积分学小结——二重积分、三重积分,线积分、面积分
- 格式:ppt
- 大小:2.32 MB
- 文档页数:45
二重积分三重积分曲线积分曲面积分二重积分二重积分的概念二重积分是微积分中的重要概念之一,它是对二元函数在一个有界闭区域上的积分运算。
二重积分可以看作是对一个平面区域的面积进行加权求和,其中权重由函数值决定。
二重积分的计算可以通过分割区域,将区域内的小面积元素加权求和的方式进行。
二重积分的计算方法二重积分的计算方法有多种,常见的有直角坐标系下的面积法和极坐标系下的面积法。
在直角坐标系下,二重积分可以通过将区域分割成小矩形,计算每个小矩形的面积乘以函数值的和来近似计算。
在极坐标系下,可以通过将区域分割成小扇形,计算每个小扇形的面积乘以函数值的和来近似计算。
二重积分的应用二重积分在物理学、统计学、经济学等领域有广泛的应用。
在物理学中,二重积分可以用来计算平面分布的物理量,如电荷密度、质量分布等。
在统计学中,二重积分可以用来计算二维随机变量的概率密度函数。
在经济学中,二重积分可以用来计算两个变量之间的相关性。
三重积分三重积分的概念三重积分是对三元函数在一个有界闭区域上的积分运算。
它可以看作是对一个空间区域的体积进行加权求和,其中权重由函数值决定。
三重积分的计算可以通过分割区域,将区域内的小体积元素加权求和的方式进行。
三重积分的计算方法三重积分的计算方法有多种,常见的有直角坐标系下的体积法和柱面坐标系下的体积法。
在直角坐标系下,三重积分可以通过将区域分割成小立方体,计算每个小立方体的体积乘以函数值的和来近似计算。
在柱面坐标系下,可以通过将区域分割成小柱体,计算每个小柱体的体积乘以函数值的和来近似计算。
三重积分的应用三重积分在物理学、流体力学、电磁学等领域有广泛的应用。
在物理学中,三重积分可以用来计算空间分布的物理量,如电荷密度、质量分布等。
在流体力学中,三重积分可以用来计算流体的质量、动量和能量等。
在电磁学中,三重积分可以用来计算电场和磁场的分布。
曲线积分曲线积分的概念曲线积分是对向量场沿曲线的积分运算。
七大积分总结范文积分是微积分的一个重要概念,它在数学、物理及工程学等领域中具有广泛的应用。
在微积分中,积分被认为是导数的逆运算,可以用来求函数的面积、弧长、体积等。
在数学中,有七大积分,包括定积分、不定积分、曲线积分、曲面积分、重积分、线积分和路径积分。
下面将对这七大积分进行详细总结。
定积分是微积分中最基本的积分形式,它可以用于计算曲线下面积。
定积分被表示为∫f(x)dx,在区间 [a,b] 上计算函数 f(x) 的定积分,可以得到曲线 f(x) 和 x 轴之间的面积。
定积分的计算有很多方法,如牛顿-莱布尼茨公式、Riemann 可积性等。
定积分广泛应用于计算几何、物理学、经济学等领域。
不定积分是定积分的逆运算,表示为∫f(x)dx = F(x) + C,其中F(x) 是函数 f(x) 的原函数,C 是常数。
不定积分求解的过程中,要确定函数 f(x) 的原函数 F(x),然后加上一个常数 C。
不定积分在微积分中有着广泛应用,如求函数的原函数、求定积分中的不定系数等。
曲线积分是一种沿曲线或曲线段对给定函数进行积分的方法。
它可以用来计算沿曲线运动的物体的工作量、流量、质心等。
曲线积分有两种形式:第一类曲线积分和第二类曲线积分。
第一类曲线积分表示为∫Cf(x,y) ds,第二类曲线积分表示为∫C Pdx + Qdy。
曲线积分的计算可以通过参数方程、向量法、Green 公式等方法进行。
曲面积分是对给定曲面上的函数进行积分的方法。
它可以用来计算质量、重心、通量等。
曲面积分有两种形式:第一类曲面积分和第二类曲面积分。
第一类曲面积分表示为∫∫S f(x,y,z) dS,第二类曲面积分表示为∫∫S Pdydz + Qdzdx + Rdxdy。
曲面积分的计算可以通过参数方程、向量法、高斯公式等方法进行。
重积分是对多元函数在给定区域上进行积分的方法。
它可以用来计算体积、质量、质心、惯性矩等。
重积分可以分为二重积分和三重积分。
二重积分与三重积分积分是微积分的重要概念之一,是对函数的求和运算。
在微积分中,有两种常见的积分形式,即二重积分和三重积分,它们在不同维度下对函数进行求和。
本文将对二重积分和三重积分的概念、计算方法和应用进行介绍。
一、二重积分二重积分主要用于平面区域上的函数求积问题。
设有函数 f(x, y) 在平面区域 D 上连续,则二重积分可以表示为:∬D f(x, y) dxdy其中,D 表示平面上的某个闭区域,f(x, y) 是定义在 D 上的函数,dxdy 表示对平面区域 D 进行积分求和。
计算二重积分的方法主要有直接积分和换元积分。
直接积分是将二重积分化为一重积分的连加,依次对 x 和 y 进行积分。
