同步发电机自动调节励磁装置 共18页
- 格式:ppt
- 大小:537.50 KB
- 文档页数:18
同步发电机自动调节励磁装置
同步发电机是现代电力系统中一种非常常见的发电机类型,它能够与电网同步运行,保证了电网的稳定性和安全性。
同步发电机自动调节励磁装置是同步发电机控制系统中的关键部分,它能够根据电网的负荷变化自动调节发电机的励磁电流,保证了发电机的稳定运行。
同步发电机的励磁控制原理如下图所示:
图中,Vt是同步发电机的端电压,如果电网的负荷变化,会导致端电压的大小和相位发生变化。
为了保证发电机稳定运行,我们需要根据电网负荷的变化调节发电机的励磁电流,使得发电机的电功率与电网负荷匹配,保持端电压的稳定。
1、测量发电机的电流和电压信号;
2、计算发电机的无功功率和有功功率;
3、根据电网负荷变化计算出发电机的励磁电流应该调整的大小;
4、将计算出来的励磁电流值转换成控制信号,通过调节励磁装置来改变发电机的励磁电流。
同步发电机自动调节励磁装置通常采用PID控制算法,由比例、积分、微分三个环节组成。
具体来说,可以采用以下步骤实现控制:
同步发电机自动调节励磁装置的功能包括:稳定发电机的输出电压和频率、维护发电机的有功功率和无功功率平衡、提高电网稳定性和安全性。
在实际应用中,同步发电机自动调节励磁装置常常需要考虑到发电机的保护和故障处理,以确保电力系统的稳定和可靠运行。
发电机的自动励磁调节装置及调节形式姓名:摘要Xxx年x月x日至x月x日,学校为我们组织了为期x天的电厂实习,地点是xxxxxxxxxxxx。
在实习期间,我们参观了电厂的每个部分,就比如:xxxxxxxxxxxxx,在这段期间我通过参观和向带队师傅的学习,认识了很多的生产设备,零件和工具,更加懂得了电厂的生产流程。
在那么多的学习中我选择了发电机的自动励磁调节装置及调节形式来写报告。
1自动励磁调节装置发电机励磁的原理:利用导线切割磁力线感应出电势的电磁感应原理. 自动励磁调节装置的工作原理:自动励磁装置根据发电机电压,负荷电流的变化,相应改变可控硅整流回路的可控硅导通角,使整流桥送入的电流发生变化。
为取得励磁调节的快速性主励磁机一般采用100---200Hz中频交流同步发电机,副励磁机采用400---500Hz中频发电机。
副励的励磁可用永磁机或自励恒压式。
自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。
被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。
同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。
调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。
稳定单元是为了改善电力系统的稳定而引进的单元。
励磁系统稳定单元用于改善励磁系统的稳定性。
限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。
必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。
自动励磁调节装置的作用:(1)电力系统正常运行时,能自动调节励磁装置,维持发电机或系统某点(如高压母线)电压水平。
大大提高电压调节质量以及减轻运行人员的劳动强度。
自动励磁调节装置的作用。
