生物药剂学和药物动力学综述单室模型模拟实验
- 格式:pdf
- 大小:133.44 KB
- 文档页数:4
药物动力学单室模型静滴给药的模拟实验设计及应用药物动力学单室模型静滴给药的模拟实验设计及应用在药物研究与开发领域中,药物动力学是一个至关重要的概念。
它研究药物在体内的吸收、分布、代谢和排泄的过程,以及药物在体内的药效学效应。
药物动力学单室模型是药物动力学研究中常用的模型之一,它能够帮助我们更好地理解药物在体内的行为特征,并且为临床用药提供重要参考依据。
在本篇文章中,我们将对药物动力学单室模型静滴给药的模拟实验设计及应用进行全面评估和探讨。
我们将从简到繁地介绍药物动力学的基本概念,然后深入探讨单室模型在静滴给药实验中的设计与应用,最终分享个人对这一主题的观点和理解。
一、药物动力学基本概念药物动力学研究的核心是了解药物在体内的行为,其中包括吸收、分布、代谢和排泄等过程。
药物的动力学特性可以用数学模型进行描述,而单室模型是其中最简单却又最常用的模型之一。
单室模型假设整个体内是一个匀速混合的单一“室”,药物在这个“室”内的分布是均匀的。
该模型使用一阶动力学方程来描述药物在体内浓度随时间的变化,通常可以通过模型参数(如清除率、分布容积等)来描述药物的代谢和排泄特性。
二、模拟实验设计在药物动力学单室模型静滴给药的模拟实验中,首先需要确定实验的目的和方法。
通过静滴给药,可以实现对药物浓度在一定范围内的稳定维持,从而更好地研究药物在体内的动力学特性。
实验设计中需要考虑静滴速率、给药时间、采样时间点等因素。
静滴速率决定了药物的输入速度,给药时间决定了药物的输入量,而采样时间点则能够反映出药物在体内的浓度随时间的变化趋势。
三、模拟实验应用药物动力学单室模型静滴给药的模拟实验具有重要的应用意义。
通过实验可以更准确地测定药物的清除率、分布容积等参数,从而更好地了解药物在体内的动力学特性。
实验结果可以为临床用药提供重要参考依据,帮助医生更准确地进行药物治疗方案的制定。
四、个人观点和理解在我看来,药物动力学单室模型静滴给药的模拟实验是一个非常重要且有趣的研究领域。
第八章单室模型山西医科大学药学院张淑秋Chapt 8 单室模型本章要求:⏹掌握单室模型药物静注、静滴、血管外给药药动学参数的含义、药动学特征及利用血药浓度数据求算参数的方法。
⏹熟悉静注给药后,利用尿药数据计算药动学参数的方法及尿药法的特点。
⏹熟悉血管外给药后尿药数据计算药动学参数的方法。
⏹了解Wagner-Nelson 求吸收速率常数。
静脉注射给药静脉滴注给药血管外给药血药浓度法尿排泄数据法参数的求算主要内容第一节静脉注射给药d d X t kX=kt0eX X -=kt0eC C -=0ln ln C C kt=-一、血药浓度法X , CkX 00lg lg 2.303kC C t=-参数的求算:⏹ln C -t 回归,根据斜率求k ⏹根据截距求ln C 0,C 0;⏹V =X 0/C 0⏹t 1/2=0.693/k⏹CL= kV⏹静脉注射给药-血药浓度法0000d ///AUC C t C k X kV X CL∞=⋅===⎰静脉注射给药-血药浓度法t 1/2个数剩余%消除%t 1/2个数剩余%消除%0123100502512.50507587.545676.253.121.560.7893.7596.8898.4499.22消除某一百分数所需的时间:2103233032C Clgt .C C lg k .t /-=⨯=消除90%, 3.32 t 1/2; 消除99%, 6.64 t 1/2; 消除99.9%,9.96 t 1/2;静脉注射给药-血药浓度法One compartment020406080100120024681012t (h)C (u g /m l )One compartment1101001000024681012t (h)C (u g /m l )t (h)12346810C( ug/ml)11080.458.84323.112.4 6.61k = 0.312 h -1 C 0=150 g/ml → t 1/2、V 、Cl 、AUC*可求出某时间的血药浓度或达某一浓度所需时间。
