北大物理学院 单元系的复相平衡(相变)
- 格式:pdf
- 大小:8.28 MB
- 文档页数:48
§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。
这些条件可以利用一些热力学函数作为平衡判据而求出。
下面先介绍几种常用的平衡判据。
oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。
于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。
孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。
如果只有体积变化功,孤立系条件相当与体积不变和内能不变。
因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。
在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。
如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。
如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。
亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。
如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。
熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。
不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。
2、自由能判据表示在等温等容条件下,系统的自由能永不增加。
这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。
我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。
这一判据称为自由能判据。
热力学系统理论——简要和习题解答 吉林大学物理学院参加本书编写的教师和单位(按姓氏笔画排名)崔海宁吉林大学物理学院金康西北大学物理系林晓敏北华大学物理学院刘立华吉林师范大学物理学院李莉莎西北大学物理系裴松皓 吉林大学物理学院索辉吉林大学电子学院王 磊 吉林大学物理学院王荣吉林大学物理学院姚合宝 西北大学物理系张冰牡丹江师范学院物理系邹卫东 集美大学 理学院 物理系内容提要及说明本册是作者在吉林大学物理学院教授“热力学与统计物理”课程讲义——“热力学系统理论”的配套书籍.全书内容包括热力学与统计物理第一部和第二部的内容精要以及相关章节的习题详解。
由于第三部和第四部的内容特点和写作方式已经是很简练的了,所以就没有再做一个精要出来;此外,因为第11章的习题和思考题读者完全可以从讲义中找到答案,故我们也没有在此书中给出.本册的最后定稿和修改是由崔海宁、李莉莎、刘立华共同完成的.目录第1章到第9章精要 (1)第1章 热力学的基本函数习题解 (17)第2章 热力学函数关系习题解 (29)第3章 单元系的相变习题解 (40)第4章 多元系的复相平衡和化学平衡习题解 (47)第5章 系统微观状态的描述和分布习题解 (55)第6章 玻耳兹曼统计习题解 (59)第7章 玻色统计和费米统计习题解 (67)第8章 系综理论习题解 (72)第9章 涨落理论习题解 (77)第10 章 近平衡不可逆过程热力学习题解 (86)第12章 非平衡态统计理论习题解 (90)第13章到第16章 磁介质热力学与低温方法习题解 (95)附录I 有势场的粒子数分布 (103)第一章 热力学的基本函数本章是热力学与统计物理学的基础,利用在热学中接触过的内容——热力学第零定律、热力学第一定律和热力学第二定律导出热力学基本方程。
要求清楚热力学系统的平衡态及其描述、热、热量、辐射场模型、温度、状态函数特性、准静态功、物态方程、热容量和焓、理想气体的内能、绝热过程、卡诺循环、熵和熵增加原理等内容。
《热力学·统计物理》课程教学大纲课程名称:热力学·统计物理课程编码:学时:72 学分:4开课学期:第四学期课程类别:学科平台课程课程性质:必修课适用专业:应用物理学先修课程:力学、热学、原子物理,高等数学一、课程的性质、目的与任务热力学与统计物理是研究物质热现象和热运动规律理论的物理课程。
它是微观理论研究和宏观应用之间的一座桥梁,前者采用宏观的研究方法,后者采用微观的研究方法。
两种方法相辅相成,取长补短。
本门课程的学习内容主要有:热力学的基本规律;均匀物质的热力学性质;单元系的相变;多元系的复相平衡和化学平衡;;近独立粒子的最概然分布;玻耳兹曼统计;玻色统计和费米统计;系综理论;。
