第三章 单元系的相变分析
- 格式:ppt
- 大小:1.77 MB
- 文档页数:68
第三章 单元系的相变习题3.2试由0>v C 及0)(<∂∂T V p 证明0>p C 及0)(<∂∂S Vp 。
证: 由式(2.2.1) T C C V p =-⇒V T p ⎪⎭⎫ ⎝⎛∂∂ pT V ⎪⎭⎫ ⎝⎛∂∂ =P C p T H ⎪⎭⎫ ⎝⎛∂∂=pT S T ⎪⎭⎫ ⎝⎛∂∂;=V C V T U ⎪⎭⎫ ⎝⎛∂∂V T S T ⎪⎭⎫ ⎝⎛∂∂= =dp dV V p T ⎪⎭⎫ ⎝⎛∂∂dT T p V⎪⎭⎫ ⎝⎛∂∂+ =dp +⎪⎭⎫ ⎝⎛∂∂dV V p S dS S p V⎪⎭⎫ ⎝⎛∂∂ =+⎪⎭⎫ ⎝⎛∂∂dV V p S VS p ⎪⎭⎫ ⎝⎛∂∂⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂dT T S dV V S V T ⇒=⎪⎭⎫ ⎝⎛∂∂T V p VS p ⎪⎭⎫ ⎝⎛∂∂T V S ⎪⎭⎫ ⎝⎛∂∂+S V p ⎪⎭⎫ ⎝⎛∂∂ (1) =⎪⎭⎫ ⎝⎛∂∂V T p V S p ⎪⎭⎫ ⎝⎛∂∂TT S ⎪⎭⎫ ⎝⎛∂∂ (2) 由麦氏关系(2.2.3)代入(1)式中 ⇒=⎪⎭⎫ ⎝⎛∂∂S V T -VS p ⎪⎭⎫ ⎝⎛∂∂ ⇒=⎪⎭⎫ ⎝⎛∂∂T V p -⎪⎭⎫ ⎝⎛∂∂S V p S V T ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂T V S -⎪⎭⎫ ⎝⎛∂∂SV p ()()⋅∂∂S V S T ,,()()T V T S ,,∂∂ =+⎪⎭⎫ ⎝⎛∂∂S V p ()()⋅∂∂T V S T ,,()()⋅∂∂S V T V ,,()()T V S T ,,∂∂ =+⎪⎭⎫ ⎝⎛∂∂S V p ()()⋅∂∂S V T V ,,()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T =+⎪⎭⎫ ⎝⎛∂∂S V p V S T ⎪⎭⎫ ⎝⎛∂∂()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T 由式(2.2.5) ⇒V C V T S T ⎪⎭⎫ ⎝⎛∂∂=;即0>=⎪⎭⎫ ⎝⎛∂∂V V C T S T .于是: 0>=⎪⎭⎫ ⎝⎛∂∂T V p +⎪⎭⎫ ⎝⎛∂∂SV p 正数 于是: SV p ⎪⎭⎫ ⎝⎛∂∂<0 =P C P T S T ⎪⎭⎫ ⎝⎛∂∂()()=∂∂=p T p S T ,,()()⋅∂∂V S p S T ,,()()=∂∂p T V S ,,⋅⎪⎭⎫ ⎝⎛∂∂S V p T ()()p T V S ,,∂∂ ⋅⎪⎭⎫ ⎝⎛∂∂=S V p T ()()⋅∂∂V T V S ,,()()=∂∂p T V T ,,⋅⎪⎭⎫ ⎝⎛∂∂S V p T VT S ⎪⎭⎫ ⎝⎛∂∂Tp V ⎪⎪⎭⎫ ⎝⎛∂∂⋅ ⋅⎪⎭⎫ ⎝⎛∂∂=S V p V TC p V ⋅⎪⎪⎭⎫ ⎝⎛∂∂ 0>V C ; 因而0>P C 习题3.4 求证:(1)-=⎪⎭⎫ ⎝⎛∂∂n V T ,μV T n S ,⎪⎭⎫ ⎝⎛∂∂;(2)-=⎪⎪⎭⎫ ⎝⎛∂∂nT p ,μp T n V ,⎪⎭⎫ ⎝⎛∂∂ 证: (1) 开系吉布斯自由能dn Vdp SdT dG μ++-= , ),(T V p p = ⇒dn dT T p dV V p V SdT dG V Tμ+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+-= dn dV V P V dT T P V S n T n V μ+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+-= ⇒V S T G n V +-=⎪⎭⎫ ⎝⎛∂∂,VT p ⎪⎭⎫ ⎝⎛∂∂ ① V V G nT =⎪⎭⎫ ⎝⎛∂∂,T V p ⎪⎭⎫ ⎝⎛∂∂ ② μ=⎪⎭⎫ ⎝⎛∂∂VT n G , ③ 由式 ① ⇒n V n V T G T p V S ,⎪⎭⎫ ⎝⎛∂∂-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂=V T n S ,⎪⎭⎫ ⎝⎛∂∂⇒VT n V n T G ,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂-=V n T G ⎪⎪⎭⎫ ⎝⎛∂∂∂-=2V T n G ⎪⎪⎭⎫ ⎝⎛∂∂∂-=2 VT n S ,⎪⎭⎫ ⎝⎛∂∂n V T ,⎪⎭⎫ ⎝⎛∂∂-=μ 第(1)式得证。
