§1.3一维弹性碰撞
- 格式:ppt
- 大小:1.61 MB
- 文档页数:14
高二物理1.1动量定理与动量守恒 §1.3一维弹性碰撞鲁教版【本讲教育信息】一. 教学内容:§1.1动量定理与动量守恒 §1.3一维弹性碰撞§1.1动量定理与动量守恒一. 教学目的:1. 认识动量的概念2. 会用动量定理解释简单问题二. 教学重、难点:1. 会推导动量守恒定律2. 会用动量守恒定律解释处理问题 (一)动量的概念1. 定义:运动物体的质量和速度的乘积叫动量。
2. 公式:m v P = 单位:s /m kg ⋅3. 是矢量:方向与v 的方向相同(即有正负)4. 解释:(1)动量是描述物体运动状态的量,通常说物体的动量是指物体在某一时刻的动量,对应该时刻的速度。
(2)动量具有相对性:选不同的参照物,物体的动量不同,但通常选地面为参考系。
(二)冲量1. 定义:力和力的作用时间的乘积叫做力的冲量。
2. 公式:t F I ⋅=单位:N ·s 或说与P 相同为s /m kg ⋅方向:与F 的方向相同 3. 解释(1)是力在时间上的积累效果(2)计算方法就是力与时间相乘,与其它无关。
(三)动量定理 1. 推导:tv v a 12-=则t v v m ma 12-=即tP P F t mv mv F 1212-=-=或或写成P I P t F P P t F 12∆=∆=⋅-=⋅即与2. 内容:物体所受合外力的冲量等于物体的动量变化。
3. 应用:(1)解释一些现象①玻璃杯落在水泥地上会摔碎而落在海绵上不会碎。
②从高处落下时,曲膝以缓冲减小对人体的伤害。
③汽车突然刹车或启动时人体的前扑与后仰。
(2)计算:(四)动量守恒定律的推导1. 推导:如图所示两小球相撞前后的情形:FFB v 1’v 2’AB则对A 球1111v m 'v m t F -=⋅ 对B 球:2222v m 'v m t F -=⋅-则)v m 'v m (v m 'v m 22221111--=- 即:22112211v m v m 'v m 'v m +=+ 或总总P 'P =或:'v m v m v m 'v m 22221111-=- 即:21P P ∆-=∆(五)表述1. 一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变。
1.3科学探究—一维弹性碰撞(一)知识与技能1.认识弹性碰撞与非弹性碰撞,认识对心碰撞与非对心碰撞2.了解微粒的散射(二)过程与方法通过体会碰撞中动量守恒、机械能守恒与否,体会动量守恒定律、机械能守恒定律的应用。
(三)情感、态度与价值观感受不同碰撞的区别,培养学生勇于探索的精神。
★教学重点用动量守恒定律、机械能守恒定律讨论碰撞问题★教学难点对各种碰撞问题的理解.★教学方法教师启发、引导,学生讨论、交流。
一、不同类型的碰撞1.碰撞的两个特点(1)碰撞过程时间很短,相互作用很强,可不考虑外界的影响。
(2)碰撞前后状态变化突然且明显,适合用守恒律研究运动状态的变化。
2.碰撞过程图3. 碰撞类型 (1)弹性碰撞在弹性力作用下,碰撞过程只产生机械能的转移,系统内无机械能的损失的碰撞,称为弹性碰撞。
(2)非弹性碰撞○1 非弹性碰撞:受非弹性力作用,使部分机械能转化为内能的碰撞称为非弹性碰撞。
○2完全非弹性碰撞:是非弹性磁撞的特例,这种碰撞的特点是碰后粘在—起(或碰后具有共同的速度),其动能损失最大。
注意:碰撞后发生永久性形变、粘在一起、摩擦生热等的碰撞往往为非弹性碰撞。
二、弹性碰撞的规律(1)概念:碰撞前后质点系总动能不发生变化的碰撞。
(2)被碰球速度为零的完全弹性碰撞如图,设1m 为入射球,速度为10v ,2m 为被碰球,速度为0。
试求碰后二者的速度。
120(1)二者刚接触的状态(2)形变形成的过程(3)形变最大的状态(4)形变恢复的过程 (5)碰撞刚结束的状态 v :1m 减速,2m 加速k E :减小p :不变v :1m 减速,2m加速 k E :恢复p :不变v :二者具有相等的速度 k E :最小p :不变由动量守恒及碰撞前后动能相等,有:2211101v m v m v m +=……………………①2222112101212121v m v m v m +=……………② 解得:⎩⎨⎧==02101v v v 或 ⎪⎪⎩⎪⎪⎨⎧+=+-=10211210212112v m m m v v m m m m v 上面两组解中的第一组,描述的是碰撞前的速度情况;每二组描述的是碰撞后的速度情况。
