智能微尘-SmartDust
- 格式:pdf
- 大小:685.46 KB
- 文档页数:12
1.物联网的概念物联网(The Internet of things)顾名思义是是“物与物相连的互联网”是将物品的信息通过射频识别(RFID)、红外感应器、传感器等信息采集设备与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
2.物联网的发展简介1995年盖茨在他的《未来之路》中提出物联网的概念,但是由于那是无线网路,硬件及传感设备发展限制,并未引起重视。
1999年MIT Auto-ID C都可以通过因特网主动进行交换。
射频识别技术、传感器技术、纳米技术、智能嵌入技术enter提出即把所有物品通过射频识别等信息传感设备与互联网连接起来,实现智能化识别和管理。
2004 年日本总务省提出u-Japan 构想,希望在2010年将日本建设成一个何时何地任何人都可以上网的构想。
2005 年11月在突尼斯举行的信息社会世界峰会(WSIS )上,国际电信联盟发布了《ITU 互联网报告2005:物联网》,提出无所不在的“物联网”通信时代即将来临,世界上所有的物体从轮胎到牙刷、从房屋到纸巾将得到更加广泛的应用。
2008年IBM公司提出“智慧的地球”的概念,从此,掀起关于物联网的科技浪潮。
2009年温家宝总理在无锡考察时,发表“感知中国”重要讲话,明确指示要早一点谋划未来,早一点攻破核心技术,并且明确要求尽快建立中国的传感信息中心。
3物联网系统结构物联网被分为三个层次:感知层,网络层,应用层(中间件)。
感知层起到识别物体,采集信息的作用,相当与人体的皮肤和五官。
主要包括二维码标签和识别器,RFID标签和读写器,传感器,终端,传感器网络等。
网络层是物联网的神经中枢和大脑,起到将感知层获取的信息传递和处理的作用。
网络层包括通信与互联网的融合网络,网络管理中心,信息中心和智能处理中心等。
应用层主要实现网络层与物联网引用服务间的接口和能力调用,与行业需求结合,实现智能化。
应用层主要包含各类应用,例如监控服务,智能电网,工业监控等。
物联网体系架构:物联网的英文名称为"The Internet of Things” 。
由该名称可见,物联网就是“物物相连的互联网”。
这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,扩展到了任其用户端延伸和何物品与物品之间,进行信息交换和通信。
因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的整个结构可分为射频识别系统和信息网络系统两部分。
射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。
读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。
整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。
因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。
从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。
二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。
三是应用网络,即输入输出控制终端。
EPC系统是一个非常先进的、综合性的和复杂的系统。
其最终目标是为每一单品建立全球的、开放的标识标准。
它主要由全球产品电子代码(EPC)体系、射频识别系统及信息网络系统三大部分组成。
(1)EPC编码标准EPC编码是EPC系统的重要组成部分,它是对实体及实体的相关信息进行代码化,通过统一并规范化的编码建立全球通用的信息交换语言。
(2)EPC标签EPC标签是装载了产品电子代码的射频标签,通常EPC标签是安装在被识别对象上,存储被识别对象相关信息。
世界各国的物联网发展战略物联网已成为许多国家发展的战略,2005年4月8日,在日内瓦举办的信息社会世界峰会(WSIS)上,国际电信联盟专门成立了泛在网络社会(UbiquitousNetworkSociety国际专家工作组,提供了一个在国际上讨论物联网的常设咨询机构。
根据这个工作组的报告,2005年,许多国家已经纷纷开始物联网的发展战略。
近年来,越来越多的国家开始了基于物联网的发展计划和行动,中国也并不沉默。
从2005年开始,许多国家已纷纷开始无处不在物联网的发展战略。
近年来,越来越多的国家开始了基于物联网的发展计划和行动。
随着日韩基于物联网的U社会战略、欧洲物联网行动计划以及美国智能电网、智慧地球等计划纷纷出台,还有2009年温家宝总理在无锡考察时,提出了把无锡建成感知中国中心。
各国都把物联网建设提升到国家战略来抓,通过大力加强本国物联网建设,来占领这个后IP时代制高点,从而推动和引领未来世界经济的发展。
针对物联网的国家战略以及应用发展迅速,日韩基于物联网的U社会战略、欧洲物联网行动计划以及美国智能电网、智慧地球等计划纷纷出台,物联网已经开始在军事、工业、农业、环境监测、建筑、医疗、空间和海洋探索等领域投入应用。
2009年包括Google在内的互联网厂商、IBM、思科在内的设备制造商和方案解决商以及AT&T、Veri-zon、中移动、中国电信等在内的电信运营企业纷纷加速了物联网的战略布局,以期在未来的物联网领域取得先发优势。
1 主要发达国家的物联网战略1.1 美国的物联网战略美国非常重视物联网的战略地位,在国家情报委员会(NIC)发表的《2025对美国利益潜在影响的关键技术》报告中,将物联网列为六种关键技术之一。
美国国防部在2005年将智能微尘(SMARTDUST)列为重点研发项目。
国家科学基金会的全球网络环境研究(GENI)把在下一代互联网上组建传感器子网作为其中重要一项内容。
2009年2月17日,奥巴马总统签署生效的《2009年美国恢复与再投资法案》中提出在智能电网、卫生医疗信息技术应用和教育信息技术进行大量投资,这些投资建设与物联网技术直接相关。
一、单选题。
每道题只有一个正确答案。
1、1999年MIT成立了Auto-ID Center,并且提出了______,之后与七所知名大学共同组成Auto-ID Labs,旨在通过互联网平台,构造一个实现全球物品信息实时共享的网络。
A “射频识别码”B “产品标识码”C “物品辨识码”D “产品电子码”正确答案D2、2003年11月1日,______正式接管了EPC在全球的推广应用工作,成立了电子产品代码全球推广中心(EPC Global),标志着EPC正式进入全球推广应用阶段。
A Auto-ID LabsB 国家产品标识编码协会C 国际EPC协会D 国际物品编码协会正确d、简单的说,_____是基于特定行业终端,以固定/移动通信网为接入手段,为集团客户提供机器(远程监控终端)到机器(信息处理指挥中心)的解决方案,满足客户对生产过程监控、指挥调度、远程数据采集和测量、远程诊断等方面的信息化需求。
A 物联网应用B 行业物联网C M2M业务D 行业信息化正确答案C2、2012年7月初,ITU-T第13研究组批准了新的标准,确定了物联网定义,介绍了物联网环境发展状况,描述在NGN大背景下____应用的功能要求。
A 面向人与网络的通信。
B 面向人与机器的通信。
C 面向机器与网络的通信。
D 面向机器的通信。
