谐波与电容器
- 格式:pdf
- 大小:103.43 KB
- 文档页数:5
电容器的端电压计算、电容器的端电压计算 Ucn ; Ucn=Uxn 心-电抗器的电抗率%)【Ucn 为电容器的额定端电压、 Uxn 为电网的线电压】,注;抑制5次以上的谐波时,电抗器的电抗率取4.5%〜6%,抑制3次以上的谐波时,电抗器的电抗率取12%,所以在选择无功补偿有电抗器时电容器一定要注意其端电压的选择。
②、电容器回 路电流的计算;lcn= Uxn/(1-电抗器的电抗率%)【Icn 为电容器的回路电流、Uxn 为电网的线电压】,所以 在选择其熔断器及热继电器时一定要把这时的电流一并考虑进去。
③、电抗器的电抗率 %是指串联电抗器的相感抗Xln 占电容器的相容抗 Xcn 的百分比,电容器回路线电流的计算; Icn=Qc/UxnV3=Uxn/ XcnV3 。
Xcn= Uxn2/ Qc 。
④、电容器串联电抗器后,其无功补偿的补偿量 =1.062 Qc ,提高了 6.2%。
⑤、并联电容器可以长期允许运行在1.1倍的额定线电压下。
a 、电抗器的电抗率为6%时,则电容器的端电压升高6.4%。
b 电抗器的电抗率为 12%时,则电容器的端电压升高 13.6%。
无功补偿中对谐波的抑制作用及 电抗率的选择随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。
产生电网谐波“污染”的另一个重要原因是电网接有冲击性、 大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。
这不仅会导致供用电设备本身的安全性降低,与电容器组任意组合, 更不能不考虑电容器组接入母线处的谐波背景。
器抑制谐波的作用展开分析,并提出电抗率的选择方法。
1谐波的产生及其主要构成成分小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于波动性负荷,如电弧炉、 而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。
谐波放大对电容器造成的影响
谐波电流一旦被电容器放大并迭加在电容的基波电流上,这将使流过电容器电流的有效值增加,电力电容器会由于谐波电流引起附加绝缘介质损耗加大、温度升高,加快电容器绝缘老化,甚至引起过热使电容器损坏。
此外,谐波电流被放大引发的谐波电压增大一旦迭加在电容器的基波电压上,同样会使电容器电压有效值增大,并且电压峰值也会大增加,造成电容器发生局部放电不能熄灭,这也是电容器损坏的一个主要原因。
由于电容器对谐波电流的放大作用,它不仅危害电容器本身,而且会危及电网中的其它电气设备,严重时会造成电气设备损坏,甚至破坏电网的正常运行,因此,必须要解决好电容器对谐波电流的放大问题,加强谐波的抑制与防范。
什么是电容的失真和谐波电容的失真和谐波通常指的是在电容器中由于电力系统中的非线性负载或其他因素引起的电压和电流波形的失真和谐波成分。
失真和谐波的产生对电力系统的正常运行和电能质量造成了一定的影响。
本文将详细介绍电容的失真和谐波的原因、影响以及相关的防治措施。
一、失真和谐波的原因电容器的失真和谐波主要源于以下几个因素:1. 非线性负载:当电力系统中存在非线性负载时,如电弧炉、变频器、整流器等,会产生高次谐波电流。
这些高次谐波电流在通过电容器时,会引起电容器内电场的不均匀分布,进而导致电压失真。
2. 电容器本身的非线性特性:电容器在实际应用中也存在一定程度的非线性特性。
当电容器的电压或电流变化较大时,其介电常数会发生变化,从而导致电容器的电容值变化,进而引起电压的失真和谐波成分。
3. 温度变化:电容器在工作过程中会发热,而温度的变化也会导致电容器的电容值发生变化,从而影响电容器的工作性能和电容值的准确性。
二、失真和谐波的影响电容的失真和谐波对电力系统的正常运行和电能质量产生了以下几方面的影响:1. 电能质量下降:由于失真和谐波的存在,电力系统中的电压和电流波形将发生畸变,从而导致电能质量的下降。