第3节 科学探究――一维弹性碰撞 学案学习目标:1. 理解弹性碰撞、非弹性碰撞和完全非弹性碰撞,正碰(对心碰撞)和斜碰(非对心碰撞).2.会应用动量、能量的观点综合分析、解决一维碰撞问题.根底知识:一.不同类型的碰撞(1)弹性碰撞:碰撞过程中机械能守恒.(2)非弹性碰撞:碰撞过程中机械能不守恒.(3)完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大.二.弹性碰撞的规律(1)两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,那么碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1. (2)假设m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,那么v ′1=0,v ′2=v 1,即两者碰后交换速度.(3)假设m 1≪m 2,v 1≠0,v 2=0,那么二者弹性正碰后,v 1′=-v 1,v 2′m 1被反向以原速率弹回,而m 2仍静止.(4)假设m 1≫m 2,v 1≠0,v 2=0,那么二者弹性正碰后,v ′1=v 1,v ′2=2v 1.说明m 1的速度不变,m 2以2v 1的速度被撞出去.重难点理解:一、对碰撞的理解1.碰撞的特点(1)时间特点:碰撞现象中,相互作用的时间极短,相对物体运动的全过程可忽略不计.(2)相互作用力特点:在碰撞过程中,系统的内力远大于外力.(3)位移特点:在碰撞过程中,由于在极短的时间内物体的速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置.2.处理碰撞问题的三个原那么(1)动量守恒,即p 1+p 2=p 1′+p 2′.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2.(3)速度要合理⎩⎪⎨⎪⎧ ①碰前两物体同向,那么v 后>v 前,碰后,原来 在前的物体速度一定增大,且v ′前≥v ′后②两物体相向运动,碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零三.三种碰撞类型(1)弹性碰撞动量守恒:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′机械能守恒:12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 当v 2=0时,有v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1即v 1′=0,v 2′=v 1 推论:质量相等,大小、材料完全相同的弹性小球发生弹性碰撞,碰后交换速度.即v 1′=v 2,v 2′=v 1(2)非弹性碰撞动量守恒:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′机械能减少,损失的机械能转化为内能|ΔE k |=E k 初-E k 末=Q(3)完全非弹性碰撞动量守恒:m 1v 1+m 2v 2=(m 1+m 2)v 共碰撞中机械能损失最多|ΔE k |=12m 1v 21+12m 2v 22-12(m 1+m 2)v 2共 三、弹性正碰模及拓展1.两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,那么碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1. (1)假设m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,那么碰后v 1′=0,v 2′=v 1,即二者碰后交换速度.(2)假设m 1≫m 2,v 1≠0,v 2=0,那么二者弹性正碰后,v 1′=v 1,v 2′=2v 1.说明m 1的速度不变,m 2以2v 1的速度被撞出去.(3)假设m 1≪m 2,v 1≠0,v 2=0,那么二者弹性正碰后,v 1′=-v 1,v 2′m 1被反向以原速率弹回,而m 2仍静止.2.如果两个相互作用的物体,满足动量守恒的条件,且相互作用过程初、末状态的总机械能不变,广义上也可以看成是弹性碰撞.典例1、如下图,质量相等的A 、B 两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A 球的速度是6 m /s ,B 球的速度是-2 m/s ,不久A 、B 两球发生了对心碰撞.对于该碰撞之后的A 、B 两球的速度可能值,某实验小组的同学们做了很多种猜想,下面的猜想结果可能实现的是( )A .v A ′=-2 m /s ,vB ′=6 m/sB .v A ′=2 m /s ,v B ′=2 m/sC .v A ′=1 m /s ,v B ′=3 m/sD .v A ′=-3 m /s ,v B ′=7 m/sE .v A ′=-5 m /s ,v B ′=9 m/s【解析】两球碰撞前后应满足动量守恒定律及碰后两球的动能之和不大于碰前两球的动能之和.