正确答案D3、ITU-T____介绍了物联网的概念和范畴,说明了其基本特性和上层要求,详细描述了其参考模型;此外,探讨了物联网的生态系统及其商业模式。
A Y.2059规范B Y.2060规范C Y.2061规范D Y.2062规范正确答案BETSI于2008年底成立M2M TC(在3GPP中,M2M被称为MTC,即Machine-Type Communications),致力于M2M业务及运营需求、端到端高层架构、应用、解决方案间的互操作性研究。
需求、架构、智能计量用例、eHealth用例方面的标准基本完成。
一、物联网 (1)物联网简介 (1)物联网现状 (3)二、M2M (6)M2M是什么? (7)M2M做什么? (9)M2M市场 (11)M2M产业链 (14)一、物联网物联网简介定义:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。
“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。
物联网英文名称:“The Internet of things”,顾名思义,物联网就是“物物相连的互联网”。
物联网历史物联网现状(来自来源[电信网技术] 作者肖剑胡忠华林云高健)在物联网概念热炒之前,我国的物联网产业链已经存在,但主要以集成商为主角,运营商在其中只是管道,集成商又分布在各个行业、地域中,目前的物联网产业链基本可以理解为战国时代,同样的模式在不同的地域、行业被不同的集成商控制(见图1)。
图1 物联网产业链现状图传感器/芯片厂商+通信模块提供商电信运营商提供的管道系统集成商/服务提供商/中间件及应用商产业价值15%15%70%从目前的表现来看,运营商竭力在向两端延伸价值,但产业链的演变不是以运营商的意志为转移的,运营商可以在其中努力扩大产业链的自身价值,通过构建M2M平台和模块/终端标准化来逐步实现,但在实际的商业模式中,要让广大的集成商使用运营商标准的模块和平台,必须价值让利,通过模块的补贴、定制、集采逐步让集成商接纳运营商的标准,进而将行业应用数据流逐步迁移到运营商的平台上。
物联网市场特点据ABI Research的保守预测,M2M服务市场将保持每年25%的增长,2010年产值有望达到80亿美元。
在中国,至2012年国内的市场容量将达到一亿部终端的规模。
欧洲著名的行业咨询机构IDATE提供的报告显示,2006年,全球范围内M2M市场容量已经达到200亿欧元,而到2010年,市场容量将达到2200亿欧元,年复合增长率达到49%。
【word】智能灰尘及其在战场信息资源获取中的应用智能灰尘及其在战场信息资源获取中的应用总第121期测控与通信?27?智能灰尘及其在战场信息资源获取中的应用李文元何雯王丽军(西安通信学院西安710106)摘要随着通信技术,嵌入式计算技术和传感器技术的飞速发展和日益成熟,具有感知能力,计算能力和通信能力的微型传感器受到人们的极大关注.以发展微型传感器为目的的”智能灰尘”(SmartDust,SD)就是其中的一个项目.本文介绍了智能灰尘的概念及其组成结构,探讨了智能灰尘的关键技术并描述了其在战场信息资源获取中的运用.关键词无线传感网络智能灰尘信息获取1引言随着通信技术,嵌入式计算技术和传感器技术的飞速发展和日益成熟,具有感知能力,计算能力和通信能力的微型传感器开始在世界范围内出现.由这些微型传感器构成的大规模无线传感网络(Wirelesssensornetworks,WSN)已经成为当前研究的一个热点.这种无线传感网络能够实时监测,感知和采集网络分布区域内的各种监测对象的数据,并对这些数据进行处理并传送到需要的用户.无线传感器网络可以在任何时间,地点和任何环境条件下获取大量详实而可靠的信息.因此,被广泛地应用于国防军事,国家安全,环境监测,交通管理,医疗卫生,制造业,反恐维稳,抗灾抢险等领域.目前,一个引起广泛关注的微型传感器技术,就是”智能灰尘”(SmartDust,SD).2智能灰尘的概念智能灰尘是由美国加洲大学贝克莱分院J.M.Kahn和K.S.J.Pister在1998年共同提出的,采用低成本,低功耗,微型的智能传感器,将传感,计算和通信三大功能单元集成于一立方毫米见方的微粒中,具有独立的供电系统.这种”灰尘”通过在一定范围内大量播撒,可以形成微型传感器网络.智能灰尘传感网络通常由成百上千个”灰尘”微粒和一个或多个查询收发机组成.图1是智能灰尘的概念方框图.其中,每个”灰尘”微粒都包括一个或多个传感器,模拟和数字电路,双工通信单元,可编程微处理器以及电源,可以实现传感参数采集,环境条件监测以及灰尘相互间的通信功能.智能灰尘可望广泛用于国防军事,环境监控,动物习性跟踪等领域.同时由于智能灰尘体积微小,人们希望能赋予它一些新颖的功能,如希望”灰尘”能随风漂移甚至悬浮于空气中,实现对战场等特殊环境的实时监测.3智能灰尘的结构智能灰尘微粒结构如图2所示,由传感器,通信单元和处理单元三部分组成.3.1电源收稿日期:2008年6月5日?28?测控与通信2008年第2期图1智能灰尘的概念方框图图2智能灰尘结构图为了监测环境,”灰尘”必需包含充足的能源,以支持从几小时到几个月不同的任务需求.为了保证”灰尘”毫米级的体积,能源的大小对于整体设计来说就显得至关重要.”灰尘”的能源系统包括一块薄膜电池和一块可充电的太阳能电池.在光照充足的情况下太阳能电池能保证一昼夜的工作.3.2传感器根据设计目标的不同,”灰尘”中可以包含声音,光,震动,温度,磁场等各种各样的传感器.随着微电子技术的发展,现在也出现了如汽车压力传感器,医学传感器,生化传感器等新型的传感器,并且使得传感器的体积,能耗和成本都在成指数的减小,这些都有利于智能灰尘在功能,体积等各方面的进一步完善.3.3通信单元通信是智能灰尘的主要功能之一,通过灰尘节点间或者灰尘与基站间的通信,系统将对成百总第121期李文元等:智能灰尘及其在战场信息资源获取中的应用?29?上千的”灰尘”收集到的信息进行集中处理.但由于智能灰尘的体积和能源都有限,因而对”灰尘”通信单元的设计也会有很多的限制,不能采用普通的射频通信技术…,因为射频通信中的天线不仅会使”灰尘”体积增大,而且相应的功率消耗也会较高,因而贝克莱”灰尘”采用了无论是尺寸还是功耗都更为理想的光通信方案.在”灰尘”模型里对光信号采用了两种接收方案【2J:使用激光二极管及可调节透镜进行主动式发送和使用三面直角棱镜反射器(CCR,comer.cuberetroreflector)进行被动式发送.3.3.1主动式光通信主动式光通信采用激光二极管波束控制装置,向基站发送定向的校准波束.装置包括激光二极管,校准透镜和波束调节透镜.通过主动式通信装置,”灰尘”可以实现点对点的远距离通信.但由于主动式通信需要消耗较高的能源,使得主动式光通信装置仅能在短暂的触发通信模式下使用.为了尽量减小它的能源消耗,在设备中需要采用一些装置,使波束对准接收机,例如采用方向波束或使用一个主动的波束调节装置.但这样会使得”灰尘”更加复杂.2.3.2被动式光通信被动式光通信设备不需要用自带的光源来发送传感器获取的信息.它采用了一个三面直角棱镜反射器(CCR,comer.cuberetroreflector).CCR是一个特殊的微电子机械系统(MEMS,MicroElectro.MechanicalSystem),由三面相互垂直的棱镜构成,它在满足一定条件的情况下,具有将任何光束反射回光源的特性.但如果任一面棱镜发生了偏转,这种特性将被破坏.