【分享】ANSYS动力学分析的几个入门例子问题一:悬臂梁受重力作用
- 格式:pdf
- 大小:274.92 KB
- 文档页数:9
第6例 杆系结构的静力学分析实例—悬臂梁[本例提示] 介绍了利用ANSYS 对杆系结构进行静力学分析的方法、步骤和过程。
6.1 问题描述及解析解图6-1所示为一工字悬臂梁,分析其在集中力P 作用下自由端的变形。
已知梁的材料为10号热轧工字钢,其横截面面积A =14.345 cm 2,截面高度H =100 mm ,惯性矩I xx =245 cm 4。
梁的长度L =1 m ,集中力P =10000 N 。
钢的弹性模量E =2×1011 N/m 2,泊松比μ=0.3。
根据材料力学的知识,该梁自由端的挠度为 38113xx 310803.61024510231100003--⨯=⨯⨯⨯⨯⨯==EI PL f m (6-1) 6.2 分析步骤6.2.1 过滤界面拾取菜单Main Menu →Preferences 。
弹出的图6-2所示的对话框,选中“Structural ”项,单击“Ok ” 按钮。
图 6-1 悬臂梁图 6-2 过滤界面对话框图6-3 单元类型对话框6.2.2 创建单元类型拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete。
弹出的图6-3所示的对话框,单击“Add”按钮;弹出的图6-4所示的对话框,在左侧列表中选“Structural Beam”,在右侧列表中选“2D elastic 3”,单击“Ok”按钮;返回到图6-3所示的对话框,单击图6-3所示的对话框的“Close”按钮。
6.2.3 定义实常数拾取菜单Main Menu→Preprocessor→Real Constants→Add/Edit/Delete。
在弹出的“Real Constants”对话框中单击“Add”按钮,再单击随后弹出的对话框的“Ok”按钮,弹出图6-5所示的对话框,在“AREA”、“IZZ”、“HEIGHT”文本框中分别输入14.345e-4、245e-8、0.1,单击“Ok”按钮。
AnsysWorkbench工程实例之——梁单元静力学分析本文可能是您能在网络上搜索到的关于Ansys Workbench梁单元介绍最详细全面的文章之一。
梁单元常用于简化长宽比超过10的梁与杆模型,比如建筑桁架、桥梁、螺栓、杠杆等。
Workbench中的梁单元有Beam188(默认)与Beam189两种,Beam188无中节点,Beam189有中节点。
在全局网格设置下,梁单元的中节点设置Element MIdside Nodes默认为dropped(无中节点),即默认使用Beam188单元,如果改为kept(有中节点),则将改变为Beam189单元。
类型单元形状中节点自由度形函数Beam188 3D梁无 6 线性Beam189 3D梁有 6 二次Beam188Beam1891 梁单元分析概要1.1 建模与模型导入线框模型可在DM中创建,也可导入stp/igs等模型。
以下分别介绍通过DM创建与通过CAD软件创建导入过程。
1.1.1 梁线体的创建方法1,简单的线体模型可以在DM中创建,一般在XY平面绘制草图或点,再通过Concept——Lines From Sketches、Lines From Points或3D Curve等创建。
区别在于Lines From Sketches是提取草图所有的线条,如果线条是相连接的,提取的结果为一个线几何体。
Lines From Points或3D Curve用于将草图的点(可以是草图线条的端点)连接成为线体,结合Add Frozen选项,可以创建多个线几何体。
操作3次后多个线条可以通过From New Part功能组合为一个几何体,组合后两条线共节点,相当于焊接在一起。
选中后右击方法2,通过CAD软件创建后导入。
如果读者使用的是creo建模,可在草图中创建点,退出草图后选择基准——曲线——通过点的曲线。
操作3次后输出时需要注意,可另存为stp或igs格式,在输出对话框中必须勾选基准曲线和点选项。