换元积分则是通过变量代换,将二重积分转化为更简单的形式进行计算。
二重积分在几何学、物理学、经济学等领域具有广泛的应用。
例如,可以用二重积分计算平面图形的面积、计算质量分布在平面上的物体的质量、计算曲线围成的平面区域内的曲线积分等。
二、三重积分三重积分主要用于三维空间内的函数求积问题。
设有函数 f(x, y, z)在空间域 V 上连续,则三重积分可以表示为:∭V f(x, y, z) dV其中,V 表示空间中的某个闭区域,f(x, y, z) 是定义在 V 上的函数,dV 表示对三维空间域 V 进行积分求和。
计算三重积分的方法类似于二重积分,可以使用直接积分和换元积分。
通过将三重积分转化为更简单的形式,可以进行计算求解。
三重积分在物理学、工程学、天文学等领域有重要的应用。
例如,可以用三重积分计算物体的体积、计算物体的质心位置、计算电荷分布在空间中的电场等。
总结:二重积分和三重积分是微积分中的重要概念,它们分别适用于平面区域和三维空间中的函数求积问题。
通过不同的计算方法,可以对函数在给定区域内的求和进行精确计算。
二重积分和三重积分在各个领域都有广泛的应用,为解决实际问题提供了有效的数学工具。
对于深入理解和应用积分概念,掌握二重积分和三重积分的计算方法和应用是非常重要的。
二重积分与多重积分及其应用总结知识要点。
(1) 二重积分(2) 三重积分(3) 多重积分的应用。
(4) 三重积分的总结。
一、二重积分(1) 直角坐标系下的二重积分。
(重点)直角坐标系下的二重积分,积分区域为二维平面。
⎰⎰=Ddxdy y x f I ),(。
这种形式的积分要让x 、y 取遍所有D 上的点(Ω为积分区域)。
所以要先让x 为常量,取遍y ,然后在上面的基础上再取遍x 。
或者先让y 为常量,取遍x ,然后在上面的基础上再取遍y 。
(点动成线,线动成面。
与这类似。
)针对不同的题目选择不同的方式。
而这其中的关键就是要找对积分区域D 和正确的目标函数表达式),(y x f 。
(2) 极坐标系下的二重积分。
(理解,计算是重点)极坐标系下的二重积分,积分区域同样为二维平面。
⎰⎰=Dd d f I θθ ),(。
这种形式的积分要先取长度 的线,然后变角度,就像是扫地一样。
或者是角度确定,变长度 一样就像是水波的扩散一样。
两种不同的方式一样可以取遍积分区域D 上的所有点。
但是单独拿出来的很少理解即可。
(3)直角坐标系下的二重积分与极坐标系下的二重积分之间的转换(重点)。
积分区域D 为圆或圆的一部分是,直角坐标下的积分有时候很难计算,但是化为极坐标会很简单。
这就需要极坐标与直角坐标的相互转换。
转换公式如下:ϑcos =x ϑsin =y ⎰⎰⎰⎰=DD d d f dxdy y x f ϑϑϑ )sin ,cos (),(额略长。
不过这是省掉积分上下限的。
如果在圆域内(尤其是那种圆的一部分),在直角坐标下积分的上下限异常麻烦,而且计算量相当之大。
但在极坐标系下将很容易。
3/16.二、三重积分(1) 直角坐标系下的三重积分。
(重点)。
直角坐标系下的三重积分,积分区域为三维立体。
⎰⎰⎰=Ddxdydz z y x f I ),,( 。
计算方式与二重积分无异。
就是先固定两个动一个。
再固定原先固定的一个,动另一个。
二重积分与三重积分积分是微积分中的一项重要内容,它在求解曲线、曲面或立体的面积、体积以及求解某些重要物理量时发挥着重要的作用。
在本文中,我们将介绍二重积分和三重积分的概念、计算方法以及应用。
一、二重积分二重积分是对二元函数在给定区域上的积分运算。
它的计算方法可以通过将给定区域分割为许多小区域,并在每个小区域上计算函数值的累加来实现。
表示二重积分的一种常见形式是:∬f(x,y)dA其中f(x,y)是被积函数,dA是面积元素。
为了计算二重积分,我们可以使用直角坐标系或极坐标系进行变换,并选择合适的积分顺序,例如先对y进行积分再对x进行积分。
具体计算步骤可以参考积分换元法、定积分和累加的相关知识。
二重积分在几何学、物理学、经济学等领域都有广泛的应用。
例如,通过计算一个平面图形所占的面积可以使用二重积分来解决;在物理学中,通过计算质点在区域上的分布情况可以得到质量、重心等物理量。
二、三重积分三重积分是对三元函数在给定区域上的积分运算。
与二重积分类似,三重积分的计算方法也可以通过将给定区域分割为许多小区域,并在每个小区域上计算函数值的累加来实现。
表示三重积分的一种常见形式是:∭f(x,y,z)dV其中f(x,y,z)是被积函数,dV是体积元素。
为了计算三重积分,我们可以使用直角坐标系或柱坐标系、球坐标系进行变换,并选择合适的积分顺序,例如先对z进行积分再对y进行积分最后对x进行积分。
三重积分在几何学、物理学、天文学等领域都有广泛的应用。
例如,在几何学中,可以通过计算一个立体图形的体积来应用三重积分;在物理学中,通过计算电荷密度在区域上的分布情况可以得到电量、质心等物理量。
综上所述,二重积分和三重积分在数学和实际应用中都具有重要的地位。
通过适当选择变量的次序和合适的坐标系进行转换,我们可以有效地计算和应用二重积分和三重积分。
在实际问题中,我们常常需要对更高维度的积分进行求解,这也是进一步拓展积分概念和技巧的研究方向。
多重积分计算方法小结多重积分是微积分中的一个重要概念,它是对具有多个自变量的函数进行求积的方法。
在实际问题中,往往需要对多个变量间的关系进行综合考虑,多重积分就提供了一个有效的工具。
多重积分可以分为二重积分和三重积分两种情况,分别对应于二维平面和三维空间中的函数求积。
在计算多重积分时,我们常常需要利用几何图形、物理问题以及正交曲线坐标系等概念和方法。
下面我将对多重积分的计算方法进行小结。
首先,我们来看二重积分的计算方法。
二重积分可以看作是对一个平面区域上的函数进行求积。
二重积分的计算可以分为直角坐标系和极坐标系两种情况。
在直角坐标系下,我们常常利用矩形分割和极限的思想来进行计算。
具体而言,我们将整个积分区域分成若干个小矩形,然后计算每个小矩形上函数值的积累,最后将所有小矩形的积累相加,得到整个区域上函数的积分值。
这种方法又称为“矩形分割法”或“Darboux和”方法。
在极坐标系下,我们常常利用极坐标的性质来简化计算。
具体而言,我们将整个积分区域表示成极坐标下的简单几何形状,如直线段、圆、扇形等,然后利用极坐标变换和对称性来计算积分值。
这种方法又称为“极坐标变换法”。
除了这两种基本方法外,还可以利用换元积分法、对偶积分法和奇偶性等方法来简化计算。
换元积分法是通过坐标变换将积分区域变换成更简单的形式,然后进行计算。
对偶积分法是通过对倒数进行积分变换,将二重积分转化为两个单变量积分,更便于计算。
奇偶性是指若被积函数在积分区域上的对称性,利用奇偶性可以简化计算过程。
接下来我们来看三重积分的计算方法。
三重积分可以看作是对一个空间区域上的函数进行求积。
三重积分的计算可以分为直角坐标系和柱面坐标系两种情况。
在直角坐标系下,我们常常利用分割和极限的思想来进行计算。
具体而言,我们将整个积分区域分成若干个小立方体,然后计算每个小立方体上函数值的积累,最后将所有小立方体的积累相加,得到整个区域上函数的积分值。
这种方法又称为“立方体分割法”。
重积分的知识点总结一、多重积分的概念1. 多元函数多元函数是指自变量不止一个的函数,通常表示为$z=f(x,y)$,其中$x$、$y$是自变量,$z$是因变量。
2. 二重积分二重积分是对二元函数在平面区域上的积分,其定义如下:$\iint_Df(x,y)\,d\sigma=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i)\Delta\sig ma_i$其中$D$为平面区域,$f(x,y)$为在$D$上的连续函数,$\Delta\sigma_i$为区域$D$上第$i$个小面积,$\xi_i$、$\eta_i$为$(x,y)$的取值点。
$\lambda$是面积的划分趋于0时的极限。
3. 三重积分三重积分是对三元函数在空间区域上的积分,其定义如下:$\iiint_{\Omega}f(x,y,z)\,dV=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i,\zeta_ i)\Delta V_i$其中$\Omega$为空间区域,$f(x,y,z)$为在$\Omega$上的连续函数,$\Delta V_i$为区域$\Omega$上第$i$个小体积,$\xi_i$、$\eta_i$、$\zeta_i$为$(x,y,z)$的取值点。
$\lambda$是体积的划分趋于0时的极限。
4. 一般情况下的重积分对于$n$元函数在$n$维空间上的积分通常可以表示为:$\int...\int_Df(x_1,x_2,...,x_n)dV$其中$D$为空间区域,$f(x_1,x_2,...,x_n)$为在$D$上的连续函数,积分区域为$D$,$dV$为该区域上的$n$维体积元。
二、多重积分的性质1. 多重积分的可加性重积分在可加性方面与定积分类似,即若函数$f(x,y)$在区域$D$上连续,则有:$\iint_Df(x,y)\,d\sigma=\iint_{D_1}f(x,y)\,d\sigma+\iint_{D_2}f(x,y)\,d\sigma$其中$D=D_1\cup D_2$,$D_1$、$D_2$为$D$的互不相交子区域。
二重积分与三重积分在数学中,积分是一种重要的计算方法,用于求解曲线、曲面以及空间中的各种量,二重积分与三重积分是其中的两个重要分支。
