温差电现象及其应用温差发电机
- 格式:docx
- 大小:25.72 KB
- 文档页数:5
温差电现象及其应用——温差发电机2010级化学物理系龚科PB10206089 摘要:本文分为两部分:第一部分介绍温差电现象的产生机理,包含汤姆孙效应、珀尔帖效应和塞贝克效应的介绍.第二部分介绍温差电现象的一种利用,即温差发电机的应用现状及前景.关键词:温差电现象汤姆孙效应珀尔帖效应塞贝克效应温差电发电机正文:一、温差电现象产生机理由两种不同材料制成的结点由于受到某种因素作用而出现了温差,就有可能在两结点间产生电动势,回路中产生电流,这就是温差电效应.所产生的电动势称为温差电动势,在一定范围内,温差电动势在数值上正比于两接点处的温度差,即ε=a(T1-T2),(1)其中,a为塞贝克系数,在数值上等于单位温度差所引起的电动势.金属的温差电效应较小,a为0~80μV·K-1,用于测量温度,半导体温差电效应较大,a为50~103μV·K-1,可用来制造温差发电机.温差电效应由德国物理学家塞贝克于1821年首先发现;1834年,法国实验科学家珀尔帖发现了它的反效应:两种不同金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差,即珀尔帖效应.1837年,俄国物理学家楞次又发现,电流的方向决定了吸收热量还是产生热量,发热(制冷)量的多少与电流大小成正比.温差电效应根据具体作用原理及表现形式,有汤姆逊效应、帕尔贴效应、赛贝克效应三种.1、汤姆孙效应汤姆孙效应即导体两端有温差时产生电动势的现象.其机理是金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大.像气体一样,当温度不均匀时会产生热扩散,在温度低端堆积起来,从而在导体内形成电场在金属棒两端便形成一个电势差.这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止.2、珀尔帖效应珀尔帖效应就是电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量.由珀尔帖效应产生的热流量称作珀尔帖热.珀尔帖效应的物理解释是:电荷载体在导体中运动形成电流.由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量.能量在两材料的交界面处以热的形式吸收或放出.1837年,俄国物理学家楞次(Lenz,1804~1865)发现,电流的方向决定了吸收还是产生热量,发热(制冷)量的多少与电流的大小成正比,比例系数称为“帕尔帖系数”.Q=л·I=a·Tc·I,(2)其中л=a·Tc 式中:Q——放热或吸热功率π——比例系数,称为珀尔帖系数I——工作电流a——温差电动势率Tc——冷接点温度.珀尔帖效应最主要的应用就是半导体制冷.半导体制冷片具有以下优势:(1)可以把温度降至室温以下;(2)精确温控(使用闭环温控电路,精度可达±0.1℃);(3)高可靠性(致冷组件为固体器件,无运动部件,寿命超过20万小时,失效率低);(4)没有工作噪音.此应用不作为本文的主要内容,故不作详细介绍.3、塞贝克效应在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流.塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子溢出功和有效电子密度这两个基本因素.产生塞贝克效应的机理,对于半导体和金属是不相同的.(1)半导体的塞贝克效应产生塞贝克效应的主要原因是热端的载流子往冷端扩散的结果.例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有负电荷,冷端有正电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势.自然,p型半导体的温差电动势的方向是从低温端指向高温端(塞贝克系数为正),相反,n型半导体的温差电动势的方向是高温端指向低温端(塞贝克系数为负),因此利用温差电动势的方向即可判断半导体的导电类型. 可见,在有温度差的半导体中,即存在电场,因此这时半导体的能带是倾斜的,并且其中的Fermi 能级也是倾斜的;两端Fermi能级的差就等于温差电动势.实际上,影响塞贝克效应的因素还有两个:第一个因素是载流子的能量和速度.因为热端和冷端的载流子能量不同,这实际上就反映了半导体Fermi能级在两端存在差异,因此这种作用也会对温差电动势造成影响——增强塞贝克效应.第二个因素是声子.因为热端的声子数多于冷端,则声子也将要从高温端向低温端扩散,并在扩散过程中可与载流子碰撞、把能量传递给载流子,从而加速了载流子的运动——声子牵引,这种作用会增加载流子在冷端的积累、增强塞贝克效应.