即m A v A +m B v B =m A v A ′+m B v B ′①,12m A v 2A +12m B v 2B ≥12m A v A ′2+12m B v B ′2②,答案D 、E 中满足①式,但不满足②式.【答案】ABC 典例2如下图,光滑水平直轨道上两滑块A 、B 用橡皮筋连接,A 的质量为m .开始时橡皮筋松弛,B 静止,给A 向左的初速度v 0.一段时间后,B 与A 同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A 的速度的两倍,也是碰撞前瞬间B 的速度的一半.求:(1)B 的质量;(2)碰撞过程中A 、B 系统机械能的损失.【解析】 (1)以初速度v 0的方向为正方向,设B 的质量为m B ,A 、B 碰撞后的共同速度为v ,由题意知:碰撞前瞬间A 的速度为v 2,碰撞前瞬间B 的速度为2v ,由动量守恒定律得m v 2+2m B v =(m +m B )v ①由①式得m B =m 2.②(2)从开始到碰后的全过程,由动量守恒定律得m v 0=(m +m B )v ③设碰撞过程A 、B 系统机械能的损失为ΔE ,那么ΔE =12m (v 2)2+12m B (2v )2-12(m +m B )v 2④联立②③④式得ΔE =16m v 20.【答案】 (1)12m (2)16m v 20稳固练习:1.甲、乙两球在水平光滑轨道上向同方向运动,它们的动量分别是p 1=5 kg ·m/s ,p 2=7 kg ·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kg ·m/s ,那么两球质量m 1与m 2间的关系可能是( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 22.如图,立柱固定于光滑水平面上O 点,质量为M 的小球a 向右运动,与静止于Q 点的质量为m 的小球b 发生弹性碰撞,碰后a 球立即向左运动,b 球与立柱碰撞能量不损失,所有碰撞时间均不计,b 球恰好在P 点追到a 球,Q 点为OP 间中点,那么a 、b 球质量之比M ∶m =( )A .3∶5B .1∶3C .2∶3D .1∶23.如图,两滑块A 、B 在光滑水平面上沿同一直线相向运动,滑块A 的质量为m ,速度大小为2v 0,方向向右,滑块B 的质量为2m ,速度大小为v 0,方向向左,两滑块发生弹性碰撞后的运动状态是A 向________运动,B 向________运动.4.如下图,轨道ABC 中的AB 段为一半径R =0.2 m 的光滑14圆形轨道,BC 段为足够长的粗糙水平面。
1.3 科学探究-一维弹性碰撞三维教学目标1、知识与技能:知道动量定理的适用条件和适用范围;2、过程与方法:在理解动量定理的确切含义的基础上正确区分动量改变量与冲量;3、情感、态度与价值观:培养逻辑思维能力,会应用动量定理分析计算有关问题。
教学重点:动量、冲量的概念和动量定理。
教学难点:动量的变化。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
1、动量及其变化(1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。
记为p=mv 单位:kg·m/s读作“千克米每秒”。
理解要点:①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。
大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念。
②矢量性:动量的方向与速度方向一致。
综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。
(2)动量的变化量:1、定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p 为物体在该过程中的动量变化。
2、指出:动量变化△p是矢量。
方向与速度变化量△v相同。
一维情况下:Δp=mΔυ= mυ2- mΔυ1 矢量差例1:一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?2、动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化(2)公式:Ft =m'v-mv ='p-p让学生来分析此公式中各量的意义:其中F是物体所受合外力,mv是初动量,m'v是末动量,t是物体从初动量变化到末动量所需时间,也是合外力F作用的时间。