本文将详细介绍二重积分与三重积分的基本概念、计算方法以及应用场景。
一、二重积分二重积分是对平面区域上的函数进行积分运算的方法。
首先,我们来介绍二重积分的定义。
设有平面区域D,函数f(x,y)在D上有界,将D在x轴上的投影记为[a,b],在y轴上的投影记为[c,d],则二重积分的定义如下:∬Df(x,y)dxdy = limΔx,Δy→0∑∑f(ξi,ηi)ΔxΔy其中,Δx、Δy分别表示划分x轴和y轴的小区间的长度,ξi、ηi分别是该小区间内的取点。
需要注意的是,二重积分的计算需要满足一些条件,如函数有界且在有限区域上连续等。
计算二重积分可以采用多种方法,最常用的是直角坐标系下的面积法和极坐标系下的面积法。
具体计算步骤略。
二、三重积分三重积分是对空间区域上的函数进行积分运算的方法。
类似于二重积分,我们来介绍三重积分的定义。
设有空间区域Ω,函数f(x,y,z)在Ω上有界,将Ω在x轴、y轴、z轴上的投影分别记为[a,b]、[c,d]、[e,f],则三重积分的定义如下:∭Ωf(x,y,z)dxdydz = limΔx,Δy,Δz→0∑∑∑f(ξi,ηi,ζi)ΔxΔyΔz其中,Δx、Δy、Δz分别表示划分x轴、y轴、z轴的小区间的长度,ξi、ηi、ζi分别是该小区间内的取点。
同样,三重积分的计算也需要满足一些条件,如函数有界且在有限区域上连续等。
与二重积分类似,计算三重积分也可以采用多种方法,如直角坐标系下的体积法和柱坐标系、球坐标系下的面积法等。
具体计算步骤略。
三、二重积分与三重积分的应用二重积分与三重积分在实际问题中有广泛的应用。
下面介绍其中的一些典型应用场景:1. 面积、体积的计算:利用二重积分和三重积分可以准确计算曲线、曲面以及各种形状的面积和体积。
例如计算圆的面积、球的体积等。
二重积分与三重积分的计算方法积分是微积分中的重要概念之一,它可以用来求解曲线下的面积、体积等问题。
在微积分中,二重积分和三重积分是常见的积分形式,用于计算平面区域和空间区域的面积和体积。
本文将介绍二重积分和三重积分的计算方法。
一、二重积分的计算方法在计算二重积分之前,我们首先需要确定被积函数的定义域。
设被积函数为f(x,y),定义域为D。
一般情况下,D可以是一个矩形区域、三角形区域或其他形状的区域。
1. 矩形区域上的二重积分当被积函数在矩形区域D上连续或仅有有限个第一类间断点时,可以使用定积分的方法计算二重积分。
设矩形区域D的边界分别为a、b、c、d,则D的表示为D={(x,y)|a≤x≤b, c≤y≤d}。
二重积分的计算公式为:∬D f(x,y) dxdy = ∫[a,b]∫[c,d] f(x,y) dxdy其中,f(x,y)是被积函数,D是积分区域。
2. 非矩形区域上的二重积分以利用坐标变换的方法将非矩形区域映射到矩形区域上,然后再进行求积。
设非矩形区域D的映射为S,坐标变换为x=g(u,v),y=h(u,v),则有:∬D f(x,y) dxdy = ∬S f(g(u,v),h(u,v)) |J| dudv其中,|J|表示变换的Jacobi行列式。
二、三重积分的计算方法类似于二重积分,三重积分也需要先确定被积函数的定义域。
设被积函数为f(x,y,z),定义域为R。
一般情况下,R可以是一个长方体区域、立体区域或其他形状的区域。
1. 长方体区域上的三重积分当被积函数在长方体区域R上连续或仅有有限个第一类间断点时,可以使用定积分的方法计算三重积分。
设长方体区域R的边界分别为a、b、c、d、e、f,则R的表示为R={(x,y,z)|a≤x≤b, c≤y≤d, e≤z≤f}。
三重积分的计算公式为:∭R f(x,y,z) dxdydz = ∫[a,b]∫[c,d]∫[e,f] f(x,y,z) dxdydz其中,f(x,y,z)是被积函数,R是积分区域。
二重积分与三重积分区别都是递进关系,从一重积分开始,只说几何意义吧。
一重积分(定积分):只有一个自变量y = f(x)当被积函数为1时,就是直线的长度(自由度较大)∫(a→b) dx = L(直线长度)被积函数不为1时,就是图形的面积(规则)∫(a→b) f(x) dx = A(平面面积)另外,定积分也可以求规则的旋转体体积,分别是盘旋法(Disc Method):V = π∫(a→b) f2(x) dx圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了∫(α→β) (1/2)[A(θ)]2 dθ = A(极坐标下的平面面积)二重积分:有两个自变量z = f(x,y)当被积函数为1时,就是面积(自由度较大)∫(a→b) ∫(c→d) dxdy = A(平面面积)当被积函数不为1时,就是图形的体积(规则)、和旋转体体积∫(a→b) ∫(c→d) dxdy = V(旋转体体积)计算方法有直角坐标法、极坐标法、雅可比换元法等极坐标变换:{ x = rcosθ{ y = rsinθ{ α≤θ≤β、最大范围:0 ≤θ≤ 2π∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ三重积分:有三个自变量u = f(x,y,z)被积函数为1时,就是体积、旋转体体积(自由度最大)∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积)当被积函数不为1时,就没有几何意义了,有物理意义等计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等极坐标变化(柱坐标):{ x = rcosθ{ y = rsinθ{ z = z{ h ≤ r ≤ k{ α≤θ≤β、最大范围:0 ≤θ≤ 2π∫(α→β) ∫(h→k) ∫(z?→z?) f(rcosθ,rsinθ,z) r dzdrdθ极坐标变化(球坐标):{ x = rsinφcosθ{ y = rsinφsinθ{ z = rcosφ{ h ≤ r ≤ k{ a ≤φ≤ b、最大范围:0 ≤φ≤π{ α≤θ≤β、最大范围:0 ≤θ≤ 2π∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r2sin2φ drdφdθ所以越上一级,能求得的空间范围也越自由,越广泛,但也越复杂,越棘手,而且限制比上面两个都少,对空间想象力提高了。
多重积分的方法总结计算根据被积区域和被积函数的形式要选择适当的方法处理,这里主要是看被积区域的形式来选择合适的坐标形式,并给区域一个相应的表达,从而可以转化多重积分为多次的积分形式.具体的一些作法在下面给出.一.二重积分的计算重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分.1. 在直角坐标下: (a) X-型区域几何直观表现:用平行于y 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()y y x =和2()y y x =;被积区域的集合表示:12{(,),()()}D x y a x b y x y y x =≤≤≤≤; 二重积分化为二次积分:21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰.(b) Y-型区域几何直观表现:用平行于x 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由左右交点位于的曲线确定两个函数1()x x x =和2()x x x =;被积区域的集合表示:12{(,),()()}D x y c y d x x x x x =≤≤≤≤;二重积分化为二次积分:21()()(,)(,)dx y cx y Df x y dxdy dx f x y dx =⎰⎰⎰⎰.2. 在极坐标下:几何直观表现:从极点出发引射线线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()r r θ=和2()r r θ=(具体如圆域,扇形域和环域等);被积区域的集合表示:1212{(,),()()}D r r r r θθθθθθ=≤≤≤≤,注意,如果极点在被积区域的内部,则有特殊形式2{(,)02,0()}D r r r θθπθ=≤≤≤≤; 直角坐标下的二重积分化为极坐标下的二重积分,并表示成相应的二次积分:2211()()(,)(cos ,sin )(cos ,sin )r r DDf x y dxdy f r r rdrd d f r r rdr θθθθθθθθθθ==⎰⎰⎰⎰⎰⎰.注:具体处理题目时,首要要能够选择适当的处理方法,并能够实现不同积分次序及直角坐标和极坐标的转化.3. 二重积分的换元法:(,)z f x y =在闭区域D 上连续,设有变换(,),(,)(,)x x u v T u v D y y u v =⎧'∈⎨=⎩将D '一一映射到D 上,又(,),(,)x u v y u v 关于u , v 有一阶连续的偏导数,且(,)0(,)x y J u v ∂=≠∂, (,)u v D '∈ 则有(,)((,),(,))DD f x y dxdy f x u v y u v J dudv '=⎰⎰⎰⎰.二.三重积分的计算三重积分具体的处理过程类似于二重积分,也分为三个步骤来进行处理. 1. 在直角坐标下:空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个.