半导体的塞贝克效应较显著.一般,半导体的塞贝克系数为数百mV/K,这要比金属的高得多.(2)金属的塞贝克效应因为金属的载流子浓度和Fermi能级的位置基本上都不随温度而变化,所以金属的塞贝克效应必然很小,一般塞贝克系数为0~10mV/K.虽然金属的塞贝克效应很小,但是在一定条件下还是可观的;实际上,利用金属塞贝克效应来检测高温的金属热电偶就是一种常用的元件.产生金属塞贝克效应的机理较为复杂,可从两个方面来分析:①电子从热端向冷端的扩散.然而这里的扩散不是浓度梯度(因为金属中的电子浓度与温度无关)所引起的,而是热端的电子具有更高的能量和速度所造成的.显然,如果这种作用是主要的,则这样产生的塞贝克效应的系数应该为负.②电子自由程的影响.因为金属中虽然存在许多自由电子,但对导电有贡献的却主要是Fermi能级附近2kT范围内的所谓传导电子.而这些电子的平均自由程与遭受散射(声子散射、杂质和缺陷散射)的状况和能态密度随能量的变化情况有关.如果热端电子的平均自由程是随着电子能量的增加而增大的话,那么热端的电子将由于一方面具有较大的能量,另一方面又具有较大的平均自由程,则热端电子向冷端的输运则是主要的过程,从而将产生塞贝克系数为负的塞贝克效应;金属Al、Mg、Pd、Pt等即如此.相反,如果热端电子的平均自由程是随着电子能量的增加而减小的话,那么热端的电子虽然具有较大的能量,但是它们的平均自由程却很小,因此电子的输运将主要是从冷端向热端的输运,从而将产生塞贝克系数为正的塞贝克效应;金属Cu、Au、Li等即如此.塞贝克效应计算公式:V=(S B-S A)(T2-T1) (3)S A与S B分别为两种材料的塞贝克系数,在一定温度范围内,可以认为材料的塞贝克系数不变.塞贝克后来还对一些金属材料做出了测量,并对35种金属排成一个序列(即Bi-Ni-Co-Pd-U-Cu-Mn-Ti-Hg-Pb-Sn-Cr-Mo-Rb-Ir-Au-Ag-Zn-W-Cd-Fe-As-Sb-Te-……),并指出,当序列中的任意两种金属构成闭合回路时,电流将从排序较前的金属经热接头流向排序较后的金属.塞贝克效应应用主要是测温和发电.温差电发电机将在下文详细介绍.4、三种效应的关系塞贝克效应可以认为是汤姆孙效应和珀尔帖效应相结合所产生的现象.汤姆孙于1856年利用他所创立的热力学原理对塞贝克效应和珀尔帖效应进行了全面分析,将本来互不相干的塞贝克系数和珀尔帖系数之间建立了联系,在绝对零度附近,两者存在简单倍数关系.并由此提出了汤姆孙效应.二、温差发电机的应用温差发电器是利用塞贝克效应,将热能直接转换成电能的一种发电器件.将一个p型温差电元件和一个n型温差电元件在热端用金属导体电极连接起来,在其冷端分别连接冷端电极,就构成一个温差电单体或单偶.在温差电单体开路端接入电阻为RL的外负载,如果温差电单体的热面输入热流,在温差电单体热端和冷端之间建立了温差,则将会有电流流经电路,负载上将得到电功率,因而得到了热能直接转换为电能的发电器.当发电器工作时,为保持热接头和冷接头之间有一定的温度差,应不断地对热接头供热,而从冷接头不断排热.热接头所供给的部分热量被作为珀尔帖热吸收了,另一部分则通过热传导传向冷接头.排出的热量应为冷接头放出的珀尔帖热和从热接头传导来的热量之和.对于上述接头的热平衡,还应加上汤姆逊热和被导体释放的焦耳热.设在系统中所产生的焦耳热中有一半传到热端,另一半由冷端放出,热源所消耗的热量是珀尔帖热、由于热传递迁移到冷端的热和交还给热源的焦耳热三部分组成,即为温差电单体的热电转换效率是有用功率与热源所消耗的热量之比.要想得到优值高的温差电材料,只有提高其塞贝克系数和电导率,降低其热导率.但是塞贝克系数、电导率和热导率都在不同程度上依赖于载流子浓度和迁移率,互相是关联的.1、材料制备温差电材料原则上可用通常的单晶体生长工艺来制备.但单晶体工艺需要精密的设备,操作复杂,成本较高.在实践中温差电材料往往采用多晶或定向多晶材料.通常,制备温差电材料的方法是粉末冶金法以及区域熔炼法.用粉末冶金法制备的温差电材料往往具有较低的热导率、较高的机械强度,但是却降低了电导率.相对而言,区域熔炼法可制备电导率较高的温差电材料,但同时也提高了材料的热导率.粉末冶金工艺,常规的有冷压法和热压法,近年来又发展了机械合金法(MA)、粉碎混合烧结(PIES)法、挤压法和放电等离子烧结法(SPS法).通常,PbTe及SiGe合金用粉末冶金工艺制备,Bi2Te3及其合金用区域熔炼法,也可用热压工艺或挤压工艺制备.下面仅介绍粉末冶金法和区融熔炼法制备温差电材料的工艺.2、主要分类(1)按使用的热源分类,温差发电器可分为放射性同位素温差发电器、核反应堆温差发电器、烃燃料温差发电器、低级热温差发电器等.放射性同位素温差发电器(RTG)是将放射性同位素(如Pu-238, Sr-90,Po-210等)的衰变热能直接转换成电能的温差发电器.