金相组织(不銹钢腐蚀)
- 格式:ppt
- 大小:1.87 MB
- 文档页数:20
铁素体铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。
亚共析成分的奥氏体通过先共析析出形成铁素体。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,存在的范围小,一般很少见到。
碳溶入α-Fe中形成间隙固溶体,呈体心立方晶格结构,称为铁素体或α固溶体,用α或F表示,α常用在相图标注中,F在行文中常用。
室温下的铁素体的机械性能和纯铁相近。
物理性质纯铁在912℃以下为具有体心立方晶格(注1)的α-Fe。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
由于α-Fe 是体心立方晶格结构,它的晶格间隙很小,因而溶碳能力极差,在727℃时溶碳量最大,可达0.0218%,随着温度的下降溶碳量逐渐减小,在600℃时溶碳量约为0.0057%,在室温时溶碳量几乎等于零。
因此其性能几乎和纯铁相同,其数值如下:抗拉强度 180—280MN/平方米屈服强度 100—170MN/平方米延伸率 30--50%断面收缩率 70--80%冲击韧性 160—200J/平方厘米硬度 HB 50—80由此可见,铁素体的强度、硬度不高,但具有良好的塑性与韧性。
铁素体的显微组织与纯铁相同,呈明亮的多边形晶粒组织,有时由于各晶粒位向不同,受腐蚀程度略有差异,因而稍显明暗不同。
铁素体在770℃以下具有铁磁性,在770℃以上则失去铁磁性。
(铁素体的居里点为770℃)备注1:体心立方晶格的晶胞是一个立方体,在体心立方晶胞的每个角上和晶胞中心都排列一个原子。
不锈钢金相电解腐蚀黑点
不锈钢金相中的电解腐蚀黑点问题涉及到材料科学和金相分析等领域。
首先,不锈钢是一种耐腐蚀的金属材料,但在特定条件下仍然可能发生腐蚀现象。
电解腐蚀是一种在外加电压作用下金属表面发生的腐蚀现象,通常表现为局部的黑点或黑斑。
这种现象可能会对不锈钢的性能和外观造成影响。
造成不锈钢金相中电解腐蚀黑点的原因可能有多种。
首先,不锈钢材料本身的质量和组织结构可能会影响其抗腐蚀性能,如果材料质量不合格或者加工工艺不当,都可能导致腐蚀问题。
其次,使用环境中的化学物质和温度等因素也会对不锈钢的腐蚀产生影响。
例如,在含氯离子的环境中,不锈钢容易发生腐蚀,形成黑点。
另外,不锈钢表面的缺陷或者受到机械损伤的区域也容易成为电解腐蚀的起点。
针对不锈钢金相中的电解腐蚀黑点问题,可以采取多种方法进行预防和解决。
首先,选择合适质量的不锈钢材料,并严格控制加工工艺,以确保材料的均匀性和完整性。
其次,在使用过程中,需要注意避免不锈钢与含有氯离子的介质接触,或者及时清洁不锈钢表面的污垢和杂质,以减少腐蚀的可能性。
此外,定期对不锈钢材
料进行表面检查和维护,及时修复表面缺陷,也是预防电解腐蚀的有效手段。
总的来说,不锈钢金相中的电解腐蚀黑点问题是一个复杂的材料科学和工程技术问题,需要综合考虑材料本身的性能、使用环境和加工工艺等多个因素。
通过科学的分析和有效的预防措施,可以有效降低不锈钢电解腐蚀黑点问题的发生率,保障不锈钢材料的使用性能和寿命。
不锈钢的金相组织不锈钢的金相组织(一)(一)不同元素对不锈钢组织和相的影响对于马氏体型铬不锈钢来说,对组织产生主要影响的元素有铬、碳和钼;对马氏体型铬镍不锈钢来说,产生主要影响的元素有镍、钼、铝、钴、氮和钛等。
马氏体型铬镍不锈钢中由于所含的铬与碳发生交互的作用,使其在高温下形成稳定的r 相区和稳定的a+r相区。
碳量的增加可使r相区得到扩大,但是随着铬含量的增加碳的溶解极限下降。
马氏体型铬镍不锈钢中添加镍解决了马氏体型不锈钢为提高其耐蚀性以牺牲钢的硬度为代价的问题。
但是其中的镍含量不易过高,否则由于镍扩大奥氏体相区和降低Ms温度而使不锈钢变成奥氏体型不锈钢,从而完全丧失淬火能力。
影响铁素体型不锈钢组织的元素主要有铬、钼、碳、氮和镍,另外有一些铁素体型不锈钢中还添加有钛、铌和铜等元素,对组织也有一定的影响。
其中添加铬和钼的主要的目的是加速和促进α’相和α相的形成和沉淀,使铁素体晶粒更加粗大。
影响奥氏体型不锈钢组织的主要元素有碳、铬、镍、钼、氮、铜、硅和锰等,有时在生产易切削不锈钢时,也将硫作为添加元素。
碳在奥氏体型不锈钢中是形成、稳定和扩大奥氏体区的元素。
碳在奥氏体型不锈钢中是形成、稳定和扩大奥氏体区的元素,其形成奥氏体的能力远高于镍许多倍。
碳在奥氏体型不锈钢中是有用元素,但同时也是有害元素,一方面由于碳作为一种间隙元素可通过固溶强化显著提高奥氏体型不锈钢的强度,同时也可提高高浓度氯化物腐蚀介质中的耐蚀能力;但另一方面由于碳在某些条件下生成Cr23C6,使得耐腐蚀性能显著下降。
铬在奥氏体型不锈钢中的作用与其在铁素体型不锈钢中作用基本相同。