从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =,并把区域投影到xoy 面上从而确定(,)x y 的范围,记为xy D ;被积区域的集合表示:12{(,,)(,),(,)(,)}xy V x y z x y D z x y z z x y =∈≤≤, 进一步地, xy D 可以表示成X -型区域或Y -型区域;三重积分化为三次积分:21(,)(,)(,,)(,,)xyz x y z x y VD f x y z dV dxdy f x y z dz =⎰⎰⎰⎰⎰⎰(所谓“二套一”的形式)2211()(,)()(,)(,,)by x z x y ay x z x y dx dy f x y z dz =⎰⎰⎰(xy D 为X -型)2211()(,)()(,)(,,)dx y z x y cx y z x y dy dx f x y z dz =⎰⎰⎰(xy D 为Y -型)注:类似于以上的处理方法,把空间区域投影到 yoz 面或zox 面又可把三重积分转化成不同次序的三次积分.这时区域几何直观表现,区域的集合表示,以及新的三次积分次序如何可见,三重积分最多可以对应六种积分次序.这里还有所谓一套二的处理方法,区域的直观表现为:平行于xoy 面的截面面积容易求得.作为被积函数最好与x ,y 无关,即可表示为为()f z .则区域表示为:{(,,),(,)}z V x y z c z d x y D =≤≤∈,其中z D 表示垂直于z 轴的截面.此时,三重积分化为:(,,)()zdcVD f x y z dV dz f z dxdy =⎰⎰⎰⎰⎰⎰ (所谓“一套二”的形式)()z dD cf z S dz =⎰其中z D S 表示截面z D 的面积,它是关于z 的函数.2. 在柱坐标下:柱坐标与直角坐标的关系:cos sin ,(0,02,)x r y r r z z z θθθπ=⎧⎪=≤<∞≤≤-∞<<+∞⎨⎪=⎩空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =.空间区域在xoy 面上的投影区域易于用参数r 和θ表示范围(具体如圆域,扇形域和环域等),并且1(,)z z x y =和1(,)z z x y =也易于进一步表示z 成关于,r θ较简单的函数形式,比如22x y +可以看成一个整体(具体如上、下表面为旋转面的情形);被积区域的集合表示:121212{(,),()(),(,)(,)}V r r r r z r z z r θθθθθθθθ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:(,,)(cos ,sin ,)VVf x y z dV f r r z rdrd dzθθθ=⎰⎰⎰⎰⎰⎰222111()(,)()(,)(cos ,sin ,)r z r r z r d rdr f r r z dz θθθθθθθθθ=⎰⎰⎰.3. 在球坐标下:球坐标与直角坐标的关系:sin cos sin sin ,(0,02,0)cos x r y r r z ϕθϕθθπϕπϕ=⎧⎪=≤<∞≤≤≤≤⎨⎪=⎩空间区域几何直观表现:从原点出发引射线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个球坐标函数1(,)r r r θ=和2(,)r r r θ=; (具体如球心在原点或z 轴上的球形域)被积区域的集合表示:121212{(,,),,(,)(,)}V r r r r θϕθθθϕϕϕθϕθϕ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:2(,,)(sin cos ,sin sin ,cos )sin VVf x y z dV f r r r rdrd d ϕθϕθθϕθϕ=⎰⎰⎰⎰⎰⎰=212(,)20(,)(sin cos ,sin sin ,cos )sin r r d d f r r r r dr ππθϕθϕθϕϕθϕθθϕ⎰⎰⎰.如球心在原点半径为a 的球形域下:220(,,)(sin cos ,sin sin ,cos )sin aVf x y z dV d d f r r r r dr ππθϕϕθϕθθϕ=⎰⎰⎰⎰⎰⎰.4. 三重积分的换元法:(,,)u f x y z =在闭区域V 上连续,设有变换(,,):(,,),(,,)(,,)x x u v w T y y u v w u v w V z z u v w =⎧⎪'=∈⎨⎪=⎩将V '一一映射到V 上,又(,,),(,,)x u v w y u v w 和(,,)z u v w 关于u , v 和w 有一阶连续的偏导数,且(,,)0(,,)x y z J u v w ∂=≠∂, (,)u v V '∈则有(,,)((,,),(,,),(,,))VVf x y z dV f x u v w y u v w z u v w J dudvdw =⎰⎰⎰⎰⎰⎰.