核反应堆温差发电器是将原子能反应堆中燃料裂变产生的热能直接转换成电能的温差发电器.烃燃料温差发电器,燃烧气体烃燃料或液体烃燃料产生的热能直接转换成电能的温差发电器.低级热温差发电器,将各种形式的低温热能(包括余热、废热)直接转换成电能的温差发电器.(2)按工作温度来分类,温差发电器可分为高温温差发电器、中温差发电器和低温温差发电器三大类.高温温差发电器,其热面工作温度一般在700℃以上,使用的典型温差电材料是硅锗合金(SiGe);中温温差发电器,其热面工作温度一般在400℃~500℃,使用的典型温差电材料是碲化铅(PbTe);低温温差电器,其热面工作温度一般在400℃以下,使用的典型温差电材料是碲化铋(Bi2Te3).3、应用范围(1)温差发电器在如今的应用面较窄,主要应用在航天方面.美国自1961年起在二十多项空间任务中使用同位素温差发电器做电源.这些同位素温差发电器的输出电功率从2.7W到300W,质量从2kg到34kg,最高效率已达6.7%,最高质量比功率已达5.2W/kg,设计寿命为5年.例如著名的阿波罗登月计划、飞向外层行星的旅游者、海盗号火星着陆器、伽利略飞船等都使用了同位素温差发电器.1997年10月,美国成功地发射了探测土星的卡西尼行星际飞船,有3个同位素温差发电器作电源.2006年1月,发射了探测冥王星的新视野号飞船,用1个RTG作电源.目前,这些同位素温差发电器的使用寿命都超过19年,有的已经工作30多年.日常方面(2)同位素温差发电器在地面和海洋开发中应用也日益增多.现已使用的同位素温差发电器功率范围在几毫瓦到数百瓦、上千瓦.主要用于灯塔、航标、海底声纳、海底微波中继站、自动气象站和地震测试站电源.军事方面(3)美军研制了前沿阵地使用的机动性高、无声、质量轻、能无人维护长期运行的液体燃料温差发电器,供夜视装置、雷达、导航设备、电台和指挥系统使用.这种发电器可使用柴油、汽油等多种液体燃料,功率从几十瓦到一千瓦,可便携或可作车载辅助电源.加拿大环球温差电公司生产的燃气温差发电器已经在世界许多国家的输油、输气管线、通讯网络上获得了应用.环保方面(4)在低级热利用方面,温差发电器也很有前途.低级热,包括工业废热、垃圾燃烧热、汽车排气管的余热、太阳热、地热、海洋热能等,热源的温度范围宽广.采用温差发电技术大规模利用低级热,可以开发出结构简单、维护少,而且是无公害的干净能源.很多专家认为,温差发电器利用这些热能,可直接产生低压大电流,如用于电解水制氢,是最好的低峰储能方式之一.4、应用前景长久以来,因为受到生产成本和转换效率的限制,温差电技术的应用一直局限于高科技和军事、航天领域. 最近,由于化石能源数量的日益减少和化石能源燃烧所引起的环境恶化问题的逼近,人们意识到利用低品位和废热进行发电对解决环境和能源问题的重要性. 另外,可供使用的热源的广泛性和廉价性大大增强了温差发电方式的商业竞争性. 我们知道,发电成本主要由运行成本和设备成本组成. 运行成本取决于转换效率和原料,设备成本决定于产生额定输出电力的装置. 虽然热电转换模块的成本很高,但由于利用低品位和废热发电的原料费用极少,几近为零,运行成本很低,因此发电总费用降低,使得温差发电可与现存发电方式进行商业竞争. 日本近几年开展了一系列以“固体废物燃烧能源回收研究计划”为题的政府计划,研究用于固体废物焚烧炉的废热发电技术,将透平发电机和温差发电机结合起来,实现不同规模垃圾焚烧热的最大利用,使垃圾真正成为可供利用的资源. 继日本之后, 2003年11月美国能源部宣布资助太平洋西北国家实验室、密西根技术大学、匹兹堡PPG 工艺有限公司等单位,重点支持他们在高性能热电转换材料和应用技术方面的开发,其主要应用对象是工业生产中的尾气热和其他构件中的废热和余热利用.参考书目:胡友秋、程福臻、叶邦角.2008.电磁学与电动力学.北京.科学出版社.百度百科..其他网上资料不一一详述.。
微型发电的各种原理及应用引言微型发电指的是通过利用微小的能量来产生电力的技术。
随着科技的不断发展,人们对能源的需求也越来越高。
微型发电技术的出现,为满足小型设备和传感器等的电力需求提供了新的可能性。
本文将介绍微型发电的几种原理及应用。
1. 热电效应热电效应是指在温差作用下,材料内部产生电势差的现象。
可以利用这种效应将热能转化为电能。
常见的例子包括热电堆和热电发电机。
•热电堆:热电堆是一种利用温差产生电能的装置。
它由多个热电偶串联而成。
当一个热电偶的一端加热,另一端冷却时,就会产生电势差,从而产生电流。
热电堆主要应用于微型能量收集和温差传感器等领域。
•热电发电机:热电发电机利用温差,通过热电偶将热能转化为电能。
常见的应用包括太阳能发电系统中的热电光伏系统和废热利用等。
2. 光电效应光电效应是指在光的作用下,材料中的光子与电子发生相互作用,并通过光电池将光能转化为电能。