为此,在智能灰尘的CCR中安装了静电激励器,能对其中的一面棱镜以千赫的比率进行偏转,这样CCR就可以对激光束进行”开.关”调制,确保将光束返回BST.由于CCR,不需要任何光信号,因而只需要极低的能源.通信时,由基站向节点定向发送一未经调制的激光束,”灰尘”收到光信号后对其进行调制并反射回基站.但是被动式通信也存在不足,它无法实现”灰尘”间点对点的通信,因为它只能依赖于中心基站的光源进行通信,并且由于CCR只能反射光束中的一部分,因而还要求在”灰尘”与基站间满足视距通信,即无任何障碍.3.3.3接收设备由于受到”灰尘”体积的限制,无法在光电探测器之前安置成像或非成像的光集中器,因此“灰尘”的接收器可以接收到”灰尘”周围大半个球的信号.这样,发信设备就不需要对准”灰尘”的接收器.当灰尘只配有一个CCR时,它可以在方向线数十度的范围内将来自基站的光束返回光源.3.4处理单元智能灰尘中还包含模拟或数字电路,I/O接口,DSP等处理控制设备,用以支持对感知数据的存取,查询,分析,挖掘和计算等.在传统计算结构的设计中,人们关注的是如何缩短运算时间.为了实现这一目标,科学家们使用了半导体元器件,即加快了运算速度也减小了体积,这样就使我们可以在智能灰尘中可以使用复杂的计算结构.所以现在我们更关心这些运算如何减小对智能灰尘中能源的消耗.科学家们也正致力于在有限的体积里使用低能源的运算设计,并已经在低功率无线电和模拟电路设计方面取得了数项世界纪录.智能灰尘节点通过通信设备将各种观测资料发送到控制中心.控制中心可能是一个特殊的“灰尘节点”,称为sink,或者是由一系列的灰尘节点组成的中心控制基站,称为”接收墙”wall.当灰尘离控制中心较远时,灰尘之间可以相互通信,直到将信息传递到距基站较近的节点.这种方式可以通过”智能灰尘云”[71(SmartDustCloud,SDC)模型的形式实现.SDC 是由二维平面上展开的一系列灰尘节点和一面组成.组成”接收墙”的微粒具有较强的通信和计算能力.这种模型中也可以将”接收墙”看作为”接收节点”,因为当任何灰尘节点离”墙”的某一微粒足够?30?测控与通信2008年第2期近的时候,其发挥的作用就相当于一个”接收节点”.4智能灰尘的关键技术4.1冗余的多跳飞路由技术智能灰尘网络由互连的灰尘节点构成的网格组成.网状网格的节点至少要保证两个以上可行的路由,并能支持信源和信宿之间的多路跳飞.C,onlro~冗余的路由确保了在有节点关闭或链路故障时仍能保证可靠的通信.同时多跳飞路由也可以减少两节点间通信所需的能量.采图3”智能灰尘云”结构图用多跳飞技术,数据包可以在各节点间传输,最终达到目的节点,而点对点的双工通信网络需要发射高能量的射频信号,这将需要多达八倍的能量.4.2跳频技术为了确保最大的可靠性,智能灰尘网络采用了跳频扩展频谱技术(frequency-hoppingspreadspectrum,FHSS).每一个节点可以在频率范围为902928MHz内的25个频率信道中,选择一个进行通信.当一个新的”灰尘”加入网络时,每一条附加的链路都将分配一个不同的频率,这样将避免受到射频干扰,以确保每条链路的可靠性.对于射频干扰很普遍电磁环境和敌方高超的侦听手段,采用跳频技术,可以大大提高灰尘的抗干扰能力和抗信息截获能力.4.3高精度分布式同步技术减少智能灰尘能量消耗的关键就是尽量减少对无线通信的使用.通过无线通信发送或接收数据包比起采样信息或数据处理所需的能量要多出几个数量级.灰尘网络采用了一系列的技术,限制对无线通信的使用,其中最重要的一种就是高精度分布式同步技术.在高精度同步时,灰尘仅在需要发送数据包时,或是从相邻节点监听数据包时才需消耗相应的能量.复杂的同步算法,保证了每一个”灰尘”与邻近节点保持在毫秒级的精确同步.4.4可预测的确定路由技术智能灰尘网络通过跳频技术会为每两个节点间的通信分配具体的时隙和频率.管理器通过观察”灰尘”和链路可以清楚网络中所有的可能路由.通过比较数据包到达目的节点的时间表,管理器可以为网络性能和服务质量提供最佳的服务方案.确定路由技术是实现可预测,可控网络的核心,它支持对服务质量(QoS)的监控并进行报警.4.5开放式网络管理技术API灰尘网络管理器拥有数据获取,控制和管理的API,通过XML.RPC为网络数据处理,QoS尺度和控制功能提供了一系列的设置.通过对TCP端口的连接和XML对管理器进行查询,实现了简易,完整的监测,控制和管理系统.4.6专用的低功率硬件技术智能灰尘网络中的”灰尘”都是全功能的无线收发机,拥有确定的I/O接口和标准的天线连接器.为了确保网络的最佳可靠性,通过运用系统论方法,使每个节点的可靠性都达到最佳.除总第121期李文元等:智能灰尘及其在战场信息资源获取中的应用此以外,智能灰尘网络的工程师们,使用了长寿命的电池,并在低功率无线电和模拟电路设计方面取得了数项世界纪录.这些都有效地延长了灰尘的使用寿命.5智能灰尘在战场信息资源获取中的应用智能灰尘在战场信息资源获取上有着广泛的应用空间.我们可以通过智能灰尘来监控了解敌军的行踪,向正在准备进行登陆作战的部队报告敌方岸滩的详实特征信息,向作战指挥官报告实时的战场情况,为制定作战方案提供可靠的信息.例如,我们可以通过无人机将数以万计廉价小巧的”灰尘”洒在敌军所在的区域.通过”灰尘”上安装的声,光,震动,温度,磁场甚至是生化及医学传感器,获取敌军战区的详细信息.一段时间之后,同样派遣无人机,将传感器搜集到的数据通过无线网络传回飞机上,并带回基地加以分析,如此一来,不需要冒着极大的危险派遣兵力深入敌方,便可完成搜集敌军情报的任务.此外,由于智能灰尘为数众多,敌军也不易清除,可谓”撒豆成兵”.[1][4】[5]参考文献B.?rneke,st,B.Leibowitz,andK.S.J.Pister.SmartDust:Communicatingw ithaCubic—MillimeterComputer,IEEEComputerMagazine,34(11:44,5l,January2001.V.S.HSH,J.M.Kahn,andK.S.J.Pister:”WirelessCommunicationsforSmartDus t”,ElectronicsResearchLaboratoryMernorandumNumberM98/2,l998.I.F.Akyildiz,W.Su,Y.Sankarasubramaniam,andE.Cayirci.WirelessSensorNe tworks:AputerNetworks,38(4):393,422,March2002.BerkeleyMotes.www.xbow.corn/Products/WirelessSensorNetworks.htm.B.A.?rneke,M.D.Scott,B.S.Leibowitz,L.Zhou,C.L.Bellew,J.A.Chediak,J.M.Kahn,B.E.Boser,andK.S.J.Pister:AnAutonomousl6cubicmmSolar—PoweredNodeforDistributedWirelessSensorNetworks.InIEEESensors,Orlando,USA,June2002.B.A.Warneke,M.D.Scott,B.S.Leibowitz,L.Zhou,C.L.Bellew,J.A.Chediak,J. M.Kahn,B.E.Boser,andK.S.J.Pister:AnAutonomousl6cubicmmSolar—PoweredNodeforDistributedWirelessSensorNetworks.InIEEESensors,Orlando,USA,June2002.I.Chatzigiannakis,S.Nikoletseas,andP.Spirakis:SmartDustProtocolsforL ocalDetectionandPropagation,InProc.ofACMPOMC’02.作者简介李文元西安通信学院.何雯西安通信学院.王丽军西安通信学院.。