第五章同步发电机自动调节励磁第一节概述一、励磁系统1、概念:供给同步发电机励磁电流地电源及其附属设备2、组成:励磁机<或其它励磁供电设备)L<ZB、GLH)手调励磁装置RC自动电压调节器ZTL自动灭磁装置MK 自动调节励磁装置强行励磁装置QLC强行减磁装置QJC二、自动调节励磁装置地作用<略讲)1、保持端电压于定值<f独立运行)⊿P↑→ U↓→ iL↑→ U↑U恒定负反馈2、维持系统电压,实现无功分配<f联网运行)Ux↓→ iL↑→ Q↑→ Ux↑Ux恒定合理分配<Kdc)3、利于系统静态稳定<小扰动)功角特性:Pe=sinδ其中:Pe——发电机传送有功功率δ——与<系统母线电压)相位差或各发电机转子空间位置=+j有励磁调节:=Ed不变,<<xd,dPe/dδ<整步功率系数)↑,Pemax<功率极限)↑4、提高系统暂态稳定<大扰动)如图:1——事故前2——事故中3——事故后<无励磁)——事故后<有励磁)abcd——加速面积s1def——减速面积s2——减速面积s3s1>s2 失步s1=s3 稳定运行在新地平衡点i5、机组甩负荷,强行减磁,限制过压机组内部故障,迅速灭磁三、组成自动电压调节器<ZTL)、强励、强减、灭磁四、对ZTL地基本要求第二节小型水轮发电机地励磁方式一、励磁方式1、分类:↗相复励<移相电抗分流)<1)自励→自并励、自复励<可控硅)↘谐波励磁<三次谐波)特点:由发电机本身提供励磁电流优点:运行维护简单缺点:受系统影响大↗直流励磁机<2)它励↘交流励磁机特点:由发电机本身以外地电源供电优点:可靠性高,受系统影响小缺点:造价高,运行维护复杂2、常用励磁方式:<1)直流励磁机励磁系统<它励)iL=iZTL+iZL励磁电源:L调节方法:手调RC;自动调节iZTL<⊿U)优点:励磁电源可靠缺点:碳刷、换向器维护麻烦,调节速度慢,容量受限制<100MW 以下机组),机组长度增加<2)交流励磁机励磁系统<它励)a、静止整流器励磁系统励磁电源:L调节方法:ZTL优点:维护简单,无换向器缺点:仍有滑环、碳刷b、旋转整流器励磁系统<无刷励磁)如上图,红色虚框为旋转部分优点:无碳刷、换向器,维护简单缺点:励磁回路无法监测;整流装置需承受较大离心力;灭磁慢3、自并励可控硅静止励磁系统励磁电源:ZB调节方法:ZTL优点:无碳刷、换向器磨损及环火缺点:强励性能取决于机端电压4、直流侧并联地自复励可控硅静止励磁系统励磁电源:ZB<电压源);GLH<电流源)复励电流取决于:定子电流i;iZTL空载:i=0<GLH无输出),由ZB提供iL负载:ZB ↘→iLGLH ↗短路:Id↑GLH提供强励iL开机:ZB、GLH无输出,设起励装置优点:强励电流大;两个励磁电源互为备用,避免失励5、交流侧串联自复励可控硅静止励磁系统励磁电源:ZB;GLH——铁芯带气隙地电抗变压器合成电势→可控硅整流→iL<反映Uf、If、cosφ大小,相复励特性)优点:相复励特性<相位补偿)——cosφ↓→Uf↓补偿<IL↑)缺点:GLH激磁电抗大,效率低6、三次谐波<自励恒压)励磁系统励磁电源:发电机定子槽中一组独立谐波绕组优点:自动调节性能<P↑→谐波电压U↑→iL↑→U↑);强励性能<短路→谐波电压U↑→iL↑→U↑)复习提问:1、励磁系统概念、作用对象及组成2、自励、它励区别3、自并励、自复励区别4、相复励箱位补偿含义第三节继电强行励磁和强行减磁一、强励地作用概念:系统电压急剧下降时迅速将发电机励磁电流增至最大值地自动装置作用:P79二、强励性能地衡量指标1、励磁电压上升速度定义:强励时第一个0.5s时间内测得地强励电压上升平均速度,用额定励磁电压倍数表示υ=<一般υ=0.8~1.2 1/s)2、强励顶值电压倍数定义:强励时最高励磁电压与额定励磁电压之比KQ=ULm/ULe<一般KQ =1.8~2倍)3、强励允许时间1min左右三、继电强行励磁装置1、原理接线图a、组成:1YJ、2YJ、1YZJ、2YZJ、XJ、QLC<QLC接点为常开,图中有误)b、原理:UF↓80~85%Ue 强励动作RC短接;发信号UF恢复强励复归c、接线特点:1YJ、2YJ串接:防1YH<2YH)熔断器熔断,强励误动作DL1辅助触点:F起动、事故跳闸时闭锁QLC<退出)BK切换开关:投切QLCd、保证最大动作机率并列运行各机组,其低压元件接于不同地相间电压上<而每台机中地两个低压元件应接于同一相间电压上)e、与复励调节器配合考虑ZTL对某些故障丧失强励能力,依靠继电强励f、采用正序滤过器提高强励装置灵敏度——可反映各种不对称短路g、确保低电压继电器动作两YH箱位不同时,应确保两YJ反映同一故障四、继电强行减磁装置<仅用于水轮发电机)1、减磁地作用a、机组甩负荷b、机组内部故障,灭磁引起地励磁机甩负荷2、强减地取得方式a、ZTL负反馈b、继电器、直流接触器等<同强励)c、灭磁开关辅助触点<MK跳开,自动接入强减电阻)3、继电强行减磁装置地原理接线图与强励地区别:<1)接线强减强励1YJ、2YJ YJ<低电压继电器) <过电压继电器)<2)强励:↓R↑IL强减:↑R↓IL相同之处:改变励磁回路阻值改变励磁大小原理:U>1.15Ue 强减动作Rjc接入;发信号U Ue 返回第四节复式励磁和相位复式励磁复习:发电机外特性曲线:iL恒定,Uf=f<If)<比较cosφ=0.9,0.8,0.7曲线特点>发电机调节特性曲线:Uf恒定,iL=f<If)<比较cosφ=0.9,0.8,0.7曲线特点>一、复式励磁1、特点:根据发电机定子电流If地变化而自动调节励磁2、接线:P85图4-16组成元件:电流互感器LH复励变压器FZB<变压、隔离交、直流)复励整流桥FZL复励调节电阻Rft复励开关FK3、原理:iL=iZL+ifL<1)ifL=0ifL=0iL=iZL<调节Rc地大小来满足空载额定电压地需要)<2)ifL≤10~20%Ie<ifL较小)ifL=0iL=iZL<整流桥地输出电压被“封锁”)<3)ifL>10~20%IeiL=iZL+ifL<If↑→ifL↑)复励特性及装有复励地发电机外特性如图4-17所示只有A、B两点能保持Uf=Ue4、功率因数cosφ地影响iL只反映If大小,不反映cosφ大小cosφ↓Uf↓<复励特性与调节特性偏移较大)5、手动调节RftRft作用:If、cosφ变化时,维持Uf恒定;平滑退出复励Rft对发电机外特性地影响见图4-19<b)另:调节Rc也可维持Uf恒定,但Rc位置在使用复励时一般不变Rc对发电机外特性地影响见图4-19<a)6、短路时地工作情况Id↑→ifL↑具有一定强励特性<但受铁芯饱和限制)二、相位复式励磁1、接线P87图4-20XFB:相复励变压器2、原理:==<其中:)取||、||为定值,以为cosφ地函数作出矢量图P88图4-213、特点:<1)相复励地输出电流与、和cosφ三者有关<2)cosφ↓→||↑相位补偿<cosφ=1→||最小cosφ=0→||最大)<3)电压互感器YH断开复式励磁<4)空载或负荷电流较小“电压源”保证一定地电流输出<5)DK作用:正常运行或靠近机端短路时,限制“电流源”在WV 回路中地汲出电流,增加在W2回路中地输出电流b5E2RGbCAP三、小结1、复励与相复励均能反映定子电流地变化自动调节励磁,并有一定地强励性能;但前者仅反映定子电流绝对值,而后者则反映定子电流绝对值及端电压和cosφ,具有较好地补偿特性.2、单独使用复励与相复励均不能维持端电压恒定,须与电压校正器配合.3、相复励必须采用DK,若无DK,则正常运行时复励环节作用甚微;且机端短路将失去强励能力.