精品 九年级数学下册 相似与二次函数 综合练习题
- 格式:doc
- 大小:2.64 MB
- 文档页数:6
初三数学下册综合算式专项练习题二次函数像二次函数是初三数学下册的重要内容之一。
在学习二次函数的过程中,我们需要掌握二次函数的图像特点。
本文将通过综合算式专项练习题的方式,详细介绍二次函数的像。
1. 综合算式题目一:已知二次函数y=ax^2+bx+c的顶点是(2,-3),且通过点(1,4),求出a、b、c的值,然后画出函数图像。
解析:根据题目给出的信息,我们可以得出以下方程式:(1)将顶点坐标代入二次函数的解析式:-3=a*(2)^2+b*(2)+c得到方程式:4a+2b+c=-3(2)将通过点的坐标代入二次函数的解析式:4=a*(1)^2+b*(1)+c得到方程式:a+b+c=4联立以上两个方程组成的方程式,解得a=1,b=-5,c=-2。
将求得的a、b、c的值代入二次函数的解析式,得到二次函数为y=x^2-5x-2。
绘制函数图像如下所示:[插入二次函数图像]2. 综合算式题目二:已知二次函数y=ax^2+bx+c的图像经过点(-1,0)和(2,3),且在x轴上的截距为4,求出a、b、c的值。
解析:根据题目给出的信息,我们可以得出以下方程式:(1)将经过点的信息代入二次函数的解析式:0=a*(-1)^2+b*(-1)+c3=a*(2)^2+b*(2)+c得到方程式:a-b+c=0,4a+2b+c=3(2)将在x轴上的截距为4的信息代入二次函数的解析式:0=a*(4)^2+b*(4)+c得到方程式:16a+4b+c=0解以上方程组成的方程式,求得a=1,b=-1,c=0。
将求得的a、b、c的值代入二次函数的解析式,得到二次函数为y=x^2-x。
绘制函数图像如下所示:[插入二次函数图像]通过以上综合算式专项练习题解析,我们了解到了二次函数像的求法以及如何根据给定的条件画出二次函数的图像。
在学习和掌握二次函数的过程中,多做练习题可以帮助我们更加深入地理解二次函数的特点及其图像。
2023年九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x ∥轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++沿射线AC 方向平移M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.3.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标.4.如图1,在平面直角坐标系中,点O 为坐标原点,抛物线24y ax bx =++与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,直线4y x =-+经过B 、C 两点,4OB OA =.(1)求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,过点P 作PD x ⊥轴交BC 于点D ,垂足为N ,连接PC 交x 轴于点E ,设点P 的横坐标为t ,PCD 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,如图3,过点P 作PF PC ⊥交y 轴于点F ,PF PE =.点G 在抛物线上,连接PG ,45CPG ∠=︒,连接BG ,求直线BG 的解析式.5.如图1,已知二次函数2y ax bx c =++的图象的顶点为()0,1D ,且经过点()2,2A .(1)求二次函数的解析式;(2)过点A 的直线与二次函数图象的另一交点为B ,与y 轴交于点C ,若BDC 的面积是ADC △的两倍,求直线AB 的解析式;(3)如图2,已知(),0E m ,是x 轴上一动点(E ,O 不重合),过E 的两条直线1l ,2l 与二次函数均只有一个交点,且直线1l ,2l 与y 轴分别交于点M 、N .对于任意的点E ,在y 轴上(点M 、N 上方)是否存在一点()0,F t ,使N FEM F E △∽△恒成立.若存在,求出t 的值;若不存在,请说明理由.6.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.7.如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,3).(1)求抛物线解析式;(2)抛物线上是否存在点P,使得△CBP=△ACO,若存在,求出点P的坐标,若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求DQ EQ QFAD BE CF++的值.8.如图所示,平面直角坐标系中,二次函数y=a(x+2k)(x﹣k)图象与x轴交于A、B两点,抛物线对称轴为直线x=﹣2;(1)求k 的值;(2)点C 为抛物线上一点,连接BC 、AC ,作CD △x 轴于D ,当△BCA =90°时,设CD 长度为d ,求d 与a 的函数关系式;(3)抛物线顶点为S ,作S T 垂直AB 于T ,点Q 为第一象限抛物线上一点,连接AQ 交S T 于点P ,过B 作x 轴的垂线交AQ 延长线于点E ,连接OE 交BQ 于点G ,过O 作OE 的垂线交AQ 于点F ,若OF =OG ,tan△ABQ =2时,连接S Q ,求证:S Q =S P .9.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线=1x -.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE CE 、,当ACE △的面积最大时,求点D 的坐标; (3)当m 为何值时,ADF △与CDE 相似.10.如图,抛物线28y ax bx =++与x 轴交于()2,0A -和点()8,0B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求该抛物线的函数表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,设四边形PBOC 和AOC 的面积分别为PBOC S 四边形和AOCS,记AOC PBOC S S S =-△四边形,求S 最大值点P 的坐标及S 的最大值;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与BOC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =+-经过点()1,0C -,点()4,0B ,交y 轴于点A ,点H 是该抛物线上第四象限内的一个动点,HE △x 轴于点E ,交线段AB 于点D ,HQ △y 轴,交y 轴于点Q .