Wireless Systems for Environmental MonitoringThis application note describes how to deploy Crossbow’s MICA family of wireless mesh networking hardware, software, and sensors for environmental monitoring. The sensor nodes are easy to deploy, self-configure, and report into a database and graphical software package. Software for these applications is readily downloaded from Crossbow’s website and TinyOS distribution. All of the software components described in this application note are freely available for use with our hardware/sensors.This application note also covers the technical and performance aspects of Crossbow’s mesh networking protocol and stack known as XMesh (a.k.a. Surge Time Sync). The XMesh stack is self-healing, ad-hoc mesh network which combines two breakthrough technologies – Distributed Time Synchronization and Low-Power Listening. Networks of tens to hundreds of motes can be deployed with one year or more of battery life.This combination of software and hardware delivers a complete solution for environmental monitoring applications. Example deployments include:•Light, temperature, and soil conditions within a green house•Soil moisture and temperature in a vineyard or other high value crop•Wind speed and wind direction measurement in mountainous regions•Frost detection and warning•Measurement of localized ET (Evapo-Transpiration) for Irrigation Control•Indoor comfort monitoring, including HVAC tune-upSystem OverviewMost environmental monitoring deployments have a number of common characteristics. The Crossbow solution addresses the following characteristics:•Monitoring temperature, humidity, barometric pressure and other environmental parameters•Low sampling rates, typically slower than 2 minutes per sensor measurement.•Outdoor environments•Deployment of sensors over several acres or more•Battery operation for at least one year•Remote logging of data and remote data access.Crossbow utilizes its MICA2 and MICA2DOT programmable processor radio modules as the heart of its environmental monitoring system. The MICA2 and/or MICA2DOT are configured with the appropriate sensor and data acquisition boards and packaging. The MICA2 andMICA2DOTs are loaded with TinyOS-based firmware that performs sensor monitoring and power control on top of the XMesh protocol. These packaged sensor modules communicate with the Crossbow Stargate access point which receives sensor readings and logs them into a local database. The sensor data is then accessed, monitored, plotted, and optionally exported with the MOTE-VIEW graphical user interface from any network connected PC. Figure 1 shows the environmental monitoring system architecture and the way these various components fit together.Figure 1. Crossbow’s Wireless Environmental Monitoring System OverviewThe software components that come together to form this system are listed below and shown in Figure 2. All of these software components are available from Crossbow at no charge for use with our hardware.MICA2 / MICA2DOT -based Enviromental Sensors:•TinyOS operating system*•XMesh (Surge Time Sync)* component which handles all networking and radio communications.