2
二、包含的内容
按照优化思想分为经典方法与现代方法。 经典方法主要包括:线性规划、非线性规划、整数规 划、动态规划等 现代方法主要包括:随机规划、模糊规划、模拟退火 算法、遗传算法、禁忌搜索和人工神经网络等。 我们学习的内容主要是经典的最优化方法。 内容包括线性规划及其对偶规划,无约束最优化方法、 约束最优化方法等主要内容。
i 1 j 1
9
m k
数学模型:
注:平衡条件 出现在约束条件中.
作为已知条件并不
10
例1.1.2 生产计划问题
设某工厂有m种资源B1,B2, …,Bm,数量分别为: b1,b2, …, bm,用这些资源产n种产品A1,A2, …, An.每生产一个单位的Aj产品需要消耗资源Bi 的量为aij,根据合同规定,产品Aj的量不少于dj. 再设Aj的单价为cj. 问如何安排生产计划,才能既完成合同,又使该 厂总收入最多?
f x 2x1 2x2 , 2x2 2x1 2x3 3, 2x3 2x2
T
35
例:求目标函数的梯度和Hesse矩阵。
f ( x) x x x 2 x1 x2 2 x2 x3 3x2
2 1 2 2 2 3
2 2 2 f f f 又因为: 2, 2, 0 2 x1 x1x2 x1x3
因此,数据拟合问题得数学模型为
其中xi,yi(i=1,2,…,m)及jj(x)(j=0,1,…,n)为已知.
18
§1.2最优化问题的基本概念
19
最优化问题的一般形式为:
P:
(1.1)(目标函数) (1.2)(等式约束) (1.3)(不等式约束)
其中x是n维向量. 在实际应用中,可以将求最大值的目标函数取 相反数后统一成公式中求最小值的形式. 我们总是讨论