高等几何学习指导
- 格式:doc
- 大小:935.00 KB
- 文档页数:40
第五章高等几何第一节课程概论1、本课程的起源与发展早自欧洲文艺复兴时期,由于绘图和建筑等的需要,透视画的理论逐步形成,以后便建立了画法几何。
法国数学家蒙日(GaspardMonge,1746-1818)在1768到1799年之间和1809年分别出版了画法几何和微分几何两部经典著作,由于画法几何理论的发展,他的学生彭色列(JeanPoncelet,1788-1867)继承了这两部著作中的综合思想,于1822年写了一本书,它是射影几何方面最早的专者。
继彭色列之后,法国人沙尔(Michel Chasles,1793-1880) 等对射影几何的研究都做出了重要贡献。
出生于德国数学家史坦纳(Jacob Steiner,1796-1863)改进了射影几何的研究工具,并且把它们应用到各种几何领域,因而得到了丰硕结果。
到了19世纪上半叶,几何学的发展经历了它的黄金时代。
在这期间,古典的欧几里得几何学不再是几何学的唯一对象,射影几何学正式成为一门新学科。
英国人凯莱(Cayley,1821-1895)和德国人克莱因(Christian Felix Klein,1849-1925)等人用变换群的方法研究了这个分支,射影几何便成为完整独立的学科。
射影几何的诞生诱发于透视理论,一个射影平面就是由欧几里得平面添加所谓无穷远直线而得到的。
克莱因对于几何学理论的统一性有着执著的追求,他在成功地把几种度量几何统一于射影几何之后,就立即在更深层次上寻求统一各种几何学理论的基础。
在19世纪,人们开始把几何中图形的一些性质看作是一种“变换”运动的结果。
如正方形的“中心对称性”,就是将正方形绕其两条对角线的交点O“旋转”180°后仍重合的结果。
正方形的“轴对称性”,就是将正方形绕过O点的水平轴“反射”(即翻转)180°后仍重合的结果。
这里的“旋转”、“反射”就可以分别被看作是一种“变换”。
更为重要的是,数学家们进一步发现,这个正方形上的所有旋转、反射、平移等变换所构成的集合,满足群的条件,因而构成一个“变换群”。
名师指导:高考数学立体几何学习指导数学学习归结到一点就是要多做题。
你可能现在觉得添加一两条辅助线是太具有创造性了,有点想不到的感觉,但是等你经过了大量的练习以后,你会觉得原来那些辅助线的添加其实很有逻辑,并不是不可触及的。
哲学上这个过程叫做量变引起质变,你若想你的几何水平有一个质的提高,能够解出原来认为很不可思意的题,你就必须在量上下功夫,通过量的积累才能达到质的飞跃…祝你成功!
平面
平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合
精心整理,仅供学习参考。
高等几何教案与课后答案教案章节:第一章绪论教学目标:1. 了解高等几何的研究对象和基本概念。
2. 掌握几何图形的性质和相互关系。
3. 理解几何变换的基本原理。
教学内容:1. 高等几何的研究对象和基本概念。
2. 几何图形的性质和相互关系。
3. 几何变换的基本原理。
教学步骤:1. 引入高等几何的概念,引导学生思考几何图形的性质和相互关系。
2. 讲解几何图形的性质和相互关系,举例说明。
3. 介绍几何变换的基本原理,解释其应用。
教学方法:1. 采用讲授法,系统地讲解高等几何的基本概念和性质。
2. 利用图形和实例,直观地展示几何图形的相互关系。
3. 通过练习题,巩固学生对几何变换的理解。
教学评估:1. 课堂提问,检查学生对高等几何概念的理解。
2. 课后作业,评估学生对几何图形性质和相互关系的掌握。
3. 期中期末考试,全面检验学生对几何变换的应用能力。
课后答案:1. 高等几何是研究几何图形的性质、相互关系和几何变换的学科。
2. 几何图形包括点、线、面及其相关性质。
3. 几何变换包括平移、旋转、反射等,它们可以改变几何图形的形状和位置。
教案章节:第二章直线与平面教学目标:1. 掌握直线的性质和方程。
2. 理解平面的性质和方程。
3. 学会利用直线和平面解决几何问题。
教学内容:1. 直线的性质和方程。
2. 平面的性质和方程。
3. 直线与平面的相互关系。
教学步骤:1. 讲解直线的性质和方程,举例说明。
2. 介绍平面的性质和方程,解释其应用。