•XSensor sensor application* which is customized for sampling environmental sensors available from Crossbow (see Sensor section of Appnote)Stargate Base Station and Sensor Data Server / Database :•Basestation MICA2 mote running XMesh (Surge Time Sync) * for interfacing to Sensor Network•XListen* software which parses mote data packets and stores into Postgres database.•Postgres* database for local storage of data•Linux* operating system for StargatePC:•MOTE-VIEW** data visualization program for Windows based machines Notes:*Open source code in ** Free runtime executable from CrossbowFigure 2. Software Components and Architecture of Mesh NetworkSensorsCrossbow’s MICA2/MICA2DOT platforms and wireless mesh network software are easily integrated with a wide variety of sensors. Presently, Crossbow offers the following low-power sensor combinations for environmental monitoring:Packaging: •MEP410 is packaged in a water resistant plastic box with externalantenna and external battery box. The battery box canaccommodate 2 C size batteries.•MEP510 is packaged in a water resistant plastic box with externalantenna and an internal lithium 2/3 AA battery.•The MTS400/410 and MDA300 are not presently environmentallypackaged, but Customer can easily add external housingHumidity Sensor:Type:Accuracy:Long Term Stability:Min OperatingVoltage:•Sensirion SHT11•3% from 20% to 80% RH•5% from 0% to 20% RH•5% from 80% to 100% RH•<1% RH per year•2.4VTemperature Sensor:Type:Accuracy:•Internal to Humidity and Barometric Sensor•Humidity Temp: +/- 1.5°C from -100 C to+600 C•Barometric Temp: +/- 0.8° C from -100C to+60° CBarometricPressureSensor: Type: Accuracy: Long Term Stability: Min. Operating Volts: • Intersema MS5534A • +/- 1.5 mbar from 750 to 1100 mbar• -1 mbar/yr• 2.2VLight Sensor: MEP410Type: Location: Min. Operating Voltage:• Hamamatsu S1337, UV range: 190-1100 nm• Hamamatsu S1087,Visible range: 320-730 nm• One each on top and bottomof package (both lightsensors)• 2.2VAccelerometer Sensor:Type:Range: • Analog Devices ADXL202 • +/-2 g GPS:Type: • SIRF, 12-Channel Receiver The MEP410 can optionally be loaded with an internal humidity sensor along with the external humidity sensorMDA300: The MDA300 is a general purpose data acquisition board that can interface to a variety of external sensors. It also includes an internal temperature and humidity sensor. See MDA300 datasheet for complete list of data acquisition features.Commonly Used Sensors for MDA300 include: • Echo EC-20 and EC-10 Dielectric Aquameter for measuring soil moisture content. Accuracy: .03m/m (% water content) • Spectrum Soil Temperature ProbeWireless CommunicationCrossbow’s MICA2 and MICA2DOT motes have integrated radios that are designed to operate in the ISM band. Crossbow manufactures motes in several different frequency ranges to support the various ISM bands throughout the world. Users should purchase the appropriate frequency range for ISM band rules of their country. Users should also consider radio range