(1)求抛物线的函数解析式.(2)若四边形HQOE 是正方形,求该正方形的面积.(3)连接OD 、AC ,抛物线上是否存在点H ,使得以点O 、A 、D 为顶点的三角形与△ABC 相似,若存在,请直接写出点H 的坐标,若不存在,请说明理由.12.如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为()10A -,,顶点为B .点()5C m ,在抛物线上,直线BC 交x 轴于点E .(1)求抛物线的表达式及点E 的坐标; (2)连接AB ,求△B 的余切值;(3)点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.13.如图所示,抛物线2=23y x x --与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点N 是第四象限内抛物线上的一个动点,连接BN 、CN ,求BCN △面积的最大值. (3)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.14.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.15.综合与探究如图,抛物线212y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B ,C 的坐标分别为(2,0),(0,3),点D 与点C 关于x 轴对称,P 是直线AC 上方抛物线上一动点,连接PD 、交AC 于点Q .(1)求抛物线的函数表达式及点A 的坐标; (2)在点P 运动的过程中,求PQ :DQ 的最大值;(3)在y 轴上是不存在点M ,使45AMB ∠=︒?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得△CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.17.如图(1),直线y =-x +3与x 轴、y 轴分别交于点B (3,0)、点C (0,3),经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式与点P 的坐标;(2)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值; (3)连接AC ,点N 在x 轴上,点M 在对称轴上,△是否存在使以B 、P 、N 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由;△是否存在点M ,N ,使以C 、P 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由. (图(2)、图(3)供画图探究)18.如图,已知抛物线213222y x x =-++与x 轴交于点A 、B ,与y 轴交于点C .(1)则点A 的坐标为_________,点B 的坐标为_________,点C 的坐标为_________;(2)设点11(,)P x y ,22(,)Q x y (其中12x x >)都在抛物线213222y x x =-++上,若121x x =+,请证明:12y y >;(3)已知点M 是线段BC 上的动点,点N 是线段BC 上方抛物线上的动点,若90CNM ∠=︒,且CMN 与OBC △相似,试求此时点N 的坐标.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4-(3)存在,(0,9)P -或9(0,)5P -2.(1)10;(2)最大值为4,()2,6P ; (3)N 点坐标为113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭.3.(1)243y x x =-+,()21-,(2)⎝⎭或⎝⎭(3)207,99⎛⎫ ⎪⎝⎭4.(1)254y x x =-+ (2)32122S t t =-+ (3)416y x =-5.(1)2114y x =+ (2)312y x =-或132y x =-+ (3)存在,=2t6.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 7.(1)223y x x =-++(2)存在,1217(,),(1,4)24P P - (3)DQ EQ QF AD BE CF ++的值为18.(1)k =4 (2)1d a=-9.(1)4(2)(32-,32-) (3)当2m =-或1m =-时ADF △与CDE 相似10.(1)21382y x x =-++ (2)()4,12P ,最大值为56(3)存在,()3,8,(3,5,()3,1111.(1)234y x x =--(2)6+(3)存在,点H 的坐标为1684,525⎛⎫- ⎪⎝⎭或521,24⎛⎫- ⎪⎝⎭12.(1)21322y x x =--;E (2,0) (2)3(3)M 点的坐标为(5,0)或(7,0)13.(1)C 点坐标为(0,-3),顶点M 的坐标为(1,-4);(2)278(3)P 点的坐标为39(,)44--或(-1,-2).14.(1)抛物线L 1:2=23y x x --,抛物线L 2:223y x x =-++; (2)435(,)39M 或(4,5)M -.15.(1)211322y x x =--+,A (-3,0); (2)316; (3)存在,M (0,6)或(0,-6)16.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)17.(1)243y x x =-+,顶点坐标为P (2,-1) (2)33,24E ⎛⎫- ⎪⎝⎭(3)△存在,()10,0N 或27,03N ⎛⎫ ⎪⎝⎭;△存在,点M 的坐标为(2,2);(2,-4);(2,4)18.(1)(-1,0),(4,0),(0,2);(3)点N 的坐标为(32,258)或(3,2).。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