基于ANSYS的悬索桥梁的静载和动载的分析基于ANSYS的悬索桥梁的静载和动载的分析摘要运⽤ANSYS软件进⾏悬索桥桥梁的静载和动⼒分析,本⽂中的有悬索桥限元模型结构形式⽐较复杂,桥的每⼀个部分都有不同的属性和作⽤,因此在有模型中,使⽤了三种单元类型对悬索桥的桥塔、纵梁、加劲桁架、缆索、桥⾯板进⾏建模。
它们分别是三维弹性梁单元(BEAM4)、三维杆单元(LINK10)、板壳单元(SHELL63)。
然后再模型的基础上在进⾏了只有重⼒的静载分析和简单的模态分析。
键词:ANSYS悬索桥静载分析模态分析AbstractBy using ANSYS software of suspension bridge static load and dynamic analysis, this paper, the suspension bridge limit yuan model structure form is more complicated, the bridge every part has a different attribute and function, so the model, the use of three kinds of unit type on the suspension bridge tower, girder, stiffening truss, cable, bridge deck model. They were three dimensional elastic beam element (BEAM4), the three dimensional bar unit (LINK10), plate and shell elements (SHELL63). Then on the basis of the model in the only gravity static load analysis and simple modal analysis.引⾔悬索桥也叫吊桥,是跨越能⼒最⼤的⼀种桥型。
动力学有限元分析例题一例题1:图1所示的悬臂梁,长L =3m ,截面宽度b =0.02m ,高度h =0.10m 。
材料弹性模量E =210GPa ,密度ρ=7800Kg/m 3。
不考虑系统的阻尼,试计算梁横向振动的前6阶固有频率和正则振型,运用振型叠加法计算梁右端在受到力(100sin 10F t )π=N 作用下0-1s 时间内的响应,并与理论解对比。
【理论解:固有频率f 1=9.3132Hz ,f 2=58.365Hz ,f 3=163.42Hz ,f 4=320.25Hz ,f 5=529.39Hz ,f 6=790.81Hz ;响应()()()()()2321410sin 10sin 100101i i x L i i i i X t p p L y t EI k L p πππ=∞=⎡⎤−⎢⎥⎣t =⎡⎤⎛⎞⎢⎥−⎜⎟⎢⎥⎝⎠⎣⎦∑⎦其中i i p k =是系统的无阻尼固有频率,A 是梁截面积,()()()()()()()()(sin cos sin cos i i i i i i i i i sh k L k L )X ch k x k x sh k x k x ch k L k L −=−−−+是系统的正则振型,k i 满足特征方程()()cos 1i i k L ch k L =−。
】图1 悬臂梁结构图解:求解中采用国际单位制。
Edb=extract(Edof,Egv(:,i));ext=ex+(i-4)*4;eldraw2(ext,eyt,[2 3 1]);eldisp2(ext,eyt,Edb,[1 2 2],magnfac);FreqText=num2str(Freq(i));text(4*(i-4)+1.25,-3.0,FreqText);end% 绘制前6阶正则振型图。
% Step 6 设定简谐响应分析条件和6.进入简谐响应分析,给定相关参数选取模态T=1; nev=2;% 设定计算总时间为1s,选择结构的前两阶模态作为振型叠加法分析的基础。