requirements when selecting the appropriate MICA2 or MICA2DOT mote. The following table summarizes currently available options recommended for Environmental Monitoring.MPR400, MPR500 MICA2, MICA2DOT 868/900-928MHz (US, Europe) MPR410, MPR510 MICA2, MICA2DOT 432-434MHz (US, Europe)MPR420, MPR520 MICA2, MICA2DOT 315MHz (Japan only)Antenna: Crossbow recommends an external, ¼ wave whip antennae. These antennae are inexpensive and offer improved coverage. The MICA2 has an MMCX connector for easy connection to many types of external antennas. All sensors should be placed such that theantennas are oriented vertically. Horizontal placement of the antennae will result in a substantial loss of distance.Radio Range: Lower radio frequencies for example, 433 MHz, will have longer ranges in an outdoor deployment. Depending on the foliage and environmental conditions, expect ranges of 200-500 feet at 433 MHz and 100-300 feet with 916 MHz. Remember, the XMesh stack willautomatically configure the network and allow for radio range extension via message hopping across multiple deployed sensors.Placement: Units are usually placed at least 1-3 feet above the ground. Placing units at ground level will decrease communication range. Grass and other foliage will also decrease distance. Crossbow recommends the following average mesh grid density:916 MHz: 1 mote/2500 sq feet (50’ by 50’).433 MHz: 1 mote/10000 sq feet (100’ by 100’).Foliage and other RF obstacles will decrease distance. However, if the units are deployed such that motes can find other motes (parents) then the network will automatically reroute radio traffic.Figure 3. Aerial photo of Sensor Network DeploymentXMesh Networking StackCrossbow’s deployments are based on the XMesh (Surge Time Sync) networking protocol which has been optimized for low-duty cycle, environmental monitoring, applications. The XMesh network has the following features:•Low power (typically less than 350 µA average current).•Network time synchronization to +/- 1 msec.•Low power listening with an 8 time per second wake-up interval, allowing for rapid message transfer across the network.The default sampling period is 3 minutes, although many other sampling intervals are allowable. The following average currents were measured at different sampling intervals:Data Interval (minutes) Average MICA2 or MICA2DOT Current(µA)1 6773 3156 196The XMesh network has been extensively tested both at indoor and outdoor locations. In a typical indoor test, nodes were placed at every 300 sq ft. to cover a 10,000 sq ft facility. To simulate larger distance between nodes, the radio transmit power was turned down to -6dBm. In outdoor tests nodes were spread across several acres of rugged terrain with an average density of 1 mote per 10,000 sq ft and at full radio power. Statistical analysis across many deployments shows on average greater than 90% of all traffic generated at any node will be collected at the base station without the use of end-end acknowledgements.Stargate Base StationFigure 4. Stargate gateway as a base stationThe Crossbow Stargate gateway and microserver is an embedded Linux computer designed to be the primary access point for wireless