解得州=所以点沁标为2,4丿................................................. (2 分)1.已知二次函数y =加+ 3的图像与兀轴交于点A (1,0)与B (3,0),交y 轴于点C,其图像顶点为£>•(1) 求此二次函数的解析式;(2) 试问与△BCO 是否相似?并证明你的结论;(3) 若点P 是此二次函数图像上的点,月= 试求点P 的坐标..................................................................... (2 分)所以二次函数解析式是y = x 2-4x + 3. ....................................................... (1分)(2) ZVIBD 与△BCO 相似.由(1)知:C ((),3), D (2,-l ). -------------------------------------- (1 分) 于是 AB = 2,AD = BD = 4i , BC = 3y[i,0B = 0C = 3 , 即竺=空=也,—OB OC BC所以△ABD ^/XBCO 相似.(3)设P (X ,X 2-4X + 3),作P0丄x 轴,垂足为0 作丄BC,垂足为H. 易知为等腰直角三处形,则AH = BH=y/2, 由 ZPAB = ZACB , ZAQP = ZCHA = 90°f所以△APQ 与△CAH 相似, ..................................... (2分)于是些=空,AQ CH由题意知9Q + 3b + 3 = 0解得]归]b = -4 ....................................................................................... (1 分).................................................................. (2 ................................................................. 分)--------------------------------------------------- (1丄25 72.抛物线y = mx 2 - 5mx +兀与y 轴正半轴交于点C,与兀轴分别交于点A 和点5(1,0),且 OC? =OAOB.(1) 求抛物线的解析式;(2) 点P 是y 轴上一点,当AP3C 和\ABC 相似吋,求点P 的坐标.2.解:(1)由题意,得抛物线对称轴是直线% = -, ............................ (1分)2・・•点4和点〃关于直线x = |对称,点B (1,0),・・・4(4,0) ...... (1分)V OC 2 =OA-OB = 4xI = 4f ・・・OC = 2 .......................................... (1 分)•・•点C 在),轴正半轴上,・・・C (0,2) ............................. (1分)1 9 5A y = — x 2 x + 2 ................................................................................ (2 分)2 2(2)由题意,可得AB = 3, BC = V5 , AC = 2^5 .................................. (1 分)•: OC 2 =OA OB ,,又ZBOC = ZCOAOC OA:.\BOC - \COA , A ZOCB = ZOAC ................................................. (1 分)・・・\PBC 和AABC 相似时,分下列两种情况:3 1 1:・OP = OC — CP = 2——=-,/. P (Q-). ........................................ (2 .............................................................................................................. 分)2 2 22。
苏科版九年级数学下册《二次函数综合》专项练习题-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.二次函数y=(x+1)2+2的最小值是()A.2 B.1 C.﹣1 D.﹣22.已知函数,当时,则m的取值范围是()A.m≥−2B.−2≤m≤−1C.−2≤m≤−1D.m≤−123.已知二次函数y=-2x2+4x+k(其中k为常数),分别取x1=-0.99;x2=0.98;x3=0.99,那么对应的函数值为y1、y2、y3中,最大的为( )A.y3B.y2C.y1D.不能确定,与k的取值有关4.在同一平面直角坐标系中,函数y=ax2+b与y=bx2+ax的图象可能是( )A.B.C.D.5.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x …﹣1 0 1 3 …y …﹣3 1 3 1 …A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0,y2)都在函数图象上,则y1<y2D.若点(5,y1)、(﹣326.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(1,n),其部分图像如图所示,下面结论错误的是()A.abc>0B.b2−4ac>0C.关于x的方程ax2+bx+c=n+1没有实数根D.关于x的方程ax2+bx+c=0的负实数根x1取值范围为:−1<x1<07.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x−m)2+n的顶点在线段AB上运动,与x 轴交于C、D两点(C在D的左侧),点C的横坐标最小值为−3,则点D的横坐标最大值为()A.−3B.1 C.5 D.88.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个B.2个C.3个D.4个二、填空题9.将抛物线y=−2x3向上平移3个单位长度,所得抛物线解析式为.10.已知二次函y=−x2+2mx+1,当−2≤x≤1时最大值为4,则m的值为.11.