通过本门课程的学习,使学生能够掌握这两种研究方法,为今后的进一步学习与研究打下必要的基础。
二、教学内容及基本要求第一章热力学的基本规律教学目的和要求:了解热力学系统的平衡态及其描述、热平衡定律和温度、理想气体的内能和绝热过程、理想气体的卡诺循环、自由能和吉布斯函数理解物态方程、功、热力学第二定律、热容量和焓、热力学温标掌握热力学第一定律、卡诺定律、克劳修斯等式和不等式、熵和热力学基本方程、理想气体的熵、热力学第二定律的普遍表述、熵增加原理的的简单应用教学重点和难点:热力学第一定律和物态方程,克劳修斯等式与不等式,热力学基本方程。
教学方法与手段:传统教学与学生自学相结合第一节热力学系统的平衡状态及其描述第二节热平衡定律和温度第三节物态方程第四节功第五节热力学第一定律第六节热容量和焓第七节理想气体的内能第八节理想气体的绝热过程第九节理想气体的卡诺循环第十节热力学第二定律第十一节卡诺定理第十二节热力学温标第十三节克劳修斯等式与不等式第十四节熵和热力学基本方程第十五节理想气体的熵第十六节热力学第二定律的表述第十七节熵增加原理的简单应用第十八节自由能和吉布斯函数复习与作业要求:完成课后相关习题。
考核知识点:熵增加原理的应用,理想气体的熵。
=热统1>热统2>=在多元系中既可以发生相变,也可以发生化学变化。
多元系:含有两种或两种以上化学组分的系统。
氧气一氧化碳二氧化碳混合气体三元(单相)均匀系盐的水溶液和水蒸气二元二相系复相系均匀系热统3>=选T, P, n 1, n 2, …n k (n i 为i 组元的摩尔数)为状态参量,系统的三个基本热力学函数体积、内能和熵为),...,,,(1k n n P T V V =1(,,,...,)k U U T P n n =1(,,,...,)k S S T P n n =一、多元均匀系的热力学函数广延量的性质§4. 1 多元系的热力学函数和热力学方程对于K 个组元的多元均匀系(这指单相系或者是复相系中的一个相),因有可能发生化学变化,所以,需引进描述物质量的状态参量.热统4>=体积、内能和熵都是广延量。
如果保持系统的温度和压强(与物质量无关的强度量)不变而令系统中各组元的摩尔数都增为λ倍,系统的体积、内能和熵也增为λ倍11(,,,...,)(,,,...,)k k V T P n n V T P n n λλλ=11(,,,...,)(,,,...,)k k U T P n n U T P n n λλλ=11(,,,...,)(,,,...,)k k S T P n n S T P n n λλλ=热统5>=11(,...,)(,...,)m k k f x x f x x λλλ=如果函数满足以下关系式:1(,...,)k f x x 这个函数称为的m次齐函数.1,...,k x x 补充数学知识:(1)齐次函数定义:当m=1时,对应的就是一次齐次函数。
热统6>=欧勒定理11(,...,)(,...,)mk k f x x f x x λλλ=i i ifx mf x ∂=∂∑(2)齐次函数的一个定理——欧勒(Euler)定理(将上式两边对λ求导数后,再令λ=1,即可得到)补充数学知识:多元函数f(x 1, x 2, …, x n )是x 1, x 2, …,x n 的m 次齐次函数的充要条件为下述恒等式成立热统7>=ii ifx fx ∂=∂∑,,()j i T P n i i V V n n ∂=∂∑,,()j i T P ni i U U n n ∂=∂∑,,()ji T P n i iSS n n ∂=∂∑式中偏导数的下标n j 指除i 组元外的其它全部组元11(,,,...,)(,,,...,)k k V T P n n V T P n n λλλ=11(,,,...,)(,,,...,)k k U T P n n U T P n n λλλ=11(,,,...,)(,,,...,)k k S T P n n S T P n n λλλ=由欧勒定理如前所述因此,体积、内能和熵都是各组元摩尔数的一次齐函数热统8>=定义:,,()j i T P n i Vv n ∂=∂,,()j i T P n i U u n ∂=∂,,()j i T P n iS s n ∂=∂物理意义为:在保持温度、压强及其它组元摩尔数不变的条件下,增加1摩尔的i 组元物质时,系统体积(内能、熵)的增量。
第一章热力学的基本规律习题试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV=V nRTP P nRT V ==; 所以,TP nR V T V V P 11)(1==∂∂=α习题试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ=,试求物态方程。