3. 分析直线与平面的相互关系,引导学生思考。
教学方法:1. 采用讲授法,系统地讲解直线和平面的性质。
2. 利用图形和实例,直观地展示直线与平面的相互关系。
3. 通过练习题,巩固学生对直线与平面几何问题的解决能力。
教学评估:1. 课堂提问,检查学生对直线性质的理解。
2. 课后作业,评估学生对平面方程的掌握。
3. 期中期末考试,全面检验学生对直线与平面几何问题的解决能力。
课后答案:1. 直线的性质包括方向、斜率、截距等,直线的方程可以表示为y = kx + b。
高等几何教案(高职高专)一、教学目标:1. 了解高等几何的基本概念和理论;2. 掌握高等几何的基本运算方法和技巧;3. 能够应用高等几何解决实际问题。
二、教学内容:1. 高等几何的基本概念和性质;2. 高等几何的基本运算方法;3. 高等几何在实际问题中的应用。
三、教学步骤:1. 导入:引导学生回顾基本几何概念;2. 讲解:详细讲解高等几何的基本概念和性质;3. 实例演练:通过实例演示高等几何的基本运算方法;4. 练:布置练题,让学生巩固运算技巧;5. 应用拓展:引导学生思考高等几何在实际问题中的应用;6. 深化理解:通过讨论和交流,帮助学生进一步理解高等几何的概念和理论;四、教学资源:1. 课本:《高等几何教材》;2. 讲义:提供详细的课堂讲义;3. 实例:准备一些实际问题的例子供学生练。
五、教学评估:1. 布置作业:要求学生完成一定数量的练题;2. 小测验:进行小规模的测验,检查学生对基本概念和运算方法的掌握情况;3. 课堂表现:观察学生在课堂上的参与和互动,评估他们的研究情况。
六、教学反思:根据学生的反馈和表现,及时调整教学策略,帮助他们更好地理解和掌握高等几何的知识。
七、教学特点:1. 系统性:按照一定的顺序和步骤进行教学;2. 实用性:注重高等几何在实际问题中的应用;3. 互动性:鼓励学生参与讨论和交流,增强研究效果。
八、教学方法:1. 讲授法:结合教材内容进行讲解;2. 演示法:通过实例演示高等几何的运算方法;3. 练法:布置练题,让学生进行实践和巩固;4. 探究法:引导学生自主思考和发现高等几何的性质。
九、教学时间安排:本教案为总共6课时,每课时为50分钟。
十、参考资料:1. 罗素·A·基地著,《高等几何教材》;2. 朱江等编著,《高等几何教学参考资料》。
十一、备注:本教案适用于高职高专高等几何课程教学,可根据实际情况进行调整和变化。
《高等几何》课程教学大纲课程编号:20811010总学时数:48(理论48)总学分数:3课程性质:专业基础和专业课程适用专业:数学与应用数学一、课程的任务和基本要求:几何学是数学的一个重要分支。
高等几何与高等代数,数学分析统称“三高”,是师范数学专业的重要的基础课。
本课程按传统的讲法,在欧氏平面的基础上讲授一维和二维射影几何和仿射几何的基本内容,使学生对射影几何和仿射几何有初步的,直观的,具体的认识。
为进一步充分运用代数知识学习抽象的高维射影几何理论做准备。
另一方面掌握射影几何和仿射几何的理论和方法,对中学几何有直接的指导作用。
使中学数学教师能居高临下,深入掌握中学数学内容,具备应有的水平和素质。
本课程总学时数为51学时,讲授与习题课学时数之比约为5:1。
二、基本内容和要求:(一)仿射坐标与仿射变换1、透视仿射对应,仿射对应与仿射变换。
2、仿射坐标系,仿射变换的代数表示,几种特殊的仿射变换。
3、图形的仿射性质。
要求:掌握仿射变换的定义、性质和解析表达式;知道几种特殊的仿射变换;理解图形的仿射性质,掌握单比的概念和坐标表示法。
(二)射影平面1、欧氏平面的拓广:中心投影与无穷远元素的引进。
2、射影直线与射影平面的概念。
3、齐次点坐标,直线的齐次方程,齐次线坐标,在齐次坐标下,有关点与直线结合性的命题。
4、德萨格定理,运用德萨格定理证明初等几何的有关命题。
5、射影平面上的对偶原理,对偶命题,对偶图形。
要求:掌握射影平面、仿射平面的概念;掌握直线的坐标和点的方程的概念;掌握对偶原则的内容,能写出一个命题的对偶命题。
理解德萨格定理,并会用它来推证某些“点共线”或“线共点”的问题。
(三)射影变换与射影坐标1、共线四点和共点四线的交比,调和比,完全四点形与完全四线形的调和性。