常见的光电效应包括太阳能光电效应和光导纤维传感器等。
•太阳能光电效应:太阳能光电效应是指太阳光的能量被光电池吸收后转化为电能。
太阳能光电效应主要应用于太阳能发电系统中,可以将太阳光直接转化为电能。
•光导纤维传感器:光导纤维传感器是一种利用光电效应来实现传感功能的传感器。
它通过将光电效应与光导纤维技术相结合,可以实现对各种物理量的测量,如温度、压力等。
3. 振动发电振动发电是指利用物体的振动能量来产生电能的技术。
常见的应用包括微型机械振动发电器和无线传感器网络中的振动能量收集。
•微型机械振动发电器:微型机械振动发电器利用物体的微小振动能量来产生电能。
它可以应用于微型设备和传感器等领域,为这些设备提供可持续的电力供应。
•无线传感器网络中的振动能量收集:无线传感器网络通常由大量分布在广阔区域内的传感器节点组成。
这些传感器节点需要电力供应以进行工作,而更换电池成本较高。
因此,振动能量收集技术的应用为无线传感器网络提供了一种延长工作寿命的解决方案。
温差电动势原理温差电动势,也称为温度电动势,是一种物理性质,它指的是在温度差现象出现时所产生的电动势。
它通常会在两种不同温度的物质之间产生,以此源源不断地提供能量。
温差电动势是一种古老的能源形式,可以用于提供可再生能源。
温差电动势的物理原理是:由于两种温度的物质表面的温差,物质的离子浓度也会不同,从而产生微弱的电流。
这种电动势产生的电流可以被利用,用于获得能量。
例如,太阳能板可以利用温差电动势变化的太阳能利用率,以获得更多的能量。
温差电动势可以分为两种不同的电动势:热电动势和冷电动势。
热电动势是指物质表面温度差会导致其中一种物质的离子浓度变高,而另一种物质的离子浓度变低,从而引起一个热电动势。
冷电动势也是一种温差电动势,是指物质表面温度的差异会导致其中一种物质的离子浓度变低,而另一种物质的离子浓度变高,从而引起一个冷电动势。
温差电动势可以用来制造一种叫做温差发电机的设备,用于转换温差电动势能源为可以使用的电能,这种设备可以用于节能或降低物理过程中产生的温度差。
温差电动势是一种可重复使用的可再生能源,可以用于替代传统的燃料能源提供技术,并提供更为环保的能源供给。
它的使用可以减少由传统的燃料消耗所产生的二氧化碳排放,从而节约能源,减少环境污染,促进可持续发展。
此外,温差电动势可以用于驱动各种装置,例如储能电池、风能发电机或太阳能发电机,以及用于加热和制冷的其他设备,这些设备可以利用温差电动势生产可再生能源,从而提高能源利用率并减少日益严重的能源危机。
温差电动势在未来可以广泛应用于建筑节能、能源利用率提高和环境保护等方面。
它提供了一种可持续发展的新能源技术,能够更有效地利用太阳能及温差电动势,以获得更安全、更低的环境影响的可再生能源,有助于实现更绿色的世界。
综上所述,温差电动势是一种古老而又有效的能源形式,它可以用来提供可持续发展的新能源,有助于更有效地使用太阳能和温差电动势,从而获得更安全、更低的环境影响的可再生能源,有助于为实现更绿色的未来而尽一份力量。
(200-温差发电片、温差发电机、半导体温差发电技术专利资料1、半导体温差发电装置的研制温差发电是一种绿色环保的能源技术。
这种全固态能量转换方式无噪音、 无磨损、无污染物排放、体积小、重量轻、携带方便、使用寿命长、无需人工 维护。
基于上述优点,该项技术在国外已广泛应用于航天和军事等领域。
我国 的温差电研究在致冷方面的应用比较成熟,而在发电方面的进展相对缓慢。
本 文基于塞贝克效应设计了一种在实验室中实现的低温差的发电实验,对比实验 中不同温差、不同冷却情况的输出电能,给出单个发电模块和两个发电模块串 联的输出电压与温差对应关系,简化计算了功率输出状况,指出单个发电组件 的模 共 50 页2、半导体温差发电模块热分析与优化设计对半导体温差发电模块的实际传热模型进行了分析,得到了模型中的内、 外热阻分布情况,特别对接触热阻对模块的影响进行了分析。
对模块稳态和非 稳态温差发电过程进行了热分析,得出了稳态发电过程中电偶臂内的温度分布 和非稳态发电过程中电偶臂内的温度和温差电流随时间的变化,并分析了内部 和外部因素对非稳态发电过程的影响,比如接触因素、热源、热沉换热系数、 环境温度、电偶臂长和截面积等。
还对半导体温差发电模块进行 ........................................ 58页3、集热式太阳能温差发电装置的研究温差发电技术是一种将热能直接转换为电能的环保能源技术,在发电过程 中无噪音、无污染物排放、体积小、重量轻等优点。
随着热电材料的迅速发展 以及性能的提高,已经开始从军事航天领域向民用和工业应用方面普及。
本课 题中,采用ANS 丫锹件,研究温差发电元件的性能,并仿真优化在中温区 400 C )有较高热电转换效率的分段温差电元件。