已知抛物线y=x2+bx+c的部分图象如图所示,当y<0时,则x的取值范围是.12.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(−1,p),B(4,q),则不等式ax2−mx+c<n 的解集是.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:①abc<0;②2a﹣b=0;③a﹣b+c>0;④4a﹣2b+c<0.正确的是.三、解答题14.如图,二次函数的图象与轴分别交于点(点在点的左侧),且经过点,与y轴交于点C .(1)求的值.(2)将线段平移,平移后对应点O′和B′都落在拋物线上,求点的坐标.15.在国庆期间,大润发商场新上市了一款童装,进价每件80元,现以每件120元销售,每天可售出20件.在试销售阶段发现,若每件童装降价1元,那么每天就可多售2件,设每件童装单价降价了x元.(1)若销售单价降低5元,则该款童装每天的销售量为件,每天利润是元;(2)请写出每天销售该款童装的利润y(元)与每件童装降价x(元)之间的函数关系式;(3)当每件童装销售单价定为多少元时,商场每天可获得最大利润?最大利润是多少元?16.我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?(3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.17.如图,在平面直角坐标系xOy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=-x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.18.中国女排队员平时刻苦训练,掌握了纯熟的技能,在赛场上敢拼敢打,是国民的骄傲,为备战杭州亚运会,女排队员克服重重困难,进行封闭集训.已知排球场的长度为18m,球网在场地中央且高度为2.24m.排球出手后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,排球运动过程中的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−h)2+k(a<0).(1)若某队员第一次在O处正上方2米发球,当排球运行至离O的水平距离为6米时,到达最大高度2.8米.①求排球运动过程中的竖直高度y(单位:m)与水平距离x(单位:m)的函数关系式;②这次所发的球能否过网▲(填“能”或“否”).(2)若该队员第二次发球时,排球运动过程中的竖直高度y(单位:m)与水平距离x(单位:m)近似满(x−4)2+2.88,请问:该队员此次发球有没有出界?并说明理由.足函数关系y=−150答案1.A 2.B 3.C 4.D 5.B 6.C 7.D 8.D9.y =−2x 2+3 10.−√3 11.−1<x <3 12.−1<x <4 13.①④14.(1)解:将点、代入二次函数解析式得{16+4b +c =09−3b +c =7解得;(2)解:由(1)得二次函数的解析式为,由题意可得设平移后点和的坐标分别为,则为一元二次方程的两个根(),且 ∴x 2−2x −8−m =0 由根与系数的关系可得: ∴{x 2+x 1=2x 2−x 1=4 解得∴x 1x 2=−1×3=−8−m ∴m =5 ∴B ′(3,−5) . 15.(1)30;1050(2)解:由题意,得y =(120−80−x)(20+2x)=−2x 2+60x +800(0≤x ≤40) ∴y 与x 的函数关系式为y =−2x 2+60x +800(0≤x ≤40); (3)解:由(2)知:y =−2x 2+60x +800=−2(x −15)2+1250∵−2<0∴当x =15时,销售单价定价为120−15=105元时,商场每天可获得最大利润1250元.16.(1)解:设y 与x 的函数关系式为y=kx+b (k ≠0),把A (12,400),B (14,350)分别代入得,解得:,∴y 与x 的函数关系式为y=-25x+700,由题意知: ∴10≤x ≤28(2)解:设每天的销售利润为w 元,由题意知w=(x-10)(-25x+700)=-25x 2+950x-7000 =-25(x-19)2+2025.∵a=-25<0,∴当x=19时,w 取最大值,为2025.当该品种草莓定价为19元/千克时,每天销售获得的利润最大,为2025元. (3)解:能销售完这批草莓.理由如下:当x=19时,y=-25×19+700=225,225×30=6750>6000. ∴按照(2)中的方式进行销售,能销售完17.(1)解:∵直线AB :y =x +3与坐标轴交于A(-3,0)、B(0,3)两点 代入抛物线解析式y =-x 2+bx +c 中有 {0=−9−3b +c 3=c ∴{b =−2c =3∴抛物线解析式为:y =-x 2-2x +3(2)解:∵由题意可知△PFG 是等腰直角三角形 设P(m ,-m 2-2m +3) ∴F(m ,m +3)∴PF =-m 2-2m +3-m -3=-m 2-3m.△PFG 周长为:-m 2-3m + (-m 2-3m)=-(+1)(m +)2+ ∴△PFG 周长的最大值为:.(3)解:点M 有三个位置,如图所示的M 1、M 2、M 3,都能使△ABM 的面积等于△ABD的面积.此时DM1∥AB,M3M2∥AB,且与AB距离相等.∵D(-1,4),∴E(-1,2)、则N(-1,0)∵y=x+3中,k=1,∴直线DM1解析式为:y=x+5,直线M3M2解析式为:y=x+1.∴x+5=-x2-2x +3或x+1=-x2-2x+3,∴x1=-1(舍去),x2=-2,x3=,x4=,∴M1(-2,3),M2(,)M3(,).18.(1)解:①由题意可得抛物线的顶点为(6,2.8)设抛物线的解析式为y=a(x−6)2+2.8(a<0)把(0,2)代入,得a=−145(x−6)2+2.8.∴所求函数关系为y=−145②能.(2)解:没有出界.(x−4)2+2.88=0令y=0,则−150解得x1=−8(舍)x2=16.∵x2=16<18∴没有出界。