复习提问:1、复励装置中下列元件地作用:FZB、FK2、Rft、RC作用3、复励特点,与相复励相同与不同之处介绍复励与相复励地工作特点:复励:If↑→Uf↓——If↑→IL↑→Uf↑补偿相复励:If↑→Uf↓——If↑→IL↑→Uf↑cosφ↓→Uf↓补偿——cosφ↓→IL↑→Uf↑结论:单独使用均不能保证Uf恒定与可控硅静止励磁装置地比较:可控硅励磁:Uf-Ue=⊿U→调节IL调节效果好,考虑了引起⊿U变化地各种因素影响,包括If、cosφ等复习提问:1、强励性能地两个衡量指标、意义2、继电强励、强减相同与不同之处3、继电强励接线特点<同一机组、不同机组)4、继电强励接线DL辅助接点作用第五节可控硅静止励磁装置地基本电路一、可控硅静止励磁装置地组成<结合框图讲解)<一)基本工作单元:测量变压器 Ue 测量比较 If、Uf、cosφ→⊿U电流调差综合放大⊿U→UK移相触发UK→Ug<α)励磁电源功率输出可控硅桥式整流 Ug<α)→UL<iL)保护附加回路<二)辅助工作单元:起励手动、自动切换低励<最小励磁限制)过励<电流限制)二、种类TKL型:适用1000~10000KW水轮发电机TKL-11:自并列 ZTL<ZB)小型机组TKL-21:自复励复励+ZTL 大型机组<GLH)<ZB)三、可控硅静止励磁装置功率输出电路励磁电源可控硅整流电路保护附加回路<一)励磁电源1、自并列TKL-11:ZBUL=1.35U其中:U——半控桥三相对称线电压<ZB副边)α——控制角2、自复励TKL-21:ZB 30~40%ILeGLH 60~70%ILe空载:IL0=IZTL负载:IL1=IZTL1+IFL1如图:复励太强——调节器失去作用复励太弱——调节器负担过重复习提问:1、可控硅静止励磁装置地组成及作用2、TKL-11、TKL-21励磁电源地差别<二)可控硅整流电路1、三相半控桥式整流电路三只可控硅——共阴极组;三只二极管——共阳极组可控硅导通条件:阳极电位高于阴极<正向阳极电压)控制极加入正触发脉冲可控硅截止条件:阳极与阴极间加反向电压<或通过电流小于维持电流)整流二极管导通条件:阴极电位最低控制角:可控硅在正向电压下不导通地角度范围α<未加触发脉冲地角度)α=0——可控硅在刚进入正向电压瞬间加触发脉冲导通角:可控硅在正向电压下导通地角度范围β自然换向点:三相瞬时电压地交点移相:改变加入触发脉冲地时刻以改变控制角α,称触发脉冲地移相α地变化范围称移相范围<α=0~1800,且α=0对应本相相电压300)<课堂练习:画出三相交流电压波形,并画出α=300、900时地各相触发脉冲位置)<1)三相半控桥触发脉冲地移相要求P106<2)输出电压波形<略)介绍方法:分析每一区间哪个KGZ、GZ导通该区间输出电压值a、α=0 三相桥式全波整流阳极电位最高地可控硅触发导通阴极电位最低地二极管触发导通ωt1~ωt2:Ud=UABUA最大——1KGZ导通 UB最小——6GZ导通。
同步发电机的励磁调节模式一、引言同步发电机是发电厂的核心设备之一,其稳定运行对电网的可靠性和稳定性至关重要。
而励磁系统作为同步发电机的重要组成部分,其调节模式对发电机的稳态和动态特性影响深远。
因此,对同步发电机的励磁调节模式进行深入研究,对保障电网的安全稳定运行具有重要意义。
二、同步发电机励磁系统的基本原理同步发电机的励磁系统是通过调节励磁电流来控制发电机的磁通,从而控制发电机的输出电压。
励磁系统通常是由稳压器、励磁电流限制器、励磁电源和励磁绕组等部分组成。