2、射影平面内的一维基本形,一维基本形间的透视对应,射影对应,一维基本形的射影变换,对合。
3、一维二维射影坐标系,射影坐标与仿射坐标,笛氏坐标的关系。
高等几何教案与课后答案教案章节一:绪论1. 教学目标了解高等几何的基本概念和发展历程。
理解几何学在数学和其他领域中的应用。
激发学生对高等几何的学习兴趣。
2. 教学内容高等几何的定义和发展历程。
几何学在数学和其他领域中的应用。
学习高等几何的意义和方法。
3. 教学步骤引入话题:介绍几何学的历史和基本概念。
讲解高等几何的定义和发展历程。
通过实际例子展示几何学在数学和其他领域中的应用。
引导学生思考学习高等几何的意义和方法。
4. 课后作业研究几何学在数学和其他领域的应用实例。
思考学习高等几何的意义和方法。
教案章节二:解析几何基础1. 教学目标掌握解析几何的基本概念和常用工具。
学会使用坐标系进行几何问题的分析和解决。
2. 教学内容解析几何的基本概念和常用工具。
坐标系的定义和应用。
点的坐标和向量的基本运算。
3. 教学步骤引入话题:回顾初中阶段的解析几何知识。
讲解解析几何的基本概念和常用工具。
通过实际例子演示坐标系的应用。
讲解点的坐标和向量的基本运算。
4. 课后作业复习解析几何的基本概念和常用工具。
练习使用坐标系解决几何问题。
教案章节三:平面几何1. 教学目标掌握平面几何的基本概念和定理。
学会解决平面几何问题。
2. 教学内容平面几何的基本概念和定理。
平行线、相交线和圆的性质。
三角形的分类和性质。
3. 教学步骤引入话题:回顾初中阶段的平面几何知识。
讲解平面几何的基本概念和定理。
通过实际例子演示平行线、相交线和圆的性质。
讲解三角形的分类和性质。
4. 课后作业复习平面几何的基本概念和定理。
练习解决平面几何问题。
教案章节四:空间几何1. 教学目标掌握空间几何的基本概念和定理。
学会解决空间几何问题。
2. 教学内容空间几何的基本概念和定理。
空间直线、平面和多面体的性质。
空间角和空间向量的应用。
3. 教学步骤引入话题:回顾初中阶段的空间几何知识。
讲解空间几何的基本概念和定理。
通过实际例子演示空间直线、平面和多面体的性质。
讲解空间角和空间向量的应用。
《高等几何》教学中注意的若干问题《高等几何》是高等师范院校数学专业的重要基础课程之一,它与《初等几何》、《解析几何》、《高等代数》有极其密切的联系。
它是在学生已学过许多数学知识,特别是已经熟悉初等几何、解析几何与高等代数等有关知识的基础上,以仿射几何作为从欧氏几何到射影几何的桥梁,进一步系统地学习射影几何的基础知识,以及射影几何和仿射几何、欧氏几何的内在联系和根本差别等方面的内容。
本文作者从事多年高等几何的教学,总结了一些教学中应注意的问题和体会。
一、介绍几何发展史,激发学生的学习积极性在讲课中,向学生说明射影几何悠久的发展历史,对激发学生学习兴趣很有帮助。
远在公元四世纪,古希腊人已经发现了圆锥曲线,后来有很多关于圆锥曲线的定理成为射影几何的内容。
1639年,Desargues建立了无穷远元素的概念,并得出了透视三点形的定理和关于点列对合的定理,奠定了射影几何发展的基础。
1649年,Pascal发现了关于二阶曲线的定理,这条著名定理至今仍在射影几何中占极其重要的地位。
1822年,Poncelet研究了图形在射影变换下的性质(射影性质),接着他又提出了交比、无穷远直线等重要概念,并建立了对偶原则和配极理论。
1827年,Mobius研究了平面和空间的一一对应,并和Feuerbach建立了齐次坐标。
而二阶和高阶曲线的射影理论是在1832年Steiner建立了二阶曲线的射影定义之后逐步建立起来的。
到了1872年,Klein提出了著名的变换群的观点,从而可以通过变换群的关系来分析各种几何之间的内在联系和根本差别。
在整个数学发展过程中,不仅在数学上最重要,而且在人类文化史上也是非常突出的就是Euclid的《几何原本》。
这是第一本系统性的书,主要的目的是研究空间的性质。
这些性质都可以从很简单的公理用逻辑的推理得到。
这是一本关于整个数学的书,不仅限于几何学。
华人数学大师陈省身教授对数学有重大贡献,尤其是几何学方面。
《高等几何》课程学习指南一、课程目的本课程是大学数学类专业的主干基础课程之一。