2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(1)求抛物线的表达式;(2)如图1,直线交轴于点,点为线段下方抛物线上的一点,过点作轴交直线于点,在直线上取点,连接,使得的最大值及此时点的坐标;(3)连接,把原抛物线沿射线方向平移个单位长度,是平移后新抛物线上的一点,过点作垂直轴于点,连接,直接写出所有使得的点的横坐标.(1)求抛物线的表达式;(2)如图1,连接,在y 轴的负半轴是否存在点Q ,使得?若存在,求Q 点的坐标;若不存在,请说明理由.CD x ()2,0D P AC PH y ∥CD H CD Q PQ HQ PQ =524PQ PH -P BC 214y x bx c =++BC 25M MN x N AM AMN ABC ∽ M AC 12OQC OAC ∠∠=(1)如图1,当,时,求的值;(2)如图2,当时,过点作直线的垂线交轴于点,求坐标;(3)如图3,当时,平移直线,使之与抛物线交于两点,点关于轴的对称点为,求证:.4.在平面直角坐标系中,已知抛物线与x 轴分别交于(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接交于点E ,求(3)如图2,连接,过点O 作直线,点P ,Q 分别为直线点,试探究:在第一象限是否存在这样的点P ,Q ,使.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,点,,抛物线1a =1k =b 12a =A l y T T 1k =l C M N ,P y Q MQP NQP ∠=∠xOy 23y ax ax c =-+(1,0)A -AD BC ,AC BC ,l BC ∥PQB CAB ∽()1,2A ()5,0B 22y ax =-(1)求点C 的坐标和直线的表达式;(2)设抛物线分别交边①若与相似,求抛物线表达式;②若是等腰三角形,则a 的值为6.如图,抛物线经过(1)求抛物线的解析式:(2)点为第四象限抛物线上一动点,点横坐标为.①如图1,若时,求的值:②如图2,直线与抛物线交于点,连接(1)求抛物线的解析式;AB 22(0)y ax ax a =->CDB △BOA △OAE △2y x mx n =++C C BC 90ACB ∠=︒t BD E(1)若,.①如图1,求点A 、B 、C 和点P 的坐标;②如图2,当时,求点M 的坐标;(2)若点A 的坐标为,且,当标.(1)求点、、的坐标;(2)连接,抛物线的对称轴、为顶点的三角形与理由.2b =3c =3105MN =,03c ⎛⎫- ⎪⎝⎭PM BC ∥93102AN MN +=A B C BC C D(1)求抛物线的解析式及点C 的坐标;(2)求证:是直角三角形;(3)若点N 为x 轴上的一个动点,过点N 作轴与抛物线交于点M ,则是否存在以为顶点的三角形与相似?若存在,请求出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线的顶点P 在抛物线上.(1)求a 的值;(2)直线与抛物线,分别交于点A ,B ,若的最大值为3,请求出m 的值;(3)Q 是x 轴的正半轴上一点,且的中点M 恰好在抛物线上.试探究:此时无论m 为何负值,在y 轴的负半轴上是否存在定点G ,使总为直角?若存在,请求出点G 的坐标;若不存在,请说明理由.12.如图,二次函数经过点、,点P 是x 轴正半轴上一个动点,过点P 作垂直于x 轴的直线分别交抛物线和直线于点E 和点F .设点P 的横坐标为m .ABC MN x ⊥O M N ,,ABC xOy ()()221:20C y x m m m =--+<22:C y ax =()x t t m =>1C 2C AB PQ 2C PQG ∠2y x bx c =-++()40A ,()02B ,AB(1)求二次函数的表达式;(2)若E 、F 、P 三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求m 的值.(3)点P 在线段上时,若以B 、E 、F 为顶点的三角形与相似,求m 的值.13.如图,已知二次函数的图象经过,两点.(1)求此二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为,它的顶点为,连接,,,.请你判断与是否相似,并说明理由;(3)当时,求此二次函数的最大值和最小值.14.如图,已知抛物线与轴交于两点,与轴交于点,.OA FPA V 2y x bx c =-++()1,0A -()0,3B 2y x bx c =-++x C D AB BC BD CD BCD △OBA △03x ≤≤y 21:3C y ax bx =++x ,A B y C 3OB OC OA ==(1)求抛物线的解析式;(2)如图2,已知点为第一象限内抛物线上的一点,点的坐标为,,求点的坐标;(3)如图3,将抛物线平移到以坐标原点为顶点,记为,点在抛物线上,过点作分别交抛物线于两点,求证:直线过定点,并求出该定点的坐标.15.在平面直角坐标系中,点B 从原点出发以每秒1个单位长度的速度沿x 轴正方向运动.是等腰直角三角形,其中,,点C 在第一象限,过C 作轴,垂足为D ,连接交于E ,设运动时间为秒.(1)证明:≌;(2)当与相似时,求t 的值;(3)在(2)条件下,抛物线m 经过A ,B ,D 三点,请问在抛物线m 上否存在点P ,使得面积与的面积相等?若存在,请求出.1C P 1C Q ()1,045POC OCQ ∠+∠=︒P 1C 2C ()1,1T -2C T TM TN ⊥2C ,M N MN ABC 90ABC ∠=︒()0,2A CD x ⊥AD BC (0)t t >AOB BDC AEC △BED ADP △ABD △参考答案:。
2023年九年级中考数学专题: 二次函数综合题(相似三角形问题)1.如图1,抛物线()221y x m m =--+(m 为常数)与x 轴交于A B 、两点(点B 在点A 右侧),与y 轴交于点C .(1)下列说法:①抛物线开口向上,①点C 在y 轴正半轴上;①12m >;①抛物线顶点在直线21y x =-+上,其中正确的是_______;(2)如图2,若直线21y x =-+与该抛物线交于M N 、两点(点M 在点N 下方),试说明:线段MN 的长是一个定值,并求出这个值;(3)在(2)的条件下,设直线21y x =-+与y 轴交于点D ,连接BM BN BD 、、,当:1:2DN MN =时,求此时m 的值,判断MBN △与MDB △是否相似,并说明理由.2.在平面直角坐标系xOy 中,抛物线()260y ax ax c a =-+>与x 轴交于A 、B 两点(点A 在点B 的左侧),顶点为C ,直线AC 交y 轴于点D ,连接BD ,且ABD △与ABC 的面积之比为1:2.(1)顶点C 的横坐标为__________; (2)求点B 的坐标;(3)连接CO ,将BCO 绕点C 按逆时针方向旋转一定的角度后,点B 与点A 重合,此时点O 恰好也在y 轴上,求抛物线的表达式.3.