
这就是一个典型的线性规划问题。
再比如,你正在规划一次旅行。
你有一定的预算,有限的时间,不同的目的地和交通方式,以及每个目的地的吸引力。
你要如何安排行程,才能在预算和时间内,获得最大的旅行满足感?这也是一个可以用线性规划来解决的问题。
线性规划问题通常有三个主要组成部分:决策变量、目标函数和约束条件。
决策变量就是我们需要决定的未知量。
比如在上面的工厂生产例子中,每种产品的生产量就是决策变量;在旅行规划的例子中,去每个目的地的天数或者选择的交通方式就是决策变量。
目标函数是我们想要最大化或者最小化的东西。
在工厂生产中,目标通常是总利润最大化;在旅行规划中,可能是旅行的满意度最大化或者总花费最小化。
约束条件则是对决策变量的限制。
在工厂生产中,可能是原材料的数量限制、工人工作时间的限制、机器设备产能的限制等;在旅行规划中,可能是预算的限制、时间的限制等。
解决线性规划问题的方法有很多,其中最常见的是单纯形法。
单纯形法的基本思想是从可行解区域的一个顶点出发,沿着可行解区域的边界移动,直到找到最优解。
这个过程就像是在一个多面体的顶点之间跳跃,寻找最高点或者最低点。
除了单纯形法,还有内点法等其他方法。
内点法的基本思想是从可行解区域的内部出发,通过一系列的迭代逐步接近最优解。
线性规划在很多领域都有着广泛的应用。
在农业领域,农民可以用线性规划来决定种植不同作物的面积,以实现最大的收益。
高中数学中的最优化问与线性规划方法在高中数学的学习中,最优化问题和线性规划方法是非常重要的内容。
它们不仅在数学领域有着广泛的应用,还与我们的日常生活、经济活动等密切相关。
最优化问题,简单来说,就是在一系列的限制条件下,寻找一个最佳的解决方案,使得某个目标函数达到最大值或最小值。
比如说,在资源有限的情况下,如何安排生产,以获得最大的利润;或者在给定预算的前提下,如何采购物品,以满足最大的需求。
线性规划则是解决最优化问题的一种重要方法。
它的核心在于通过建立线性的数学模型,来描述问题中的各种关系和限制条件。
我们先来看一个简单的线性规划问题。
假设一家工厂生产两种产品A 和 B,生产一件 A 产品需要消耗 2 个单位的原材料和 3 个单位的工时,生产一件B 产品需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂共有 100 个单位的原材料和 80 个单位的工时。
已知 A 产品的利润为5 元每件,B 产品的利润为4 元每件,那么工厂应该如何安排生产,才能获得最大的利润?为了解决这个问题,我们首先要设出未知数。
设生产 A 产品 x 件,生产 B 产品 y 件。
然后,根据题目中的条件,我们可以列出以下不等式组:2x +3y ≤ 100 (原材料限制)3x +2y ≤ 80 (工时限制)x ≥ 0,y ≥ 0 (非负限制)而我们的目标函数是利润 Z = 5x + 4y,我们要在满足上述不等式组的条件下,求出 Z 的最大值。
接下来,我们可以通过图形的方法来求解。
将上述不等式组转化为直线方程,然后在平面直角坐标系中画出这些直线所围成的区域,这个区域就被称为可行域。
在可行域内,我们要找到目标函数的最优解。
一般来说,最优解会出现在可行域的顶点处。
通过计算各个顶点处的目标函数值,我们就可以找到最大值。
线性规划问题在实际生活中有很多应用。
比如在物流运输中,如何安排车辆的运输路线,使得运输成本最低;在资源分配中,如何分配有限的资源,使得效益最大化等等。