在此基础上,利用太阳能热作 为温差发电的热源,研制一套集热式太阳能温差发电装置,主要包括 .................................. 共 48 页4、LNG 冷能利用与低温半导体温差发电研究设计并建立了一套利用LNG 低温冷能温差发电并联合电解水制氢的实验装 置。
2_温差电效应及应用
温差电效应是指在两个不同温度的导体之间存在电势差的现象。
这种现象是由于不同温度下的电子能级不同,从而导致有电子在加热后容易被释放,初步解释高温下的电极活性增加、电阻率降低等现象。
温差电效应在实际应用中有很多用途,下面我们就来介绍一下几个常见的应用:
1.温度差计
温度差计是一种测量物体两个不同部位温度差异的仪器。
通过利用温差电效应,将两个导体连接在两个不同温度的区域上,就可以产生一定的电势差,并通过电路转换成读数。
常见的温度差计有热电偶、热敏电阻、热电阻等。
其中,热电偶是最常用的一种温度差计,它适用于大范围的温度测量,并且精度也比较高。
2.热电发电机
热电发电机利用温差电效应将热能转换成电能,可以用于一些小型的电力供应场合。
通常采用的是热电堆,将多个热电偶串联起来构成一个热电堆,当两端温度差异较大时就可以产生一定的电功率。
由于效率不高,热电发电机主要用于一些特殊场合,如航空航天、远程无线电测量等。
3.温差传感器
温差传感器是一种利用温差电效应来检测物体温度的传感器。
它通常包含两个热敏电阻,一个作为参考电阻,另一个则是受到温度影响的电阻,在两个电阻之间测量电压差,就可以得到物体的温度。
温差传感器具有响应速度快、精度高、结构简单等特点,并且可以用于多种环境中的温度测量。
总之,利用温差电效应进行测量和能量转换已经成为一种常见的方法,并且在多个实际应用场景中得到了广泛的应用。
|科学课堂|◎ 编辑|刘相龙一杯热水和一杯冷水就能发电,你相信吗?1821年,德国物理学家塞贝克发现了温差电现象,这一现象又称塞贝克效应。
塞贝克效应又称作第一热电效应,是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。
一般规定热电势方向为:在热端电子由负流向正。
在两种金属A 和B 组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。
相应的电动势称为热电势,其方向取决于温度梯度的方向。
塞贝克效应的成因可以简单解释为,在温度梯度下导体内的载流子从热端向冷端运动,并在冷端堆积,从而在材料内部形成电势差,同时在该电势差作用下产生一个反向电荷流,当热运动的电荷流与内部电场达到动态平衡时,半导体两端形成稳定的温差电动势,半导体的温差电动势较大,可用作温差发电器。
根据温差电原理制作的温差电偶,作为电源可以输出稳定的电流,不仅可以带动小型电动机,还可以点亮LED 小灯泡。
你想做一个这样的温差发电机吗?接下来请跟着本文一起实验吧。
———————————————◎ 撰文|钟阳春(深圳市龙华区教育科学研究院第二附属学校教师、第九届全国青年科普创新实验暨作品大赛优秀指导老师)神奇的温差电现象根据温差电原理制作的温差电偶,作为电源可以输出稳定的电流,不仅可以带动小型电动机,还可以点亮LED 小灯泡。
关注“科学大观园杂志”公众号主页“科学课堂”栏目观看实验视频科学原理:温差电现象对热电偶来说是一种可逆的电能内能之间的转换效应,冷热水温差电机演示了内能转化为电能的过程。
如图所示,由两种不同的金属连接构成的闭合回路,若两连接点的温度不同,则可在回路中形成稳定的电流,也就是说,电路内存在温差电动势,这就是由内能转变为电能的现象。
本实验是利用以半导体材料为工作导体的热电偶(温差发电片),在外界存在一定的温度差时,电路中将产生能驱动小电机和点亮LED 小灯泡的电流。
小电机转动和LED 小灯泡发光,直观地演示了内能转换为电能的现象。
冷热发电原理的应用1. 冷热发电技术简介•冷热发电技术是一种利用温差来发电的新兴技术。
•它基于热力学原理,通过温差发电机或热电堆将温差能转化为电能。
•冷热发电技术有广泛的应用领域,如能源转换、环境保护、可持续发展等。
2. 冷热发电原理的基础知识•温差发电原理:利用两个温度差异较大的热源进行发电。
•热电效应:温差发电原理的核心是热电效应,它是指材料在不同温度下产生的电压差和电流的现象。
•Peltier效应:当电流通过两个不同温度的热电导材料时,会产生一侧冷却、一侧加热的效应。
3. 冷热发电的应用案例3.1. 温差发电机•温差发电机利用载热流体的温差来驱动发电机。
•它广泛应用于太阳能发电、核能发电、火力发电等领域。
•温差发电机的运转稳定,效率高,且对环境无污染。
3.2. 热电堆•热电堆是一种利用温差发电原理制作的微型发电装置。
•它主要应用于电子设备中的低功耗电源、传感器、微型热电设备等领域。