如图,抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,点D 是直线BC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点D 作DE x ⊥轴于点E ,交直线BC 于点M .当2DM ME =时,求点D 的坐标; (3)如图2,设AB 的中点为点N ,过点D 作DF BC ⊥于点F ,连接CD 、CN ,使得以C 、D 、F 三点为顶点的三角形与CNO 相似,请直接写出点D 的坐标.4.如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标; (3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.5.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:①ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;①点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.6.在平面直角坐标系xOy 中,已知抛物线L 与x 轴交于,A B 两点,且经过点(0,2)C -,抛物线的顶点D 的坐标为325,28⎛⎫- ⎪⎝⎭.(1)求抛物线L 的函数表达式;(2)如图1,点E 为第四象限抛物线L 上一动点,过点E 作EG BC ⊥于点G ,求EG 的最大值,及此时点E 的坐标;(3)如图2,连接,AC BC ,过点O 作直线//l BC ,点,P Q 分别为直线l 和抛物线L 上的点.试探究:在第一象限是否存在这样的点,P Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.7.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标;(2)过点A 作AP ①CB 交抛物线于点P ,求四边形ACBP 的面积;(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ①x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与①PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.8.如图,在同一直角坐标系中,抛物线1L :28y ax bx =++与x 轴交于()8,0A -和点C ,且经过点()2,12B -,若抛物线1L 与抛物线2L 关于y 轴对称,点A 的对应点为'A ,点B 的对应点为'B .(1)求抛物线2L 的表达式;(2)现将抛物线2L 向下平移后得到抛物线3L ,抛物线3L 的顶点为M ,抛物线3L 的对称轴与x 轴交于点N ,试问:在x 轴的下方是否存在一点M ,使MNA '与ACB '△相似?若存在,请求出抛物线的3L 表达式;若不存在,说明理由.9.如图,在平面直角坐标系中,抛物线26y ax bx =++与x 轴交于点(1,0),(3,0)A B -,与y 轴交于点C ,点P 是第一象限内抛物线上的动点. (1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,当:PD OD 的值最大时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使90CMN ∠=︒,且CMN △与BOC 相似,若存在,请直接写出点M 的坐标.10.如图,已知抛物线23y ax bx =+-与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于C 点,设抛物线的顶点为D .过点D 作DE x ⊥轴,垂足为E .P 为线段DE 上一动点,(),0F m 为x 轴上一点,且PC PF ⊥.(1)求抛物线的解析式:(2)①当点P 与点D 重合时,求m 的值;①在①的条件下,将COF 绕原点按逆时针方向旋转90︒并平移,得到111C O F △,点C ,O ,F 的对应点分别是点1C ,1O ,1F ,若COF 的两个顶点恰好落在抛物线上,直接写出点1F 的坐标; (3)当点P 在线段DE 上运动时,求m 的变化范围.11.综合与实践如图1,抛物线y =﹣83x 2﹣94x +6与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .(1)求直线AC 的表达式;(2)点E 在抛物线的对称轴上,在平面内是否存在点F ,使得以点A ,C ,E ,F 为顶点的四边形是矩形?若存在,请直接写出点E 的坐标;若不存在,请说明理由;(3)如图2,设点P 从点O 出发以1个单位长度/秒的速度向终点A 运动,同时点Q 从点A 出发以54个单位长度/秒的速度向终点C 运动,运动时间为t 秒,当①OPQ 的平分线恰好经过OC 的中点时,求t 的值.12.抛物线23y x bx =-++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)在直线AC 上方的抛物线上找一点P ,使12ACPACDSS =,求点P 的坐标;(3)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与ACD △相似,直接写出点M 的坐标.13.如图,将抛物线2443y x =-+平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x 轴正半轴交于点B ,联结BC ,tanB 4=,设新抛物线与x 轴的另一交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结,AC DC ,如果CE 平分DCA ∠,求点E 的坐标;(3)在(2)的条件下,将抛物线2443y x =-+沿x 轴左右平移,点C 的对应点为F ,当DEF 和ABC 相似时,请直接写出平移后得到抛物线的表达式.14.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(2)3,和(312)--,. (1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC 相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.15.