本课程在大家具备初等几何、解析几何、高等代数、数学分析知识的基础上,系统地学习射影几何的基本知识,使我们能用变换群的观点来看待几何学,加深对几何学的理解,拓展几何空间概念。
通过本课程利用商空间思想研究亏格为零不可定向的闭曲面上的几何学的训练,一方面使得我们拓宽眼界,扩大知识领域,提高抽象思维、理性思维能力,为进一步的数学学习打下基础;另一方面使得我们加深对中学几何特别是解析几何的理论与方法的理解,从而获得用高观点来处理中学几何问题的能力,为未来的中学几何教学打下基础;第三,本课程包括了许多著名的定理,奇妙的图形,匪夷所思的处理技巧,通过本课程的学习,可以有效地提高我们的数学审美意识。
概括来说,学习本课程后,希望大家有如下收获:(1)空间不只是平直的,除欧氏空间外,还有很多其他的空间。
即让学生在空间观念上有一个提升;(2)进一步让了解处理几何问题不只是可以用综合法,还可以用解析法;(3)深刻理解对偶原理,认识到射影几何是与欧氏几何完全不同的几何学;(4)深刻理解射影变换及其性质,认识到射影几何是研究射影图形在射影变换下的不变性和不变量的一门科学;(5)深刻理解Klein的变换群观点,即研究某空间中的图形在它的某变换群作用下不变的性质和数量的科学就称为一门几何学;(6)深刻了解一些平面射影图形的射影性质。
如:点列,线束,完全n点(线)形,二次曲线的射影性质。
(7)学会构造射影图形。
因为我们的纸张是欧氏平面,所以在其上构造射影图形还是有很多技巧,我们要深刻领会这些技巧。
二、课程主要内容结构以平面射影几何为主体,涵盖射影几何,变换群理论,仿射几何等内容,主要包括5个部分:1、射影平面。
包括引论,拓广平面,齐次点坐标,线坐标,射影平面,对偶原则,复元素,Desargues定理等。
2、射影变换。
包括交比与调和比,完全四点形与完全四线形的调和性,一维基本形的射影对应,一维射影变换,一维基本形的对合,二维射影变换等。
《高等几何》学习指导第一章仿射坐标与仿射变换一、教学目的要求1、理解透视仿射对应、仿射对应和仿射变换的概念,注意其区别和联系;2、熟练掌握共线三点单比的概念及其坐标表示法;3、理解仿射不变性与仿射不变量的概念,并能利用它们证明平面图形的其它仿射性质;4、熟练掌握仿射变换的代数表示.二、教学重点、难点重点:透视仿射对应、仿射变换的概念;仿射不变性与仿射不变量;仿射变换的代数表示和共线三点单比的坐标表示法.难点:透视仿射对应的概念、特征及判断.三、内容小结本章主要介绍下述内容:1、共线三点单比(简比)的概念2、透视仿射对应1)、概念:①、同一平面内,直线l到直线/l的透视仿射对应;②、平面π到平面/π的透视仿射对应.2)、判断:对应点连线互相平行.3)、性质: ①、保持同素性; ②、保持结合性; ③、保持平行性; ④、保持共线三点单比不变. 3、仿射对应与仿射变换 概念:透视仿射链. 4、仿射坐标 1)、仿射坐标系;2)、共线三点单比的坐标表示: 设31311233232(,),(1,2,3),()i i i x x y y P x y i PP P x x y y --===--则; 3)、仿射变换的代数表示:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩, 111221220a a a a ∆=≠;5、仿射性质1)、仿射不变性:同素性、结合性、平行性. 2)、仿射不变量: 共线三点的单比; 两条平行线段之比; 两个三角形面积之比; 两个封闭图形面积之比.3)、常见的仿射不变图形:三角形、平行四边形、梯形. 四、例题例1、直线上三点的非齐次坐标分别为A(-2,-4),B(5,2),C3(,1)2-,求单比(ABC ). 解:设A 、B 、C 的非齐次坐标分别为112233(,),(,),(,)A x y B x y C x y由3132322()1352x x ABC x x +-===---.例2、平面上是否存在仿射变换,使点A (1,2),B (-2,-4), C (3,6)分别变为点A /(-1,-1),B /(2,2),C /(0,0)?解:由于A ,B ,C 三点共线,A /,B /, C /也共线,下面验证它们的单比是否保持不变,由于://////////312011(),(),()()325022AC A C ABC A B C ABC A B C BC B C -+======-∴≠+-因此这样的仿射变换不存在.