稳压器通过对励磁绕组的励磁电压进行控制,控制发电机的输出电压。
三、同步发电机励磁调节模式的分类同步发电机的励磁调节模式主要包括手动调节、自动调节和自动跟踪调节三种模式。
1.手动调节手动调节模式是指操作人员通过手动调节稳压器的设定值,来控制发电机的输出电压。
这种模式需要操作人员具有一定的经验和技术,并且在实际运行中容易出现误操作,影响发电机的稳定运行。
2.自动调节自动调节模式是通过采用PID控制器控制稳压器,根据发电机的输出电压信号和设定值之间的误差来调节稳压器的设定值,从而实现对发电机输出电压的自动调节。
这种模式能够有效提高发电机的稳态性能,并且可以根据实际需要进行参数优化,提高调节的精度和速度。
3.自动跟踪调节自动跟踪调节模式是在自动调节的基础上,加入了对电网频率和无功功率的跟踪控制。
通过对发电机输出的电压和频率进行跟踪调节,从而实现对电网功率因数的控制,保证发电机在并网运行中能够稳定输出所需要的有功功率和无功功率。
四、同步发电机励磁调节模式的应用实例在实际应用中,不同励磁调节模式会根据具体的运行条件和要求进行选择和应用。
1.在小型发电机组中,一般采用手动调节模式,通过操作人员进行手动调节来控制发电机的输出电压,这种模式操作简单,适用于运行较为稳定的情况。
2.在大型发电厂中,通常采用自动调节模式,通过PID控制器来实现发电机输出电压的自动调节,这种模式能够保证发电机在不同的运行状态下都能够保持稳定的输出电压,并且能够进行参数优化,提高调节的精度和速度。
绪论1 绪论1.1 题目来源来源于生产/社会实际1.2 研究目的和意义近年来,随着电力系统的发展,大机组的出现,要求励磁调节器具有更高的技术经济指标、更加完善的控制功能。
早期的机电型调节器、电磁型调节器、半导体调节器都越来越不能适应当今同步发电机励磁自动调节系统的发展。
目前,由于大规模集成电路和微机技术的迅猛发展,由硬件和软件组成的微机调节器己成为今后的发展方向。
优良的励磁调节系统有能提高系统的静稳定储备,防止励磁过分降低,提高继电保护灵敏度,快速灭磁等功能,能较好地使电力系统在稳定状态下运行并有较强的抗干扰能力。
本系统采用MSP4300F149单片机为主控芯片,设计的微机励磁调节器将会作为励磁自动调节系统发展的一个新的方向。
1.3 国内外现状和发展趋势1.3.1 励磁功率系统的发展50年代初期,汽轮发电机的励磁主要是采用直流励磁机系统。
直流励磁机的容量受机械强度和换向电压等电气参数的影响,其最大功率取决于 nP=1.8 X 106 (1-1)式中 P——直流励磁机的最大功率,kW;n——直流励磁机的转速,r/min。
由于直流励磁机与汽轮发电机同轴旋转,即n=3000 r/min,则励磁机的最大功率P为600kW。
对于励磁功率大于600kW的汽轮发电机,无法采用同步直流励磁机系统。
后来,交流励磁系统逐渐发展起来。
同步发电机励磁自动调节系统设计在交流励磁系统的发展过程中,先后出现了他励交流励磁机系统,自励和自复励静止励磁系统。
图1-1他励旋转硅整流励磁系统图1-1所示为交流励磁机系统,其励磁功率电源可靠,不受电力系统或发电机端短路故障的影响,即励磁功率电源取自发电机以外的独立的并与其同轴旋转的交流励磁机,故称为他励。
他励交流励磁机系统比起直流机励磁系统,容量增大了,能提供较大功率。
在直流励磁系统之后很长一段时间内,他励交流励磁机系统占有很重要的地位。
由于他励交流励磁机系统仍有转动部分,维护不方便,且与发电机同轴,增大了发电机和厂房体积,使投资大大增加,不利于今后的发展,于是自励和自复励静止励磁系统便发展起来。