Ansys Workbench是一款广泛应用于工程领域的有限元分析软件,可以用于解决各种结构力学、流体动力学、电磁场等问题。
本文将以Ansys Workbench为例,介绍一个结构力学的例题,并详细讲解解题过程。
1. 问题描述假设有一个悬臂梁,在梁的自由端施加一个集中力,要求计算梁的应力分布和挠度。
2. 建模打开Ansys Workbench软件,新建一个静力学分析项目。
在几何模型中,画出悬臂梁的截面,并确定梁的长度、宽度和厚度。
在材料属性中,选择梁的材料,并输入对应的弹性模量和泊松比。
在约束条件中,将梁的支座固定,模拟悬臂梁的真实工况。
在外部荷载中,施加一个与梁垂直的集中力,确定力的大小和作用位置。
3. 网格划分在建模结束后,需要对悬臂梁进行网格划分。
在Ansys Workbench 中,可以选择合适的网格划分方式和密度,以保证计算结果的准确性和计算效率。
通常情况下,悬臂梁的截面可以采用正交结构网格划分,梁的长度方向可以采用梁单元网格划分。
4. 设置分析类型在网格划分完成后,需要设置分析类型为结构静力学。
在分析类型中,可以选择加载和约束条件,在求解器中,可以选择计算所需的结果类型,如应力、应变、位移等。
5. 求解和结果分析完成以上步骤后,可以提交计算任务进行求解。
Ansys Workbench软件会自动进行计算,并在计算完成后给出计算结果。
在结果分析中,可以查看悬臂梁的应力分布图和挠度图,进一步分析梁的受力情况和变形情况。
6. 参数化分析除了单一工况下的分析,Ansys Workbench还可以进行参数化分析。
用户可以改变材料属性、外部加载、几何尺寸等参数,快速地进行批量计算和结果对比分析,以得到最优的设计方案。
7. 结论通过Ansys Workbench对悬臂梁的结构分析,可以得到悬臂梁在外部加载下的应力分布和挠度情况,为工程设计和优化提供重要参考。
Ansys Workbench还具有丰富的后处理功能,可以绘制出直观的分析结果图,帮助工程师和研究人员更好地理解和使用分析结果。
悬臂梁受力分析悬臂梁是一种常见的结构,其在工程领域中被广泛应用于各种场景中。
悬臂梁通常由一根横梁支撑在一侧固定点上,另一侧悬挂自由。
在这个题目中,我们需要对悬臂梁的受力进行分析。
通过对悬臂梁的受力分析,我们可以更好地了解悬臂梁的力学特性,从而为工程设计提供指导。
悬臂梁受力分析的过程中,需要考虑以下几个方面:均布载荷、集中载荷、弯矩和剪力。
首先,均布载荷是指沿悬臂梁长度均匀分布的外力。
均布载荷会导致悬臂梁产生弯矩和剪力。
弯矩是指沿悬臂梁截面产生的转矩,会引起梁的弯曲变形。
剪力是指悬臂梁截面上的内力,会引起梁切割时的剪切应力。
接下来,集中载荷是指作用在悬臂梁上的一个点载荷。
集中载荷也会导致悬臂梁产生弯矩和剪力,但其分布方式与均布载荷不同。
集中载荷通常是通过点载和反力作用于悬臂梁上,需要分析这些点载和反力之间的平衡关系。
悬臂梁受力分析中,需要确定各个部位的受力分布。
这可以通过应用梁的静力平衡原理和弹性力学理论来实现。
通过对悬臂梁进行等效力的划分和计算,可以得到悬臂梁上各个截面的受力状态。
在这个过程中,需要根据力的平衡条件,确定力的大小和方向。
在悬臂梁受力分析中,需要注意以下几个问题。
首先,弯矩和剪力的计算需要考虑悬臂梁的几何形状和材料特性。
其次,边界条件对悬臂梁的受力分布有重要影响。
边界条件包括支撑方式、固定约束和自由悬挂等。
最后,悬臂梁的载荷和受力分布需要满足梁的强度和刚度要求,从而保证悬臂梁能够承受设计要求。
悬臂梁受力分析可以应用于许多领域,如建筑结构、桥梁工程和机械设计等。
通过对悬臂梁的受力分析,可以确定悬臂梁的设计方案,并进行结构安全评估。
悬臂梁受力分析对于确保结构的安全性和稳定性具有重要意义。
总之,悬臂梁受力分析是一项重要的工程技术,可以帮助我们理解悬臂梁的受力特性。
通过合理的受力分析,可以为工程设计和结构优化提供科学依据。
悬臂梁受力分析需要考虑各种力的平衡关系和边界条件。
掌握悬臂梁受力分析的方法和技巧,对于工程师和设计师而言是至关重要的。