•热电堆具有体积小、重量轻、效率高等优点。
3.3. 冷热发电在能源转换中的应用•冷热发电技术在能源转换中具有巨大的潜力。
•它可以将废热、低温热源转化为有用的电能,提高能源利用效率。
•冷热发电技术可以应用于工业生产、汽车废热利用等领域。
3.4. 冷热发电在环境保护中的应用•冷热发电技术对环境的影响较小。
•它可以减少能源浪费和环境污染,促进可持续发展。
•冷热发电技术可以应用于环境监测、空调系统、废气回收等领域。
3.5. 冷热发电在可持续发展中的应用•冷热发电技术符合可持续发展的理念。
•它利用可再生能源和废热资源,减少非可再生能源的使用。
•冷热发电技术可以应用于城市能源供应、农村电力改造等项目。
4. 冷热发电技术的未来发展趋势•冷热发电技术在能源领域的应用前景广阔。
•随着技术的不断进步和成本的降低,冷热发电技术将得到更广泛的应用。
•未来,冷热发电技术有望成为清洁能源和可持续发展的重要组成部分。
5. 结论•冷热发电原理的应用有助于提高能源利用效率、保护环境和促进可持续发展。
温差电现象及其应用——温差发电机2010级化学物理系龚科PB10206089 摘要:本文分为两部分:第一部分介绍温差电现象的产生机理,包含汤姆孙效应、珀尔帖效应和塞贝克效应的介绍.第二部分介绍温差电现象的一种利用,即温差发电机的应用现状及前景.关键词:温差电现象汤姆孙效应珀尔帖效应塞贝克效应温差电发电机正文:一、温差电现象产生机理由两种不同材料制成的结点由于受到某种因素作用而出现了温差,就有可能在两结点间产生电动势,回路中产生电流,这就是温差电效应.所产生的电动势称为温差电动势,在一定范围内,温差电动势在数值上正比于两接点处的温度差,即ε=a(T1-T2),(1)其中,a为塞贝克系数,在数值上等于单位温度差所引起的电动势.金属的温差电效应较小,a为0~80μV·K-1,用于测量温度,半导体温差电效应较大,a为50~103μV·K-1,可用来制造温差发电机.温差电效应由德国物理学家塞贝克于1821年首先发现;1834年,法国实验科学家珀尔帖发现了它的反效应:两种不同金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差,即珀尔帖效应.1837年,俄国物理学家楞次又发现,电流的方向决定了吸收热量还是产生热量,发热(制冷)量的多少与电流大小成正比.温差电效应根据具体作用原理及表现形式,有汤姆逊效应、帕尔贴效应、赛贝克效应三种.1、汤姆孙效应汤姆孙效应即导体两端有温差时产生电动势的现象.其机理是金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大.像气体一样,当温度不均匀时会产生热扩散,在温度低端堆积起来,从而在导体内形成电场在金属棒两端便形成一个电势差.这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止.2、珀尔帖效应珀尔帖效应就是电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量.由珀尔帖效应产生的热流量称作珀尔帖热.珀尔帖效应的物理解释是:电荷载体在导体中运动形成电流.由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量.能量在两材料的交界面处以热的形式吸收或放出.1837年,俄国物理学家楞次(Lenz,1804~1865)发现,电流的方向决定了吸收还是产生热量,发热(制冷)量的多少与电流的大小成正比,比例系数称为“帕尔帖系数”.Q=л·I=a·Tc·I,(2)其中л=a·Tc 式中:Q——放热或吸热功率π——比例系数,称为珀尔帖系数I——工作电流a——温差电动势率Tc——冷接点温度.珀尔帖效应最主要的应用就是半导体制冷.半导体制冷片具有以下优势:(1)可以把温度降至室温以下;(2)精确温控(使用闭环温控电路,精度可达±0.1℃);(3)高可靠性(致冷组件为固体器件,无运动部件,寿命超过20万小时,失效率低);(4)没有工作噪音.此应用不作为本文的主要内容,故不作详细介绍.3、塞贝克效应在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流.塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子溢出功和有效电子密度这两个基本因素.产生塞贝克效应的机理,对于半导体和金属是不相同的.(1)半导体的塞贝克效应产生塞贝克效应的主要原因是热端的载流子往冷端扩散的结果.例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有负电荷,冷端有正电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势.