三.重积分的几何和物理应用 1. 几何应用a) 二重积分求平面区域面积;b) 二重积分求曲顶柱体体积;c)三重积分求空间区域的体积;d) 二重积分求空间曲面的面积.求曲面的面积A ,对应着曲面方程为直角坐标系下的二元函数形式和参数方程形式分别有以下公式:i ) 曲面方程 :(,),(,)S z f x y x y D =∈DA =ii )曲面参数方程(,):(,),(,)(,)uv x x u v S y y u v u v D z z u v =⎧⎪=∈⎨⎪=⎩()()uvuvu u u v v v uu u D D vvvij k A x i y j z k x i y j z k dudv x y z dudv x y z =++⨯++=⎰⎰⎰⎰ 注:这里的公式都对函数有相应的微分条件. 2. 物理应用包括求质量、质心、转动惯量和引力等应用,积分是研究物理问题的重要工具.建立物理量对应的积分公式的一般方法是从基本的物理原理出发,找到所求量对应的微元,也就是对应积分的被积表达式了.以上对多重积分的计算方法做了个小结,关键要在具体的情况下要找到对应的适宜的处理方法.处理重积分计算时从几何形式出发,则易于直观把握.注意选择适当的坐标系,注意被积区域的表达,还要注意函数关于区域的对称性.这种对称性包括奇对称和偶对称,从而可以简化计算过程.。
重积分知识点总结重积分是微积分中的一个重要概念,用于求解曲面、体积、质量等问题。
重积分包括二重积分和三重积分,分别对应二维和三维空间中的曲面和体积。
一、二重积分二重积分是对二维区域上的函数进行积分,常用于求解平面区域的面积、重心、质心等问题。
求解二重积分的方法有直接计算和变量代换两种。
1. 直接计算:将二重积分转化为累次积分,先对一个变量积分再对另一个变量积分。
需要注意的是积分的次序可能会影响结果。
2. 变量代换:通过变量代换,将原积分转化为更简单的形式。
常用的变量代换有极坐标代换、参数方程代换等。
二、三重积分三重积分是对三维空间内的函数进行积分,常用于求解空间区域的体积、质量、重心等问题。
求解三重积分的方法有直接计算和变量代换两种。
1. 直接计算:将三重积分转化为累次积分,先对一个变量积分再对另一个变量积分,最后再对剩下的变量积分。
同样,积分的次序可能会影响结果。
2. 变量代换:通过变量代换,将原积分转化为更简单的形式。
常用的变量代换有柱面坐标代换、球面坐标代换等。
三、重积分的应用重积分在物理学、工程学、经济学等领域中有广泛的应用。
1. 物理学:重积分可以用于计算物体的质量、质心、转动惯量等物理量。
例如,可以通过三重积分计算物体的质量分布情况,进而求解物体的质心位置。
2. 工程学:重积分可以用于计算三维物体的体积、表面积等。
例如,在建筑设计中,可以通过三重积分计算建筑物的体积,帮助设计师合理规划空间。
3. 经济学:重积分可以用于计算经济领域的总产出、总消费等指标。
例如,在城市规划中,可以通过二重积分计算城市的总人口、总收入等。
四、重积分的性质重积分具有一些重要的性质,如线性性、保号性、保序性等。
1. 线性性:重积分具有线性性质,即对于常数a和函数f(x, y)、g(x, y),有∬(af(x, y) + bg(x, y))dxdy = a∬f(x, y)dxdy + b∬g(x, y)dxdy。
二重积分什么是二重积分?在数学中,二重积分是对一个平面区域上的函数进行求和的一种方法。
这个平面区域可以由直线、曲线或者其他形状所围成。
二重积分可以用来计算平面上的面积、质心、质量等物理量。
二重积分的定义设有一个函数f (x,y )定义在一个闭区域D 上,闭区域D 可以用x =a 和x =b 两条垂直于x 轴的直线以及曲线y =g 1(x )和y =g 2(x )来围成。
那么,函数f (x,y )在闭区域D 上的二重积分可以表示为:∬f D(x,y )dA其中,dA =dxdy 表示微元面积。
二重积分的计算迭代法我们可以通过迭代法来计算二重积分。
具体步骤如下:1. 首先确定x 的取值范围,即确定x =a 和x =b 。
2. 对于每个固定的x 值,在该范围内确定y =g 1(x )和y =g 2(x )。
3. 将函数f (x,y )进行展开,并将其乘以微元面积dA =dxdy 。
4. 对于每个x 值,将得到的函数表达式进行积分,即计算∫f g 2(x )g 1(x )(x,y )dy 。
5. 将上一步得到的结果进行积分,即计算∫∫f g 2(x )g 1(x )b a (x,y )dydx 。
极坐标法在某些情况下,使用极坐标法可以简化二重积分的计算。