《生物药剂学和药物动力学》教学大纲课程编码:(040905A-药)适用专业:药学、药学(日语)、药学(英语)、药物制剂、中药学、中药学(日语)、中药资源与开发一、前言《生物药剂学与药物动力学》是研究药物及其制剂在生物体内的动态过程并应用数学分析手段来处理的一门课程。
主要内容包括药物在生物体内吸收、分布、代谢和排泄过程及其影响因素。
采用隔室模型、非线性动力学或统计矩分析药物体内过程,并将药物动力学参数应用于新药研发。
生物药剂学和药物动力学。
二者既相互独立又相互联系,生物药剂学是解析药物体内过程的机制的学科,而药物动力学是定量描述药物体内过程的学科。
本课程要求学生掌握影响药物体内吸收、分布、代谢和排泄四个过程的生理因素和剂型因素。
计算药物动力学参数的方法。
熟悉生物药剂学原理在制剂设计尤其是缓控释制剂中的应用。
了解药物的生物利用度和药物动力学在临床药学和新药研发中的应用。
理论课36学时,学分2.0。
教材选用梁文权主编《生物药剂学与药物动力学》(第三版),人民卫生出版社2007年出版。
二、理论课内容与要求第一章概述(1学时)[基本内容]生物药剂学的含义、研究内容、研究意义、产生和发展过程。
吸收、分布、代谢和排泄的概念。
转运、消除和处置的概念。
[基本要求]掌握:生物药剂学的定义和研究内容;剂型因素与生物因素的含义。
熟悉:生物药剂学研究意义、产生和发展过程。
了解:生物药剂学研究在新药开发中的作用。
难点:药物的体内过程。
第二章口服药物的吸收(4学时)[基本内容]生物膜的结构与性质,药物的转运机制。
影响口服药物吸收的生理因素,药物的理化性质因素和剂型因素。
[基本要求]掌握:药物的转运机制。
生理因素、药物因素和剂型因素对口服药物吸收的影响。
熟悉:胃肠道的结构、功能和药物的吸收过程。
生物药剂学分类系统及其应用。
了解:口服药物吸收的研究方法。
难点:药物转运机制。
第三章非口服给药的吸收(2学时)[基本内容]药物在注射部位、皮肤、口腔、鼻粘膜、肺部、眼部和直肠及阴道中的吸收转运机制以及相应的影响因素,生理因素、药物的物理化学因素、剂型和制剂因素。
实训二 单室模型模拟试验单室模型的定义:药物进入体内后,能够迅速向全身的组织及器官分布,使药物在各组织、器官中很快达到分布上的动态平衡,此时整个机体可视为一个隔室,这种模型称为:“单室模型” 。
单室模型是最基本、最简单的模型。
一.实验内容1.操作将纯水盛满三角瓶中,开动磁力搅拌器,以每分钟大约6~8ml 的流速将纯水注入三角瓶中,调试稳定后,用移液管吸取0.1%的酚红供试液10ml 加入三角瓶底部,并瞬间搅匀,此时间记为0时刻,以后每隔10分钟自三角瓶内同一位置吸取2ml 供试液作为血药浓度测定用,同时定量收集不同时间段内由侧管流出的试液作为尿排泄数据的测定。
2.定量方法取2ml 供试液,加0.2mol/L 的NaOH 液至10ml ,在555nm 处测定酚红的吸光度,并求出浓度。
如果吸光度超过,可在此10ml 基础之上,进一步稀释一定倍数,直至测定出该吸光度为止。
二.静脉注射用移液管吸取0.1%的酚红供试液10ml 加入三角瓶底部的过程就相当于静脉注射。
单室模型静注的三个特点:* 药物瞬间在机体分布平衡* 体内药物只有消除,无吸收、分布过程* 消除速率和体内在该时的浓度呈正比。