自然,p型半导体的温差电动势的方向是从低温端指向高温端(塞贝克系数为正),相反,n型半导体的温差电动势的方向是高温端指向低温端(塞贝克系数为负),因此利用温差电动势的方向即可判断半导体的导电类型. 可见,在有温度差的半导体中,即存在电场,因此这时半导体的能带是倾斜的,并且其中的Fermi 能级也是倾斜的;两端Fermi能级的差就等于温差电动势.实际上,影响塞贝克效应的因素还有两个:第一个因素是载流子的能量和速度.因为热端和冷端的载流子能量不同,这实际上就反映了半导体Fermi能级在两端存在差异,因此这种作用也会对温差电动势造成影响——增强塞贝克效应.第二个因素是声子.因为热端的声子数多于冷端,则声子也将要从高温端向低温端扩散,并在扩散过程中可与载流子碰撞、把能量传递给载流子,从而加速了载流子的运动——声子牵引,这种作用会增加载流子在冷端的积累、增强塞贝克效应.半导体的塞贝克效应较显著.一般,半导体的塞贝克系数为数百mV/K,这要比金属的高得多.(2)金属的塞贝克效应因为金属的载流子浓度和Fermi能级的位置基本上都不随温度而变化,所以金属的塞贝克效应必然很小,一般塞贝克系数为0~10mV/K.虽然金属的塞贝克效应很小,但是在一定条件下还是可观的;实际上,利用金属塞贝克效应来检测高温的金属热电偶就是一种常用的元件.产生金属塞贝克效应的机理较为复杂,可从两个方面来分析:①电子从热端向冷端的扩散.然而这里的扩散不是浓度梯度(因为金属中的电子浓度与温度无关)所引起的,而是热端的电子具有更高的能量和速度所造成的.显然,如果这种作用是主要的,则这样产生的塞贝克效应的系数应该为负.②电子自由程的影响.因为金属中虽然存在许多自由电子,但对导电有贡献的却主要是Fermi能级附近2kT范围内的所谓传导电子.而这些电子的平均自由程与遭受散射(声子散射、杂质和缺陷散射)的状况和能态密度随能量的变化情况有关.如果热端电子的平均自由程是随着电子能量的增加而增大的话,那么热端的电子将由于一方面具有较大的能量,另一方面又具有较大的平均自由程,则热端电子向冷端的输运则是主要的过程,从而将产生塞贝克系数为负的塞贝克效应;金属Al、Mg、Pd、Pt等即如此.相反,如果热端电子的平均自由程是随着电子能量的增加而减小的话,那么热端的电子虽然具有较大的能量,但是它们的平均自由程却很小,因此电子的输运将主要是从冷端向热端的输运,从而将产生塞贝克系数为正的塞贝克效应;金属Cu、Au、Li等即如此.塞贝克效应计算公式:V=(S B-S A)(T2-T1) (3)S A与S B分别为两种材料的塞贝克系数,在一定温度范围内,可以认为材料的塞贝克系数不变.塞贝克后来还对一些金属材料做出了测量,并对35种金属排成一个序列(即Bi-Ni-Co-Pd-U-Cu-Mn-Ti-Hg-Pb-Sn-Cr-Mo-Rb-Ir-Au-Ag-Zn-W-Cd-Fe-As-Sb-Te-……),并指出,当序列中的任意两种金属构成闭合回路时,电流将从排序较前的金属经热接头流向排序较后的金属.塞贝克效应应用主要是测温和发电.温差电发电机将在下文详细介绍.4、三种效应的关系塞贝克效应可以认为是汤姆孙效应和珀尔帖效应相结合所产生的现象.汤姆孙于1856年利用他所创立的热力学原理对塞贝克效应和珀尔帖效应进行了全面分析,将本来互不相干的塞贝克系数和珀尔帖系数之间建立了联系,在绝对零度附近,两者存在简单倍数关系.并由此提出了汤姆孙效应.二、温差发电机的应用温差发电器是利用塞贝克效应,将热能直接转换成电能的一种发电器件.将一个p型温差电元件和一个n型温差电元件在热端用金属导体电极连接起来,在其冷端分别连接冷端电极,就构成一个温差电单体或单偶.在温差电单体开路端接入电阻为RL的外负载,如果温差电单体的热面输入热流,在温差电单体热端和冷端之间建立了温差,则将会有电流流经电路,负载上将得到电功率,因而得到了热能直接转换为电能的发电器.当发电器工作时,为保持热接头和冷接头之间有一定的温度差,应不断地对热接头供热,而从冷接头不断排热.热接头所供给的部分热量被作为珀尔帖热吸收了,另一部分则通过热传导传向冷接头.排出的热量应为冷接头放出的珀尔帖热和从热接头传导来的热量之和.对于上述接头的热平衡,还应加上汤姆逊热和被导体释放的焦耳热.设在系统中所产生的焦耳热中有一半传到热端,另一半由冷端放出,热源所消耗的热量是珀尔帖热、由于热传递迁移到冷端的热和交还给热源的焦耳热三部分组成,即为温差电单体的热电转换效率是有用功率与热源所消耗的热量之比.要想得到优值高的温差电材料,只有提高其塞贝克系数和电导率,降低其热导率.但是塞贝克系数、电导率和热导率都在不同程度上依赖于载流子浓度和迁移率,互相是关联的.1、材料制备温差电材料原则上可用通常的单晶体生长工艺来制备.但单晶体工艺需要精密的设备,操作复杂,成本较高.