例3、求使三点(0,0),(1,1),(1,-1)顺次变到三点(2,3),(2,5),(3,-7)的仿射变换.解:设所求仿射变换为:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩111221220a a a a ∆=≠, 将(0,0)对应(2,3), (1,1)对应(2,5),(1,-1)对应(3,-7)分别代人上式得:1323111213212223111223212223232537a a a a a a a a a a a a a a ===++=++=-+-=-+ ,解此方程组,得132311122122112,3,,,4,622a a a a a a ====-==故所求仿射变换为://11222463x x y y x y ⎧=-+⎪⎨⎪=-++⎩, 且1102246-∆=≠-. 例4、求一仿射变换,它使直线210x y +-=210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2).解:在直线210x y +-=上任取两点(1,0),(-1,1),由于 (1,0)→(1,0);(-1,1)→(-1,1),又(1,-1)→(-1,2),由于三对对应点分别不共线,从而可唯一确定一仿射变换,将它们的坐标分别代入仿射变换式/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩,解得://22133222x x y y x y ⎧=+-⎪⎨=--+⎪⎩,220322∆=≠--,即为所求的仿射变换.例5、求椭圆的面积. 解法1(见教材第15页)解法2:设在笛氏直角坐标下圆的方程为222x y r +=即22221x y r r+=,令仿射变换T ://x x a r y yb r⎧=⎪⎪⎨⎪=⎪⎩,即//ax x rb y y r ⎧=⎪⎪⎨⎪=⎪⎩, 其中2000aabr b rr ∆==≠, 其对应图形为椭圆:/2/2221x y a b+=故T 是圆到椭圆的仿射变换,设圆的面积为S ,椭圆的面积为S / 由定理4.3//22S abS S r ab S rππ=∆⇒=∆== 所以椭圆的面积为ab л.例6、求将点O (0,0),A (1,0),B (0,1)分别变为O /(1,1),A /(3,1),B /(3,2)的仿射变换;并求在这个变换下,半径为2的圆的仿射对应图形的面积.解:①、设所求仿射变换为:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩111221220a a a a ∆=≠ 将O (0,0)对应O /(1,1), A (1,0)对应A /(3,1),B (0,1)对应B /(3,2)分别代人上式解得//2211x x y y y ⎧=++⎪⎨=+⎪⎩且 22001∆=≠ 为所求仿射变换.②、////1,1,42OAB O A B S S S π∆∆===圆,设圆的仿射对应图形面积为/S ,则//////1,42812O A B OABS S S S S ππ∆∆==∴=⨯=圆. 五、习题1、直线上三点的非齐次坐标分别为A(-3,2),B(6,1),C 33(,)22,求单比(ABC ).2、经过点A (-3,2)和B (6,1)的直线AB 与直线x+3y-6=0相交于P ,求(ABP).3、求仿射变换{4y 2x 4y 1y x 7x ++='+-='的不变点.4、试求:在仿射变换下,梯形、菱形、等边三角形、正方形、等腰三角形、圆、两全等矩形的对应图形.5、二平行线间的平行性是仿射不变性吗?6、任意两线段之比是仿射不变量吗?7、三角形三高线共点是仿射性质吗?三角形三中线共点是仿射性质吗?8、若(ACB )=2,则C 是A ,B 的中点吗? 9、在仿射变换 {73532-+='+-='y x y y x x 下,点O (0,0),A (3,2),的像点为 、 ;B (1,-4)的原像点为 .10、求将点A (1,0),B (0,-1),C (-1,1)分别变为A /(8,-1),B /(6,-6),C /(1,1)的仿射变换;并求在这个变换下,半径为3的圆的仿射对应图形的面积.