1.血药浓度若药物在体内的分布符合单室模型,且按表观一级动力学从体内消除,则快速静脉注射时,药物从体内消失的速度为:KX dtdX -= (1)用血药浓度表示为:C=C 0e -kt (2) 两边取对数得:logC=logC 0-303.2kt (3)2.尿排泄数据尿排泄数据的前提条件:1. 有较多原型药物从尿中排泄2. 药物经肾排泄符合一级速度过程,即尿中原型药物出现速度和当时体内药量成正比缺点:1. 操作较复杂2. 误差较血药浓度法大 则原形药物的排泄速度为:dtdX u =k e X 0=k e X 0 e -kt (4)两边取对数得:logdtdX u =log(k e X 0)-303.2kt (5)由于用实验方法求出的尿药排泄速度不是瞬时速度的dX u /dt ,而是一段有限时间内的平均速度log(ΔX u /Δt ) =log(k e X 0)-303.2中kt (6)三、仪器、试剂仪器:N752型紫外分光光度计、磁力搅拌器、烧杯、抽滤瓶等 试剂:酚红、0.2mol/L 的NaOH 四、实验内容 1.操作将纯水盛满三角瓶中,开动磁力搅拌器,以每分钟大约6~8ml 的流速将纯水注入三角瓶中,调试稳定后,用移液管吸取0.1%的酚红供试液10ml 加入三角瓶底部,并瞬间搅匀,此时间记为0时刻,以后每隔10分钟自三角瓶内同一位置吸取2ml 供试液作为血药浓度测定用,同时定量收集不同时间段内由侧管流出的试液作为尿排泄数据的测定。
[摘要]设计了药物动力学单室模型静滴给药的模拟实验,并通过实际应用对装置进行验证。
结果表明实验设计合理,理论值和实验值相符合。
所用仪器价格便宜,组装简单,便于学生操作。
通过实验学生可以更好地掌握静滴给药的原理和计算,教学效果良好。
[关键词]单室模型;静滴给药;模拟实验;消除速率常数;稳态血药浓度;达稳态分数[中图分类号]R452[文献标志码]A[文章编号]2096-0603(2021)20-0086-02药物动力学单室模型静滴给药的模拟实验设计及应用①张哲铭,赵凯悦,何朝星,常延超,王晓晖*,杜青(河北医科大学药学院,河北石家庄050017)药物动力学是应用动力学原理与数学处理方法,研究药物通过各种途径进入体内的吸收、分布、代谢和排泄过程中“量-时”变化规律的学科[1],是本科药学专业的重要课程,对于学生今后从事包括科研在内的药学相关工作,尤其是开展药物临床研究和治疗药物监测等,均具有十分重要的作用[2]。
药动学实验课难度大、学时长、花费高,因此选择实验项目时既要考虑开设项目的重要性,也要兼顾可行性及教学成本[3]。
本文设计了一个能够模拟单室模型静滴给药的实验,通过实际操作可以使学生更好地理解静滴给药后体内药量变化过程,掌握静滴给药的药动学理论和有关计算。
一、实验原理与装置静脉滴注(输液)是临床上常用的一种治疗方式,是将药液以恒定速率持续向静脉内给药。
在滴注时间内体内同时存在两个过程,即药量增加过程和药物消除过程,当药物停止滴注后,体内只存在消除过程。
单室模型静滴给药模拟实验的装置如图1所示:BCD EA药液水图1单室模型静滴给药模拟实验装置图图1中,抽滤瓶A 用于模拟单室模型(体循环)、蠕动泵B 和蠕动泵C 分别将水(模拟血液)和酚红溶液(模拟药液)以恒速泵入抽滤瓶,在磁力搅拌器的作用下,抽滤瓶中的转子将水和酚红溶液混合均匀。
随着水的不断加入,液体从与抽滤瓶侧口相连的T 型玻璃管流出,表示药物从体内排泄出去,T 型管的一端为肾排泄途径,另一端为非肾排泄途径。
实训二单室模型模拟试验单室模型的定义:药物进入体内后,能够迅速向全身的组织及器官
分布,使药物在各组织、器官中很快达到分布上的动态平衡,此时整
个机体可视为一个隔室,这种模型称为:“单室模型” 。
单室模型是
最基本、最简单的模型。
一.实验内容
1.操作
将纯水盛满三角瓶中,开动磁力搅拌器,以每分钟大约6~8ml的流速
将纯水注入三角瓶中,调试稳定后,用移液管吸取0.1%的酚红供试液
10ml加入三角瓶底部,并瞬间搅匀,此时间记为0时刻,以后每隔10分钟自三角瓶内同一位置吸取2ml供试液作为血药浓度测定用,同时定量
收集不同时间段内由侧管流出的试液作为尿排泄数据的测定。
2.定量方法
取2ml供试液,加0.2mol/L的NaOH液至10ml,在555nm处测定酚红