在实践中温差电材料往往采用多晶或定向多晶材料.通常,制备温差电材料的方法是粉末冶金法以及区域熔炼法.用粉末冶金法制备的温差电材料往往具有较低的热导率、较高的机械强度,但是却降低了电导率.相对而言,区域熔炼法可制备电导率较高的温差电材料,但同时也提高了材料的热导率.粉末冶金工艺,常规的有冷压法和热压法,近年来又发展了机械合金法(MA)、粉碎混合烧结(PIES)法、挤压法和放电等离子烧结法(SPS法).通常,PbTe及SiGe合金用粉末冶金工艺制备,Bi2Te3及其合金用区域熔炼法,也可用热压工艺或挤压工艺制备.下面仅介绍粉末冶金法和区融熔炼法制备温差电材料的工艺.2、主要分类(1)按使用的热源分类,温差发电器可分为放射性同位素温差发电器、核反应堆温差发电器、烃燃料温差发电器、低级热温差发电器等.放射性同位素温差发电器(RTG)是将放射性同位素(如Pu-238, Sr-90,Po-210等)的衰变热能直接转换成电能的温差发电器.核反应堆温差发电器是将原子能反应堆中燃料裂变产生的热能直接转换成电能的温差发电器.烃燃料温差发电器,燃烧气体烃燃料或液体烃燃料产生的热能直接转换成电能的温差发电器.低级热温差发电器,将各种形式的低温热能(包括余热、废热)直接转换成电能的温差发电器.(2)按工作温度来分类,温差发电器可分为高温温差发电器、中温差发电器和低温温差发电器三大类.高温温差发电器,其热面工作温度一般在700℃以上,使用的典型温差电材料是硅锗合金(SiGe);中温温差发电器,其热面工作温度一般在400℃~500℃,使用的典型温差电材料是碲化铅(PbTe);低温温差电器,其热面工作温度一般在400℃以下,使用的典型温差电材料是碲化铋(Bi2Te3).3、应用范围(1)温差发电器在如今的应用面较窄,主要应用在航天方面.美国自1961年起在二十多项空间任务中使用同位素温差发电器做电源.这些同位素温差发电器的输出电功率从2.7W到300W,质量从2kg到34kg,最高效率已达6.7%,最高质量比功率已达5.2W/kg,设计寿命为5年.例如著名的阿波罗登月计划、飞向外层行星的旅游者、海盗号火星着陆器、伽利略飞船等都使用了同位素温差发电器.1997年10月,美国成功地发射了探测土星的卡西尼行星际飞船,有3个同位素温差发电器作电源.2006年1月,发射了探测冥王星的新视野号飞船,用1个RTG作电源.目前,这些同位素温差发电器的使用寿命都超过19年,有的已经工作30多年.日常方面(2)同位素温差发电器在地面和海洋开发中应用也日益增多.现已使用的同位素温差发电器功率范围在几毫瓦到数百瓦、上千瓦.主要用于灯塔、航标、海底声纳、海底微波中继站、自动气象站和地震测试站电源.军事方面(3)美军研制了前沿阵地使用的机动性高、无声、质量轻、能无人维护长期运行的液体燃料温差发电器,供夜视装置、雷达、导航设备、电台和指挥系统使用.这种发电器可使用柴油、汽油等多种液体燃料,功率从几十瓦到一千瓦,可便携或可作车载辅助电源.加拿大环球温差电公司生产的燃气温差发电器已经在世界许多国家的输油、输气管线、通讯网络上获得了应用.环保方面(4)在低级热利用方面,温差发电器也很有前途.低级热,包括工业废热、垃圾燃烧热、汽车排气管的余热、太阳热、地热、海洋热能等,热源的温度范围宽广.采用温差发电技术大规模利用低级热,可以开发出结构简单、维护少,而且是无公害的干净能源.很多专家认为,温差发电器利用这些热能,可直接产生低压大电流,如用于电解水制氢,是最好的低峰储能方式之一.4、应用前景长久以来,因为受到生产成本和转换效率的限制,温差电技术的应用一直局限于高科技和军事、航天领域. 最近,由于化石能源数量的日益减少和化石能源燃烧所引起的环境恶化问题的逼近,人们意识到利用低品位和废热进行发电对解决环境和能源问题的重要性. 另外,可供使用的热源的广泛性和廉价性大大增强了温差发电方式的商业竞争性. 我们知道,发电成本主要由运行成本和设备成本组成. 运行成本取决于转换效率和原料,设备成本决定于产生额定输出电力的装置. 虽然热电转换模块的成本很高,但由于利用低品位和废热发电的原料费用极少,几近为零,运行成本很低,因此发电总费用降低,使得温差发电可与现存发电方式进行商业竞争. 日本近几年开展了一系列以“固体废物燃烧能源回收研究计划”为题的政府计划,研究用于固体废物焚烧炉的废热发电技术,将透平发电机和温差发电机结合起来,实现不同规模垃圾焚烧热的最大利用,使垃圾真正成为可供利用的资源. 继日本之后, 2003年11月美国能源部宣布资助太平洋西北国家实验室、密西根技术大学、匹兹堡PPG 工艺有限公司等单位,重点支持他们在高性能热电转换材料和应用技术方面的开发,其主要应用对象是工业生产中的尾气热和其他构件中的废热和余热利用.参考书目:胡友秋、程福臻、叶邦角.2008.电磁学与电动力学.北京.科学出版社.百度百科..其他网上资料不一一详述.。