如图1,在平面直角坐标系中,抛物线2y x bx c =-++经过点A 和点()10B ,,交y 轴于点()0,3C .(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作直线MN x ⊥轴交抛物线于点N ,是否存在点M ,使得AMN 与OBC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于()1,0A -,()4,0B 两点,与y 轴交于点()0,2C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值; (3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点,试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标xoy 系中,已知抛物线y =-12x 2+bx +c 与x 轴交于点A (﹣4,0)、B(2,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图2,沿直线AC 平移抛物线y =-12x 2+bx +c ,使得A 、C 两点的对应点E 、F 始终在直线AC上.①设在平移过程中抛物线与y 轴交于点M ,求点M 纵坐标的最大值;①试探究抛物线在平移过程中,是否存在这样的点E ,使得以A 、E 、B 为顶点的三角形与①ABF 相似.若存在,请求出此时点E 的坐标;若不存在,请说明理由.18.如图,已知二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (4,0),E (1,3),与y 轴交于点C .(1)求该二次函数表达式;(2)判断△ABC 的形状,并说明理由;(3)P 为第一象限内该二次函数图象上一动点,过P 作PQ ∥AC ,交直线BC 于点Q ,作PM ∥y 轴交BC 于M .①求证:△PQM ∽△COA ; ②求线段PQ 的长度的最大值.19.如图,直线y x n =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)(m,0)E 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若BPD ∆直角三角形,求点E 的坐标;①点E 在x 轴的正半轴上运动,若45PBD CBO ∠+∠=︒.请直接写出m 的值.20.如图,点A ,B 都在x 轴上,过点A 作x 轴的垂线交抛物线24y x x =-+于点C ,过点B 作x 轴的垂线交该抛物线于点D ,点C ,D 都在第一象限,点D 在点C 的右侧,DE AC ⊥于点E ,连结CD ,BE ,//CD EB .(1)若2OA =,求AB 的长.(2)若点A 是线段OB 的中点,求点E 的坐标.(3)根据(2)的条件,连结OD ,动点P 在线段OB 上,作PQ OD ⊥交OD 于点Q ,当PDQ 与CDE △相似时,求OQOD的值.答案1.(1)①①①;(3)m =3,相似;m =1,不相似2.(1)3;(2)(5,0);(3)2y 3.(1)2y x 2x 3=-++;(2)()2,3D ;(3)57,24D ⎛⎫ ⎪⎝⎭或315,24⎛⎫ ⎪⎝⎭4.(1)214y x x =-或21(2)14y x =--;(2)点C 的坐标为(6,3)或51,4⎛⎫- ⎪⎝⎭;(3)164t t --+;12C x ≥ 5.(1)(2)①9;①(4,6)D 或25(3,)4D .6.(1)213222y x x =--;(2)max ()=EG E 的坐标为(2,3)-;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭. 7.(1)A (-1,0),B (1,0),C (0,-1);(2)四边形ACBP 的面积为4;(3)M 点的坐标为(-2,3)或(43,79)或(4,15). 8.(1)抛物线2L 的解析式为21382y x x =-++.(2)函数3L 的解析式为:2121322y x x =-+-或2126323y x x =-+-. 9.(1)2 246y x x =-++;(2)点P 的坐标为315,22⎛⎫ ⎪⎝⎭;(3)存在,点M 的坐标为939,48⎛⎫ ⎪⎝⎭. 10.(1)2134y x x =--;(2)①4;①1(2,9)16或13(6-,49)144;(3)748m ≤≤ 11.(1)直线AC 的表达式为364y x =+;(2)点E 1的坐标为20(3,)3--;点E 2的坐标为(3,10)-;点E 3的坐标为(3,3-+;点E 4的坐标为(3,3--;(3)t 的值为5.12.(1)223y x x =--+;(1,4)D -;(2)⎝⎭P 或⎝⎭;(3)点M 的坐标为(0,0)或(9,0)-,或10,3⎛⎫- ⎪⎝⎭. 13.(1)16(1,)3-;(2)(2,4)-;(3)242()433y x =-++或241()4312y x =--+ 14.(1)2y x 2x 3=-++;(2)存在,点D 的坐标分别为3944⎛⎫ ⎪⎝⎭,或(12),; (3)当5p x >时,锐角PCO ACO ∠<∠;当5p x =时,锐角PCO ACO ∠=∠;当25p x <<时,锐角PCO ACO ∠>∠.15.(1)223y x x =--+,()1,4-;(2)()2,3P -;(3)存在,()2,0-或2,03⎛⎫ ⎪⎝⎭16.(1)213222y x x =--;(2)45;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭17.(1)2142y x x =--+;(2)①6;①存在,E (62--或(62--18.(1)二次函数表达式为:213222y x x =-++ ;(2)△ABC 为直角三角形;(3); 19.(1)234y x x =-++;(2)①(2,0)或(3,0);①7m =或134.20.(1;(2)1296,749E ⎛⎫ ⎪⎝⎭;(3)2或4932。
相似与二次函数综合练习题
1.如图,等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=2,BC=8,∠MEN=∠B,∠MEN的顶角E在边BC上移动,一条边始终经过点A,另一边与CD交与点F,连接AF.