的吸光度,并求出浓度。
如果吸光度超过,可在此10ml基础之上,进一
步稀释一定倍数,直至测定出该吸光度为止。
二.静脉注射
用移液管吸取0.1%的酚红供试液10ml加入三角瓶底部的过程就相当
于静脉注射。
单室模型静注的三个特点:
药物瞬间在机体分布平衡
体内药物只有消除,无吸收、分布过程
消除速率和体内在该时的浓度呈正比。
1.血药浓度
若药物在体内的分布符合单室模型,且按表观一级动力学从体内消
除,则快速静脉注射时,药物从体内消失的速度为:
(1)
用血药浓度表示为:
C=C0e-kt (2)
两边取对数得:
logC=logC0- (3)
2.尿排泄数据
尿排泄数据的前提条件:
1. 有较多原型药物从尿中排泄
2. 药物经肾排泄符合一级速度过程,即尿中原型药物出现速
度和当时体内药量成正比
缺点:1. 操作较复杂2. 误差较血药浓度法大
则原形药物的排泄速度为:
=k e X0=k e X0 e-kt (4)
两边取对数得:
log=log(k e X0)- (5)
由于用实验方法求出的尿药排泄速度不是瞬时速度的dX u/dt,而是一段有限时间内的平均速度
log(ΔX u/Δt) =log(k e X0)- (6)
三、仪器、试剂
仪器:N752型紫外分光光度计、磁力搅拌器、烧杯、抽滤瓶等
试剂:酚红、0.2mol/L的NaOH
四、实验内容
1.操作
将纯水盛满三角瓶中,开动磁力搅拌器,以每分钟大约6~8ml的流速将纯水注入三角瓶中,调试稳定后,用移液管吸取0.1%的酚红供试液10ml加入三角瓶底部,并瞬间搅匀,此时间记为0时刻,以后每隔10分钟自三角瓶内同一位置吸取2ml供试液作为血药浓度测定用,同时定量收集不同时间段内由侧管流出的试液作为尿排泄数据的测定。
2.定量方法
取2ml供试液,加0.2mol/L的NaOH液至10ml,在555nm处测定酚红的吸光度,并求出浓度。
如果吸光度超过,可在此10ml基础之上,进一步稀释一定倍数,直至测定出该吸光度为止。
五、实验结果
将血药浓度数据和尿排泄数据列于表1和表2。
表1 血药浓度数据
取样时间
10203040506070 (分)
吸光度A0.2290.2290.2130.2120.2080.2100.211
浓度C
矫正浓度
C1
表2 尿排泄数据
取样时间
0~1010~2020~3030~4040~5050~6060~70 (分)
体积数V
吸光度A0.1320.1810.1860.1870.2120.2090.204
浓度C
⊿X u=CV
⊿t10101010101010
⊿X u/⊿t
t m5152535455565
t m=
分别用表1.表2两组实验数据计算药物动力学参数
六、数据处理
1.酚红的含量测定采用百分吸光系数法:A=E%1cm CL,其中主药酚红在555nm处的E%1cm为430;
2.血药浓度数据处理:lgC=lgC0-Kt/2.303,求K、C0、V、t1/2、AUC、Cl、Ke(K L=0)等参数;
3.尿排泄数据处理:lg(⊿X u/⊿t)=lg (KeX0)-Kt m/2.303,求Ke、K、Cl r、X∞u等参数。
七、分析与讨论
1.单室模型药物静脉注射给药后,在体内没有吸收过程,迅速完成分布,药物只有消除过程,而且药物的消除速度与体内该时刻的药物浓度成正比。
2.生物间衰期除了与药物本身特性有关,还与用药者的机体条件有关。
生理及病理善能够影响药物的半衰期,肾功能不全或肝功能受损者,均可使药物的间衰期延长。
3.采用尿排泄数据求算药物动力学参数符合以下条件:大部分药物以原形从尿中排泄;药物经肾排泄过程符合一级速度过程,即尿中原形药物产生的速度与体内当时的药量成正比。
4.以尿药排泄速度作图时,常常不是采用相同的时间间隔收集尿
样。
已知收集尿样的时间间隔超过1倍半衰期将有2%误差,2倍为8%,3倍为19%。
因此,只要采样时间间隔小于2倍半衰期,则产生的误差不大。