此外,失真和谐波还会造成电能的损耗和额外的电磁干扰,进一步影响电力系统的稳定性和可靠性。
2. 设备损坏:失真和谐波会引起电力系统中各种电气设备的过热、损坏甚至系统故障。
例如,谐波电流通过变压器和电机等设备时,会引起这些设备内部的额定电流和损耗的增加,从而缩短设备的寿命。
3. 电能浪费:失真和谐波不仅会降低电能质量,还会增加电能的损耗。
谐波电流和电压引起了有功功率的损耗,使得系统的电能利用率下降,导致电能的浪费。
三、失真和谐波的防治措施为了减少失真和谐波对电力系统的影响,需要采取相应的防治措施,包括:1. 定期检测和监测:通过对电力系统中的电压和电流波形进行定期检测和监测,可以及时发现失真和谐波的存在和程度,为后续的防治措施提供依据。
电力系统高次谐波\谐波放大及谐波对电力电容器的危害本文章论述了电力系统高次谐波、谐波的放大,并且阐述了谐波对于电力电容器的危害。
标签:电力系统高次谐波谐波放大电力电容器1 谐波和谐波源在电力系统中,基波的功率潮流是以发电机作为功率源,负载只吸收功率。
可是对于谐波的功率潮流也许恰好相反,是以负载为功率源。
高次谐波源有两种:电流谐波源和电压谐波源。
各种整流型负荷以及用可控硅调节的负荷,这些非线性的负荷都可以认为是谐波电流源。
由于变压器、发电机等铁心的磁饱和作用产生了电压的畸变,所以发电机等旋转电机以及串补装置都是谐波电压源。
2 电容器组的谐波放大在计算阻抗、感抗、容抗的时候,都会涉及到一个看似十分简单的参数,那就是频率(或者角频率)。
说它看似简单是因为对于基波来说,我们都取50Hz。
可是其重要的意义就是对于谐波的频率是50Hz的整数倍,这就使得感抗和容抗在基波和谐波条件下呈现出不同的数值和状态。
也就可以说谐波引起的一切与基波的不同,都是由这个参数引起的。
无功补偿用电力电容器组在电力系统中的存在,为电力系统带来了大量的容抗。
同时,电力系统中绝大部分电力设备是感抗。
加上电容器组中的串联电抗就使得他们组合对于基波来讲是正常的,可是在谐波条件下就变的复杂起来。
这其中对于电力系统影响和危害最大的就是谐波的放大。
采用串联电抗的电力电容器组的系统接线图和等效电路图如2-1:图中,In为系统中同一母线上具有非线性负荷形成的谐波电流源,所以不计其电阻。
等效之后的电路图中XS、XC、XL分别是系统等效电抗、电容器组电抗、电容器并联电抗器电抗。
则得到的谐波电流为:如图所示,将β分成a-f区域。
对每个区域分析如下:a区域:系统中本身就具有谐波,可是在这里区域里,系统的谐波伴随着β的增加而增大,同时电容器支路的谐波电流也在增大,只是放大的不多。
b区域:曲线斜率的增加说明了谐波电流随着β的增大而迅速增加。
c点:由于谐波电流的频率和系统对于本次谐波的固有频率相等,发生了共振现象。
谐波电流电解电容
谐波电流是指在交流电路中,电流的频率是谐振频率的整数倍,且各谐振分量的幅值和相位按照一定比例变化的电流。
谐波电流可以使电路中的电解电容发生电解现象。
电解电容是指含有电解质的电容器,在电流通过时,电解质中的离子会发生电解,使得电解质分解成正负离子。
这个过程会伴随着气体的产生和化学反应,因此电解电容需要经常调整和维护。
当谐波电流通过电解电容时,由于谐波电流的频率是谐振频率的整数倍,会导致电解电容中的电解质分离出正负离子的速率增加,电解反应加剧。
这可能导致电容器加热、电解质的消耗增加以及电容器内部压力的升高,最终可能导致电解电容器的故障甚至爆炸。
为了避免谐波电流给电解电容带来的问题,可以采取一些防护措施,例如:
1. 在电路中添加适当的滤波电路,减小谐波电流的幅值;
2. 选择适当的电解电容器,如低容值、高工作电压和低电阻的电解电容器;
3. 使用并联电容器补偿谐波电流,降低电解电容上的谐波电流。
以上措施可以有效降低谐波电流对电解电容的影响,提高电容器的使用寿命和可靠性。