影响比相不锈钢组织的主要元素有镍、氮、锰、铬、钼、硅和钨等。
镍在α+r双相不锈钢中能扩大r相区。
有关资料指出,镍的添加还能促成形成σ(x)相,增加脆化敏感性并有使脆化敏感温度向高温方向移动的倾向,也将使马氏体相变温度降低,改善双相不锈钢的冷加工性能。
(二)相及相变热处理是不锈钢生产和加工过程中以及最终产品加工过程中重要的工序。
不锈钢的分类不锈钢的分类方法有几种:按主要化学组成分为铬不锈钢、铬镍不锈钢和铬锰氮不锈钢等;也可以以性能特点分成耐酸不锈钢和耐热不锈钢等;通常以金相组织进行分类。
按金相组织分类为:铁素体(F)型不锈钢、马氏体(M)型不锈钢、奥氏体(A)型不锈钢、奥氏体-铁素体(A-F)型双相不锈钢、奥氏体-马氏体(A-M)型双相不锈钢和沉淀硬化(PH)型不锈钢。
铁素体型不锈钢它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。
随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。
这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。
马氏体型不锈钢它的显微组织为马氏体。
这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。
碳含量的增高,提高了钢的强度和硬度。
在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。
这类钢的焊接性较差。
列入国家标准牌号的钢板有1Cr13、2Cr13、3Cr13、1Cr17Ni2等。
奥氏体型不锈钢其显微组织为奥氏体。
它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具在奥氏体组织的不锈钢。
奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。
奥氏体型不锈钢一般属于耐蚀钢,是应用最广泛的一类钢,其中以18-8型不锈钢最有代表性,它是有较好的力学性能,便于进行机械加工、冲压和焊接。
在氧化性环境中具有优良的耐腐蚀性能和良好的耐热性能。
但对溶液中含有氯离子(CL-)的介质特别敏感,易于发生应力腐蚀。
18-8型不锈钢按其化学成分中碳含量的不同又分为三个等级:一般含碳量(Wc≤0.15%)低碳级(Wc≤0.08%)和超低碳级(Wc≤0.03%)。
例如我国国家标准中的1Cr18Ni9Ti、0Cr18Ni9、00Cr17Ni14M02三种钢板分属上面三个等级。
常见金相化学浸蚀剂与电解浸蚀剂序号浸蚀剂名称成分使用要点适用范围1 硝酸酒精溶液硝酸1-5mL酒精100mL 硝酸浓度增加浸蚀作用增加。
用蒸馏水代替部分酒精加速浸蚀。
用甘油代替酒精延缓浸蚀。
一般适用于碳钢及低合金钢经各种热处理后的组织.(1) 使珠光体发黑,并增加珠光体区域的衬度。
(2)显示低碳钢中铁素体的晶界。
(3)识别马氏体与铁素体。
(4)显示矽钢片(4%Si)的晶粒2 苦味酸酒精溶液苦味酸 4g酒精100mL 腐蚀性较弱,不能显示铁素体晶界. 一般适用于碳钢及低合金钢经各种热处理后的组织。
(1)能清晰显示珠光体、马氏体、回火马氏体。
(2)显出淬火钢中的碳化物。
(3)利用浸蚀后色彩的差别识别铁素体,马氏体及大块碳化物。
(4)显示低碳钢铁素体晶界上的三次渗碳体.3 盐酸苦味酸酒精溶液盐酸5mL苦味酸 1g酒精100mL 晶粒度,1min以下;显示回火组织,15min左右。
(1) 显示淬火及淬火回火后钢的奥氏体晶粒.(2) 显示回火马氏体组织(205-245℃回火)4 铬酸水溶液Cr2O3 10g水 100mL 电解浸蚀,试料为正极,不锈钢为负极,相距18—25mm,电压6V,20—90s 除铁素体晶界晶粒外,多数组织均能显示。
渗碳体最易腐蚀,奥氏体次之,铁素体最慢。
5 氯化铁盐酸水溶液FeCl3 5gHCl 50mLH2O 100mL 显示奥氏体镍钢及不锈钢的显微组织.6 硝酸酒精溶液硝酸5—10mL酒精 90—95mL 高速钢组织显示7 盐酸硝酸溶液盐酸10mL硝酸3mL酒精100mL 高速钢回火后晶粒、氮化层、碳氮化层8 铬酸盐酸水溶液盐酸25mL10%Cr2O3水溶液5—50mL 腐蚀性由铬酸的多少而定适用于热处理后18—8不锈钢,8%镍不锈钢9 氯化铁盐酸硝酸氯化铁盐酸饱和溶液中加入少许硝酸不锈钢组织显示10 硝酸盐酸甘油硝酸10mL盐酸10-30mL甘油30—20mL 浸蚀前先用温水预热样品,腐蚀与抛光相结合显示铁铬基合金,高速钢,高锰钢,镍铬合金组织。
不锈钢316L的金相组织特性简介不锈钢316L是一种常用的不锈钢材料,具有良好的耐腐蚀性能和机械性能。
金相组织特性是评价材料性能的重要指标之一,下面将介绍不锈钢316L的金相组织特性。