解:因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=,因为T T p p VV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dVT T κακα-=-=,所以,⎰-=dp dT VT καln ,当p T T /1,/1==κα.习题测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=nT p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:所以,410*07.4,622-=∆=V p xn习题描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。
假设金属丝两端固定。
试证明,当温度由1T 降2T 时,其张力的增加为)(12T T YA --=∆αη解:),(,0),,(T L L T L f ηη==所以,dT TLd L dLT ηηη)()(∂∂+∂∂=因AY L L L L T T T =∂∂∂∂=∂∂)(;)(1)(ηηη所以,)(12T T YA --=∆αη习题在C ︒25下,压强在0至1000n p 之间,测得水的体积13263)10046.010715.0066.18(---⨯+⨯-=mol cm p p V 如果保持温度不变,将1mol 的水从1np 加压至1000n p ,求外界所做的功。
1、 定容压强系数的表达式是 ( B )(A )0lim ()V T p T β∆→∆=∆ (B )01lim ()V T p V T β∆→∆=∆ (C ) 1()V p p T β∂=∂ (D )()V p Tβ∂=∂ 2、 体胀系数α、压强系数β、等温压缩系数T κ三者关系正确的是 ( A )(A )T P αβκ= (B )T P βακ= (C )T P καβ= (D )T P βακ=-1()P V V T α∂=∂ 1()T T V V P κ∂=-∂ 1()V P P Tβ∂=∂ 3、根据热力学第二定律,判断下列哪种说法是正确的 ( A )(A)、热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。
(B)、功可以全部变为热,但热不能全部变为功。
(C)、气体能够自由膨胀,但不能自动收缩。
(D)、有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量。
4、热力学第二定律的微分表达式为(dQ dS T≥) 5、热力学第一定律的数学表达式(微分)为:dUdW dQ =+ 4、关于熵的理解正确的是(?)A 系统从初态到末态,经不同的过程所得到的熵增不一样B 系统经绝热过程从初态到末态的熵增一定为0C A 和B 分别对应系统的两个不同的状态,则BB A A đQ S S T-≥⎰ D A 和B 分别对应系统的两个不同的状态,则B B A A đQ S S T -=⎰ 5、关于自由能、吉布斯函数、熵的认识不正确的是(D )A 在等温等容过程中,系统的自由能永不增加B 孤立系统的熵永不减少C 等温等压过程后,系统的吉布斯函数永不增加D 等温等压过程后,系统的自由能永不增加3.理想气体的物态方程是?4.外界简单热力学系统做功的表达式 ;对于液体表面薄膜来说,外界做功的表达式 ;对于电介质,外界做功是用来 ;对于磁介质,外界做功用来5.温度( )宏观物理参量吗?(是/不是)1、麦氏关系给出了S 、T 、P 、V 这四个变量的偏导数之间的关系,下面麦氏关系四个等式不正确的是 ( )(A )、()()S V T P V S ∂∂=-∂∂ (B )、 ()()S P T V P S∂∂=∂∂ (C )、()()T V S T V P ∂∂=∂∂ (D )、()()T P S V P T∂∂=-∂∂ 2、热力学函数U 、H 、F 、G 全微分形式不正确的是 ( )A dU TdS PdV =-B dH TdS VdP =+C dF SdT PdV =--D dF SdT VdP =--E dG SdT VdP =-+3、下述微分关系不正确的是 ( ) A ()()V T U S T T V∂∂=∂∂ B ()()T V U P T P V T ∂∂=-∂∂ C ()()P P H S T T T ∂∂=∂∂ D ()()T P H V V T P T ∂∂=-∂∂ 4、关于节流过程和绝热过程说法不恰当的是 ( )A 节流过程前后气体的自由能不变B 节流过程和绝热过程都是获得低温的常用方法C 节流过程前后气体温度随压强的变化率为[()]P P V V T V C T∂-∂ D 绝热过程中气体温度随压强的变化率为()P P T V C T∂∂ 1.写出内能、焓、自由能、吉布斯函数的全微分 、 、 、 。