热力学统计物理第一章:热力学的基本规律 1.焦耳实验:(1)实验结果:水温发生变化(2)结果分析:①气体向真空自由膨胀,气体对外界不作功,即W=0; ②水温没有发生变化,说明气体与水没有交换热量,即Q=0。
∴0=+=∆W Q U 说明气体的内能在过程前后不变。
(3)焦耳定律:理想气体的内能只是温度的函数,与体积无关。
即)(T U U =(4)适用范围:理想气体(5)推论:nRT U pV U H +=+=,故理想气体的焓也是温度的单值函数。
2. 熵增加原理:系统经可逆绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热条件下熵减少的过程是不可能实现的。
即 0≥-A B S S3. 最大功原理:系统在等温过程中对外界所作的功不大于其自由能的减少量。
即B A F F W -≤-4. 两个例题:1)一理想气体,经准静态等温过程,体积有A V 变为B V ,求过程前后气体的熵变。
解:已知理想气体的物态方程为:nRT pV = 等容热容为:dT C dU dTdUC V V =⇒=∴nRpV pdVTdT C T pdV dU T dQ dS V +=+==V dV nR T dT C V += ∴⎰++==0ln ln S V nR T C dS S V∴初态),(A V T 的熵为:0ln ln S V nR T C S A V A ++= 末态),(A V T 的熵为:0ln ln S V nR T C S B V B ++= 故熵变为:BAA B V V nR S S S ln=-=∆ 2)热量Q 从高温热源T 1传到低温热源T 2,求熵变. 解:根据熵变的定义,得①高温热源的熵变为:11T Q S -=∆(放热) ②低温热源的熵变为:22T QS =∆(吸热) 由于熵是广延量,具有可加性 ∴)11(1221T T Q S S S -=∆+∆=∆ 第二章:均匀物质的热力学性质1.平衡辐射:如果辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,与辐射体的其他特性无关。
各章知识点整理和复习第一章热力学的基本定律知识点1、热力学第一定律dU dQ dW2、热力学第二定律3、热力学基本方程dU TdS pdV4、热力学第二定律的数学表述dU TdS pdV5、克劳修斯熵BRB AAd QS ST,玻尔兹曼熵lnS k6、熵增加原理。
复习题1、简述热力学第二定律及其统计解释。
参考:热力学第二定律的开尔文表述:热不可能全部转变为功而不引起其他变化。
热力学第二定律的克劳修斯表述:热量不能自动地从低温物体传向高温物体。
或第二类永动机不可能。
热力学第二定律的微观意义是,一切自然过程总是沿着分子热运动的无序性(或混乱度)增大的方向进行,系统对应的微观状态数增大,根据玻尔兹曼熵lnS k,因此系统的熵值增加,即熵增加原理。
2、简述熵增加原理及其统计解释。
参考:孤立系统中所进行的自然过程总是沿着熵增大的方向进行。
根据玻尔兹曼熵公式lnS k,可知孤立系统中所进行的自然过程总是向着微观状态数(或混乱度)增大的方向进行。
第二章均匀物质的热力学性质知识点1、基本热力学函数的全微分和麦氏关系的得出。
dU TdS pdV dH TdS Vdp dF SdTpdVdGSdT Vdp()()()()()()()()S VS p T V TpT p V S T Vp S S pV T S VpT2、麦氏关系的应用。
2、气体的节流过程。
3、特性函数的应用。
4、热辐射(平衡辐射)的热力学结果,斯特方玻尔兹曼定律。
复习题1、写出焦汤系数的数学表达式,简述节流过程的特点;利用焦汤系数分析通过节流产生致冷效应、致温效应和零效应的原理。
(P57)2、证明能态方程TVU p Tp VT。
参考:选T 、V 作为状态参量时,有VTU U dU dT dV TdS pdVTVVTS S dSdTdVTV 得:VTS S dU T dT Tp dVTV比较得:TTU S TpV V将麦氏关系TVS p VT代入,即得TVU p TpVT3、证明焓态方程pTH V V TpT 。