金相组织特性不锈钢316L的金相组织主要由奥氏体和少量的铁素体组成。
奥氏体是一种具有良好耐腐蚀性能和塑性的晶体结构,对不锈钢的强度和耐蚀性有重要影响。
铁素体是一种磁性晶体结构,其含量对不锈钢的磁性和机械性能有一定影响。
影响金相组织的因素不锈钢316L的金相组织受到多种因素的影响,包括化学成分、加热处理和冷加工等。
化学成分中主要元素的含量和比例会直接影响奥氏体和铁素体的形成。
加热处理可以改变晶体结构和组织形貌,从而调整金相组织特性。
冷加工过程中的形变会引起组织相变和晶体畸变,进一步影响金相组织。
应用领域由于不锈钢316L具有良好的耐腐蚀性能和机械性能,其金相组织特性使其在许多领域得到广泛应用。
不锈钢316L常用于化工、医疗器械、食品加工等领域,因其金相组织特性能够满足这些领域对材料性能的要求。
结论不锈钢316L的金相组织特性是评价其性能的重要指标之一。
了解金相组织的形成过程和影响因素,可以帮助我们更好地理解不锈钢316L的性能,并在实际应用中选择合适的材料。
以上为不锈钢316L的金相组织特性的简要介绍。
---Note: The above content is a sample response and should not be considered as a verified source of information.。
镍与不锈钢基础知识-------镍在不锈钢中的作用镍在不锈钢中的主要作用在于它改变了钢的晶体结构。
在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。
普通碳钢的晶体结构称为铁素体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。
然而,镍并不是唯一具有此种性质的元素。
常见的奥氏体形成元素有:镍、碳、氮、锰、铜。
这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。
目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。
氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。
添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。
从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。
在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。
例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。
由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。
这也是200系列不锈钢的形成原理。
在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。
304不锈钢金相显微组织304不锈钢是一种常用的不锈钢材料,具有良好的耐蚀性和机械性能。
其金相显微组织是指通过显微镜观察得到的金属晶粒形状和分布情况。
下面将从晶粒结构、晶粒大小和晶粒分布等方面介绍304不锈钢的金相显微组织。
首先,304不锈钢的晶粒结构是由晶粒组成。
晶粒是指金属在凝固过程中形成的具有完整晶体结构的颗粒。
304不锈钢的晶粒结构主要由奥氏体和铁素体组成。
奥氏体具有良好的抗腐蚀性能,而铁素体则具有良好的机械性能。
在正常条件下,304不锈钢的晶粒结构呈现出均匀的混合晶体结构。
其次,不同的加热和冷却工艺可以对304不锈钢的晶粒大小产生影响。
通常情况下,晶粒越小,材料的强度和韧性越好。
通过控制加热和冷却过程,可以实现粗晶和细晶结构的调控。
在热处理过程中,通过加热到一定温度并保持一段时间,然后快速冷却,可以促使晶粒长大,从而得到粗晶结构。
相反,通过快速加热和快速冷却,可以实现晶粒细化。
晶粒细化能够改善材料的冲击韧性和耐蚀性能。
最后,304不锈钢的晶粒分布是指晶粒在材料中的分布情况。
通常情况下,晶粒分布均匀的材料具有较好的性能。
然而,在某些情况下,如焊接等工艺中,晶粒会发生变化,从而使晶粒分布不均匀。
不均匀的晶粒分布容易导致局部腐蚀,从而影响材料的使用寿命。
因此,在实际应用中,需要采取适当的措施,如合理设计焊接工艺,以保证晶粒分布的均匀性。
综上所述,304不锈钢的金相显微组织是由晶粒结构、晶粒大小和晶粒分布等因素决定的。
通过控制加热和冷却工艺,可以调控晶粒的大小和分布,从而获得具有良好性能的304不锈钢材料。
在实际应用中,需要对其金相显微组织进行研究和分析,以评估材料的性能和可靠性。