第二章射影平面一、教学目的要求1、理解中心射影、无穷远元素及射影平面的概念,掌握无穷远元素的性质,了解射影观点与仿射观点的区别;2、掌握笛沙格定理及其应用,了解笛沙格构图;3、掌握齐次坐标的定义,熟练掌握点和直线的方程、齐次坐标的求法及其应用;4、理解对偶元素、对偶运算及对偶命题的概念,掌握对偶原理及写出一命题的对偶命题的方法;5、明确完全四点形、四线形的概念,掌握它们的调和性质及应用;6、了解复元素的概念.二、教学重点、难点重点:无穷远元素的概念及其性质,齐次坐标的定义及运算,笛沙格定理及其应用,对偶原理.难点:无穷远元素的概念,点方程、线坐标的定义.三、内容小结本章主要介绍下述内容:1、无穷远元素的概念2、射影直线与射影平面的概念3、图形的射影性质经过中心射影(透视对应)后图形的不变性质(量)叫做图形的射影性质(不变量).射影性质⎧⎧⎨⎨⎩⎩点列同素性,射影图形结合性线束但平行性、共线三点的单比不是射影性质.4、笛沙格定理1)、笛沙格(Desargues )定理:如果两个三点形对应顶点的连线交于一点,则对应边的交点在一直线上.2)、笛沙格(Desargues )定理的逆定理:如果两个三点形对应边的交点在一直线上,则对应顶点的连线交于一点.3)、透视三点形:如果两个三点形对应边的交点共线——所在直线称为透视轴; 如果两个三点形对应顶点的连线共点——该点称为透视中心. 由笛沙格定理知,两个三点形若有透视心,则必有透视轴,反之亦然,这样的两个三点形称为透视三点形.4)、笛沙格构图:构成一个图形的基本元素有两类:点和线,分别称为第一类和第二类元素,用11a 和22a 表示,而12a 表示第一类元素点与第二类元素线结合,21a 表示第二类元素线与第一类元素点结合.Desargues 定理所表示的图形所含的第一类元素点的个数11a =10个,所含的第二类元素线22a =10条,每一点与12a =3个第二类元素线结合,每一线与21a =3个第一类元素点结合.可表示为:A=⎪⎪⎭⎫⎝⎛103310 (A 称为构形矩阵,且A 为对称矩阵). 即:图形中有10个点,每个点有3条线通过;有10条线,每条线上有3个点.布局十分巧妙!更为巧妙的是:在10个点中,任一个点都可作为透视心,在10条线中,任一条线都可作为透视轴.如图,对于任一点C,考察两个三点形/YXC ABO 和,它们对应顶点连线/,,AY BX OC 交于一点C,则其对应边交点YX AB Z Y C OA A XC BO B ===,,////共线.即如果以C 为透视心,则其对应的透视轴为直线Z A B //. (读者可另行考虑以图中其余的点作为透视心,则必能找到其对应的透视轴!)5、齐次坐标 1)、齐次点坐标:① 一维齐次点坐标设直线上普通点的坐标为x,则该点的齐次坐标是122(,),,(0)x x x x x x =≠12其中, 当210,(,0)(1,0)(0)x x =∝≠1时即其中x 规定为这直线上无穷远点的一维齐次坐标.② 二维齐次点坐标设平面上的点的非齐次坐标为(x,y),则该点的齐次坐标是1212333(,,),,x xx x x x y x x == 斜率为k 的直线上的无穷远点的齐次坐标为(1,k,0)或者2121(,,0),x x x k x = ③ 直线的(齐次坐标)方程:1122330a x a x a x ++= ④ 无穷远直线的方程:30x = 2)、齐次线坐标:① 直线的齐次线坐标 []123,,u u u点123(,,)x x x x 在直线[]123,,u u u u 上1122330u x u x u x ⇒++= ② 点的方程(线有坐标,点有方程)在齐次坐标中,点123(,,)a a a a 的方程为 1122330a u a u a u ++=, 反之,[]123,,u u u 所构成的一次齐次方程表示一点. 3)、点几何与线几何的观点: 点几何——点有坐标;线有方程,平面上,把点看成几何基本元素,点的轨迹构成曲线,直线看成一系列点构成;线几何——线有坐标;点有方程,平面上,把直线看成几何基本元素,直线的集合构成曲线,点看成一束直线构成.6、对偶原理 1)、对偶图形:对偶元素 ——“点”与“直线”;对偶作图——“点在线上”与“线通过点”;对偶图形——由点和直线组成的图形,将其元素换成对偶元素,其作图改为对偶作图,这样的两个图形称为一对对偶图形.