sensor networks. The Stargate’s small form factor, reliability, and optional communication interfaces makes it ideal for remote, environmental monitoring. A base station mote (MICA2) is connected to the 51-pin connector on the Stargate.A resident program, XListen, takes an input stream of wireless sensor data from the base station mote and stores it in a local Postgres database.The Crossbow Stagate can be connected to a wide-area or back-haul network in one of the following ways:•Wired Ethernet connection•WiFi, using a Compact Flash card (Netgear MA701, AmbicomWL1100C-CF, etc.)•Long Range WiFi using PCMCIA card (ZComax or SMC Wireless SMC2532W-B).•Cell phone modem card (Sierra Wireless Aircard 555D) for remote cellular access.Remote administration and database replication for the sensor data logged onto the Stargate is done with a secure shell connection (ssh).Xlisten Logging Software for StargateThe Xlisten software which runs on Stargate acts as the intermediary between the sensor readings from the wireless mesh network of sensors and the Postgres database installed on Stargate. Xlisten is able to recognize and interpret packets in a standardized format. The standard packet generally includes at a minimum: node ID, parent, sensorboard ID, and voltage. Data transmitted by the motes is a raw analog or digital reading. Final conversion to engineering units (e.g., degree C) is done by Xlisten or MOTE-VIEW. The full C source code for conversion is available and provides a good reference for how to convert sensor readings for the entire line of Crossbow wireless products. Other sensor conversions are easily added. Most common conversions are in the shared xconvert.c library.Xlisten is written to be extensible so that support for new sensors and packets is straightforward to add. Each sensorboard is handled with a single source module in the boards directory. The particular board to use is decided by looking up the unique board ID field. The board file provides specific handling for printing parsed and converted packets, as well as data logging. Data Visualization Software: MOTE-VIEWMOTE-VIEW is a Windows .NET-based data visualization tool for monitoring and managing sensor networks. MOTE-VIEW connects to the remote Postgres database on the Stargate basestation through a TCP/IP link.MOTE-VIEW has a number of useful features for monitoring and understanding wireless sensor data. These features include:•Historical and Real-Time Charting•Topology Map•Data Export•PrintingExportMOTE-VIEW allows the users to export data as CSV (comma delimited text) or XML. All data is exported as raw data or converted to engineering units.VisualizationThere are three ways to visualize sensor data in MOTE-VIEW:•Data Grid – Last sensor result set received from each node.•Charts – Three charts of a sensor against time for multiple nodes.