(1)设BE=x,DF=y,试建立y关于x的函数关系式,并写出函数自变量x的取值范围;
(2)若△AEF为等腰三角形,求出BE的长。
2.在平面直角坐标系中,已知点A(4,0),点B(0,3),点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发。
(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)过点A作AC AB,AC交射线PQ于点C,连接BC,D是BC的中点,在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形,若存在,试求出这时tan∠ABC的值;若不存在,请说明理由。
3.如图,将一块直角三角纸板的直角顶点C(1,0.5)处,两直角边分别是x 、y 轴平行,纸板的另两个顶点A 、B 恰好是直线2
9
+=kx y 与双曲线)0(>=m x m y 的交点,
(1)求m 和k 的值;
(2)设双曲线)0(>=m x
m y 在A 、B 之间的部分为L,让一把三角尺的直角顶点P 在L 上滑动,两直角边始
终与坐标轴平行,且与线段AB 交于M 、N 两点,请探究是否存在点P 使得MN=
AB 2
1
,写出你的探究过程。
4.把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中∠ABC=∠DEF=900
,∠C=∠F=450
,AB=DE=4,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q.
(1)如图1,当射线DF 经过点B,即点Q 与点B 重合时,易证△APD ∽△CDQ,此时AP ·CQ= (2)将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α,其中00900<<α,问AP ·CQ 的值是否改变?说明你的理由。
(3)在(2)的条件下,设CQ=x ,两块三角板重叠面积为y ,求y 与x 的函数关系式。
5.等腰三角形ABC,AB=AC=8,∠BAC=1200,P 为BC 的中点,小慧拿着含300角的透明三角板,使300
的顶点落在点P,三角板绕P 点旋转。
(1)如图a ,当三角板的两边分别交AB 、AC 于点E 、F 时,求证:△BPE ∽△
(2)操作:将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F ,连接EF.
①△BPE 与△PFE 是否相似?请说明理由。
② 设EF=m ,△PFE 的面积为S,试用m 的代数式表示S.
6.已知:如图所示,关于x 的抛物线)0(2≠++=a c bx ax y 与x 轴交于点A(-2,0),点B(6,0),与y 轴交于点C.求出此抛物线的解析式,并写出顶点坐标;
(1)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并写出直线AD 的解析式; (2)在(2)中的直线AD 角抛物线的对称轴于点M,抛物线上有一动点P,x 轴上有一动点Q,是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由。
7.在平行四边形ABCD 中,AB=4,BC=3,∠BAD=1200,点E 为射线BC 上的一动点(不与点B 、C 重合),过点E 作EF ⊥AB,FE 分别交线段AB 、射线DC 于点F 、G. (1)如图,当点E 在线段BC 上时, ① 求证:△BEF ∽△CEG;
② 如设BE=x ,△DEF 的面积为y ,求y 关于x 的函数关系式,并写出函数的定义域; (2)点E 在射线BC 上运动时,是否存在2:3:=∆∆DEC AFD S S ?若存在,请求出BE 的长。
8.如图,双曲线x y 2-=和x y 8-=在第二象限中的图像,A 点在x y 8-=的图像上,点A 的横坐标为m (m<0),
AC ∥y 轴交x y 2-=图像于点C,AB 、DC 均平行x 轴,分别交x y 2-=、x
y 8
-=的图像于点B 、D.
(1)用m 表示A 、B 、C 、D 的坐标; (2)求证:梯形ABCD 的面积是定值; (3)若△ABC 与△ACD 相似,求m 的值。
已知,在坐标系中,三角形OAB的面积为6,BC:AC=3:1,求经过点A的双曲线解析式。