如:点列——线束三点形——三线性(自对偶) 简单四点形——简单四线形(自对偶) 完全四点形——完全四线形 2)、对偶命题与对偶原则:对偶命题——由点和直线组成的命题,将其元素换成对偶元素,其作图改为对偶作图,这样的两个命题称为一对对偶命题.对偶原则——在射影平面上,如果一个命题成立,则其对偶命题也成立. 3)、代数对偶:① 两个不同点(线)123123(,,),(,,)a a a a b b b b 的连线(交点)的线坐标(点坐标)为:233112233112(,,)a a a a a a a b b b b b b b =⨯ ② 三个不同点(线)123123123(,,),(,,),(,,)a a a a b b b b c c c c 共线(共点)的充要条件是:1231231230a a a b b b c c c =③ 以两个不同已知点(线)123123(,,),(,,)a a a a b b b b 的连线为底的点列中一点(交点为顶点的线束中任一直线)的齐次坐标能够写为la mb +,其中,l m 为不全为零的常数.7、复元素在复射影平面上有以下重要结论:1)、一元素为实元素的充要条件是该元素与其共轭复元素重合; 2)、如果点x 在直线u 上,则x 的共轭复点x 在直线u 的共轭复直线u 上;3)、两共轭复直线的交点为一实点,两共轭复点的连线为一实直线. 四、例题例1、写出下列点的齐次坐标:(0,0)、(1,0)、(0,1)、以3为斜率的直线上的无穷远点.解:这些点的齐次坐标依次为:(0,0,1)、(1,0,1)、(0,1,1)、(1,3,0) 例2、写出下列直线的齐次坐标:x 轴、y 轴、无穷远直线、过原点且斜率为2的直线.解:这些直线的齐次坐标依次为:[0,1,0]、[1,0,0]、[0,0,1]、[2,-1,0].例3、求直线340x y -+=上的无穷远点的坐标和线坐标方程. 解:直线的齐次坐标方程为123340x x x -+=,这条直线与无穷远直线30x =的交点1233340x x x x -+=⎧⎨=⎩即为无穷远点,从而无穷远点的坐标(3,1,0).这个点的齐次线坐标方程是1230u u +=.例4、求直线[1,-1,2]与两点A (3,4,-1)、B (5,-3,1)之连线的交点的坐标.解:两点A (3,4,-1)、B (5,-3,1)连线上的点(3+5λ,4-3λ,-1+λ)在直线[1,-1,2]上,所以(3+5λ)-(4-3λ)+2(-1+λ)=0,解得310λ= 所以交点坐标为(45,31,-7).例5、试证、[2,-1,1]、[3,1,-2]和[7,-1,0]三线共点,并把[2,-1,1]表示成[3,1,-2]和[7,-1,0]的线性组合.解:由2113120710--=-得三线共点,所以存在二实数λ,μ,使得 [2,-1,1]=λ[3,1,-2]+μ[7,-1,0],于是有372121λμλμλ+=⎧⎪-=-⎨⎪-=⎩,解得11,22λμ=-=,故[][][]112,1,13,1,27,1,022-=--+-,即 [2,-1,1]表示成[3,1,-2]和[7,-1,0]的线性组合.例6、利用对偶命题解题:(1)、求通过两直线[2,1,3]与[1,-1,0]的交点与点P :12320u u u +-=的直线坐标;(2)、求两点123340u u u +-=,123530u u u -+=的连线与直线12320x x x -+=的交点坐标.解:(1)、这两直线的交点Q 方程为123213011u u u =-, 即1230u u u +-=,即Q 点的坐标为(1,1,-1),而P 点的坐标为(1,2,-1),所以过这两点的直线方程为1231210111x x x -=-,即130x x +=,其坐标为[1,0,1] .(2)、过这两点的直线l 的方程为1233410531x x x -=-,即1238290x x x --=,其坐标为[1,-8,-29],而直线/l 坐标为[1,-1,2],所以这两直线交点的方程为12311201829u u u -=--,即123453170u u u +-=,其坐标为(45,31,-7).