具体步骤如下: 1.将x =rcosθ和y =rsinθ代入函数f (x,y )。
2.将微元面积dA =dxdy =rdrdθ代入函数f (r,θ)。
3.确定r 的取值范围和θ的取值范围。
4.将函数f (r,θ)乘以微元面积dA =rdrdθ。
5. 对r 和θ进行相应的积分。
计算平面区域的面积二重积分可以用来计算平面区域的面积。
设有一个闭区域D,则该区域的面积可以表示为:S=∬dDA其中,dA=dxdy表示微元面积。
计算质心质心是一个物体在空间中平衡的位置。
对于一个平面区域,质心可以通过二重积分来计算。
设有一个闭区域D,则该区域的质心可以表示为:x‾=1S∬xDdAy‾=1S∬yDdA其中,S=∬dDA表示区域D的面积。
积分(二重,三重积分,第一类曲线,曲面积分)的定义和性质CH 19 积分(二重,三重积分,第一类曲线,曲面积分)的定义和性质1(重积分的概念n(1) 定义:二重积分表示一种类型和式的极限,limf(,,,),,,三重积分表f(x,y)d,,iii,,,,0,1iDnf(x,y,z)dV示,limf(,,,,,),v,其值均取决于被积函数的对应规则和积分区,iiii,,,,,0,1iD域,而与积分变量的记号无关。
连续是可积的充分条件,二者的不同点是:二重积分的被积函数是定义在平面区域上的二元函数,而三重积分的被积函数是定义在空间区域上的三元函数。
D,f(x,y),0z,f(x,y)(2) 几何与物理意义:当时,表示以曲面为曲顶,以为Df(x,y)d,,,D,,f(x,y)f(x,y,z),0底的柱体体积,或表示以面积密度的平面薄片的质量。
当,D,,f(x,y,z)f(x,y,z)dV表示体密度的空间立体的质量。
,,,,D(3) 性质:重积分具有与定积分类似的线性性质,对区域的可加性,积分不等式,以及积分中值定理。
2(第一类曲线积分与第二类曲线积分的定义(1) 由曲线形构件的质量问题引入对弧长的曲线积分,其定义简记为n,limf(,,,),S f(x,y)ds,iii,,,0,1ilf(x,y)ll其中函数在曲线上有定义切有界,是对的任意分割下的段的长度,i,SS,0ii,,max{,S}。
i1,i,n(2) 由求变力沿曲线所作功等问题,可引入对坐标的曲线积分(第二类曲线积分)的概念,其定义简记为n,limP(,,,),x P(x,y)dx,iii,,,0,1iln,limQ(,,,),y Q(x,y)dy,iii,,,0,1il,ll ,的意义同前,,为小弧段在坐标轴上的投影,其正负与的方向有关。
,x,yii3(两类曲面积分的定义(1) 由计算曲面片的质量问题引入对面积的区面积分,其定义简记为nf(x,y,z)dS ,limf(,,,,,),S ,iiii,,,,0,1i,f(x,y,z)其中在曲面上有定义,是的任意分割下第块的面积(,)i,S,,S,0ii ,,max{,S的直径}。
关于各类积分的一些总结一、定积分实质:直线上函数的积分,积分对象是直线元 dx 。
二、二重积分实质:平面区域上的二元函数的积分,积分对象是dxdy 。
方法:累次积分,即先固定一个变量,对另一个变量积分,再对另一个变量积分。
三、三重积分实质:对空间上的三元函数积分,积分对象是dxdydz 。
方法:累次积分,可以化成三个一次积分(如球坐标代换),也可化成一个二重积分和一个一次积分(如柱坐标代换)。
四、第一型曲线积分实质:对曲线上的一元函数积分,积分对象是曲线元ds 。
方法:转化成定积分曲线r=(x(t),y(t),z(t)),则dt z y x t z t y t x f ds z y x f s dt t t ⎰⎰⎰⎰'+'+'=222))(),(),((),,(。
五、第一型曲面积分实质:对曲面上的二元函数积分,曲面元dS.方法:转化为二重积分。
曲面r=(x(u,v),y(u,v),z(u,v)), 则(,,)((,),(,),(,))s D dr dr f x y z dS f x u v y u v z u v dudv du dv=⨯⎰⎰⎰⎰特别的dr dr dx dy ⨯= 六、第二型曲线积分实质:变力在曲线上作功,或是对有向线元的积分,即对坐标的积分。
形式:⎰++LRdz Qdy Pdx ①方法:1、拆 ①=⎰⎰⎰++L L L Rdz Qdy Pdx =⎰⎰⎰++121212z z y y x x Pdz Pdy Pdx εεε(化成三个定积分)2、合 用定义化成第一形曲线积分①=dl v dz dy dx R Q P LL τ⋅=⋅⎰⎰),,(),,(3、对于环路积分,一般用斯托克斯公式化去做①=dl v dz dy dx R Q P τ⋅=⋅⎰⎰),,(),,(=⎰⎰⋅Dnds rotv ε七、第二形曲面积分实质:通量,或是对有向面积元的积分,即对坐标的曲面积分。