•Topology Map – Spatial view of last result from each node.Figure 5. MOTE-VIEW Charts each data point with linear extrapolation between them.Zoom and pan functionality is supported as well.Network Health MonitoringMOTE-VIEW provides diagnostics for evaluating network health that is quite effective in the field. Each node is color coded by the amount of time since the last data was received. Green signifies that data was received in the last 20 minutes and that the node is “healthy”. The node color then further erodes as the last result grows increasingly stale: light green color after 20 minutes, yellow after 40 minutes, orange after an hour, and red after a full day of no results.Figure 6. MOTE-VIEW topology map: Nodes are color coded by temperature. The possible colors are: blue (temp < 18C), green (18C < temp < 22C), yellow (22C < temp < 26C), orange(26C< temp < 30C), and red (temp > 30C)Battery LifeBattery life is a critical parameter for low power networks. The power consumption of individual motes within the network varies due to the number of radio messages that a mote hears and transmits. Most of the battery power is expended for these operations. Motes close to the base station see higher radio traffic and therefore have lower battery life. Due to this variability it has been difficult to predict and measure the actual power usage of individual motes as well as the entire network. Measuring battery life in the field is useful, but most customers want to have a good idea of battery life prior to deployment. For this reason, Crossbow has expended significant development to accurately measure and characterize the battery life and current consumption of its hardware in real-world deployments.In order to characterize this power usage, Crossbow has developed power monitoring software that runs in the motes during network testing. These diagnostic modes monitor various power states of the mote, such as:•Microprocessor on-time and sleep time power•Radio receive power for each packet•Radio transmit power time for each packetEach time the mote cycles through these states, the power consumed is computed and accumulated with the previous used power. Data is periodically transmitted to the base station for logging. Figure 7 below shows the analysis of a networking session. The left diagram shows the average current consumed for each mote in the network.Figure 7. The left diagram shows the average current consumed for each mote in the network. The right diagram shows the expected lifetime of each mote in the network using2000 mA-hr batteries.Battery Life and Average CurrentBy integrating the total current consumed, the ACM100 can accurately compute the average operational current even though the motes cycles through current consumption states that differs by up-to three orders of magnitude. Utilizing this real average, we accurately predict the battery life time. Below is a graph of a 2000 mA-hr battery based on different average currents.Figure 8. Battery Life vs. Average CurrentAchieving average operational currents below 500 µA is critical for multi-month operation on AA batteries. An average current below 250 µA is needed for one year operation. Larger batteries (C or D) can be used for extended operation. The table below estimates the battery life for different Alkaline battery sizes at different current drains:Battery Size Capacity(mA-hr)Battery Life@ 250µA (yrs)Battery Life@ 500µA (yrs)Battery Life@ 1mA (yrs)AA 2000 1 0.5 0.25C 6000 3 1.5 0.75D 12000 7 3.5 1.5。