例7、(1)求过点(1,,0)i -的实直线;(2)求直线[,2,1]i i -上的实点.解:(1)因为过点(1,,0)i -的实直线必过其共轭复点(1,,0)i ,所以所求直线为1231001x x x i i-=,即30x =为所求.(2)直线[,2,1]i i -上的实点为此直线与其共轭复直线[,2,1]i i -+的交点,由方程1231232(1)02(1)0ix x i x ix x i x ++-=⎧⎨-+++=⎩,解得实点为(2,-1,2).例8、设三点形ABC 的三边BC, CA, AB 的方程分别为052,0153,0237=-+=--=+-y x y x y x ,求证三点形 ABC 与坐标三点形A 1A 2A 3透视,并求出透视轴方程.解:在三点形ABC 和 A 1A 2A 3中,123123123:7320,:350,:250,BC x x x CA x x x AB x x x -+=--=+-= 231312123:0,:0,:0,A A x A A x A A x ===其对应边之交点:233112(0,2,3),(1,0,3),(1,2,0)BC A A L CA A A M AB A A N ⨯=⨯=⨯=-因为0231030120=-,所以L 、M 、N 共线, 即三点形ABC 和 A 1A 2A 3透视,且透视轴方程为1236320x x x +-=例9、如图,设直线AB 与CD 交于M ,AC 与BD 交于N ,直线MN 分别交AD 、BC 于K 、H ,直线BK 交AC 于L ,求证:HL 、CK 、MA 交于一点.解:在三点形HCM 与LKA 中,对应边的交点HC хLK=B ,CM хKA=D ,MH хAL=N ,而B 、D 、N 在一条直线上,由笛沙格定理的逆定理,这两个三点形对应顶点的连线HL 、CK 、MA 交于一点.五、习题1、回答下列问题:①、坐标原点的方程是U 3=0吗?②、X 轴上的无穷远点坐标是(0,1,0)吗?③、三直线[1,1,1],[1,-1,1],[3,-1,3]共点吗? ④、共线三点的单比是射影不变量吗?⑤、直线03)2()1(321=+++-ix x i x i 上的实点有无数多个吗? ⑥、方程22120x x -=表示什么图形?方程22120u u -=表示什么图形? ⑦、当正负号任意选取是,齐次坐标(1,1,1±±±)表示多少个相异的点?2、写出下列点的坐标:①、P 1(3,7,-2),P 2(0,0,1),P 3(3,-1,0)的非齐次坐标. ②、直线5x+3y-1=0上的无穷远点的齐次坐标. ③、直线l [1,1,2]与m[0,1,1]的交点坐标. ④、直线ix 1+4x 2+(1+i)x 3 = 0上的实点坐标.3、直线03)2()1(321=+++-ix x i x i 上的实点有无数多个,对吗?4、写出下列直线的方程:①、点A(0,1,2)与B(1,0,1)D 连线方程. ②、通过点(1,i,0)的实直线方程.5、已知点123(1,1,1),(1,1,1),(3,1,3)P P P --,求证123,,P P P 共线,并求λ,μ的值,使得312P P P λμ=+.6、下列诸方程表示什么?123123120;0;0;20u u u u u u u u =-=++=+=;221122540;u u u u -+=7、已知Pappus 定理:设直线l 上有互异三点A ,B ,C ,直线l '有互异三点C ,B ,A ''',那么三点B A B A N ,A C A C M ,C B C B L '⨯'='⨯'='⨯'=共线.写出其对偶命题.8、“一线束中三直线a,b,c 与不过中心的二直线21,l l 相交得两个互成透视的点列”.写出其对偶命题.9、“如果两个三角形对应边的交点在一直线上,则对应顶点的连线共点”.写出此命题的对偶命题.10、证明三角形三中线共点.11、指出下图中以B 为透视心的两个三点形和其对应的透视轴.12、ABCD 是个四面体,点M 在BC 上,一直线通过M 分别交AB ,AC 于P 、Q ,另一直线过M 分别交DB 、DC 于R 、S ,求证PR 、QS 、AD 交于一点.13、画出下面图形的平面对偶图形。