正态总体的参数精
- 格式:pptx
- 大小:467.43 KB
- 文档页数:29
高二数学(理)正态分布人教实验版(A )【本讲教育信息】一. 教学内容:正态分布二. 重点、难点:1. 正态分布密度曲线,简称,正态曲线222)(21)(σμμσσπϕ--⋅=x ex (x ∈R )2. 正态分布⎰=≤<dx x b x a P b a )()(μσϕ3. 特值(1)P (σμσμ+≤<-x )=68.26% (2)P (σμσμ22+≤<-x )=95.44% (3)P (σμσμ33+≤<-x )=99.74%【典型例题】[例1] 一台自动包装机向袋中装糖果,标准是每袋64克,但因随机性误差,每袋具体重量有波动、据以往资料认为:每袋糖果的重量q 服从正态分布)5.1,64(2N 试问随机抽一袋糖果其重量超过65克的概率是多少?不到62克的概率是多少?解:设5.164-=q t )65(>q P )67.0()5.16465(>=->=t P t P )67.0(1)67.0(1φ-=<-=t P 2514.07486.01=-=)33.1()5.16462()62(-<=-<=<t P t P q P)33.1(1<-=t P )33.1(1φ-=9082.01-=0918.0=∴ 超过65克概率为25.14%,不足62克……9.18%。
[例2] q ~N ),(2σμ045.0)5(=-≤q P 618.0)3(=≤q P ,求μ、σ?解:)5()5()5(σμφσμ--=--≤=-≤t P q P045.0)5(1=+-=σμφ∴955.0)5(=+σμφ∴7.15=+σμ①618.0)3()3()3(=-=-≤=≤σμφσμt P q P∴3.03=-σμ②由①②⎩⎨⎧==⇒48.1σμ[例3] q ~)2,1(2N(1)求)75(≤≤q P (2)若)(2)(b q P b q P <=≥ 解:(1))217215()75(-<<-=≤≤t P q P )2()3()32(φφ-=≤≤=P t P 0214.09772.09987.0=-=(2))(b q P >)(2b q P ≤=∴)21(2)21(-≤=->b t P b t P ∴31)21(=-<b t P ∵1<b ∴01<-b ∴667.032)21(≈=-<b t P∴667.0)43.0(=φ43.021=-b14.0=b[例4] 假设数学会考成绩q 近似服从正态分布)10,70(2N 现知第100名学生的成绩为60分,试问第20名的学生成绩为多少分。
第四节 正态总体的置信区间与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。
在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色.本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间;4. 双正态总体均值差(方差已知)的置信区间;5. 双正态总体均值差(方差未知但相等)的置信区间;6. 双正态总体方差比的置信区间.注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的.分布图示★ 引言★ 单正态总体均值(方差已知)的置信区间★ 例1 ★ 例2★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间★ 例7 ★ 例8★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4内容要点一、单正态总体均值的置信区间(1)设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间,,2/2/⎪⎪⎭⎫⎝⎛⋅+⋅-n u X n u X σσαα二、单正态总体均值的置信区间(2)设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量n S X T /μ-=,从第五章第三节的定理知).1(~/--=n t nS X T μ对给定的置信水平α-1, 由αμαα-=⎭⎬⎫⎩⎨⎧-<-<--1)1(/)1(2/2/n t n S X n t P ,即 ,1)1()1(2/2/αμαα-=⎭⎬⎫⎩⎨⎧⋅-+<<⋅--n S n t X n S n t X P因此, 均值μ的α-1置信区间为.)1(,)1(2/2/⎪⎪⎭⎫ ⎝⎛⋅-+⋅--n S n t X n S n t X αα三、单正态总体方差的置信区间上面给出了总体均值μ的区间估计,在实际问题中要考虑精度或稳定性时,需要对正态总体的方差2σ进行区间估计.设总体),,(~2σμN X 其中μ,2σ未知,n X X X ,,,21 是取自总体X 的一个样本. 求方差2σ的置信度为α-1的置信区间. 2σ的无偏估计为2S , 从第五章第三节的定理知,)1(~1222--n S n χσ, 对给定的置信水平α-1, 由,1)1()1()1()1(,1)1(1)1(22/12222/222/2222/1αχσχαχσχαααα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--<<---=⎭⎬⎫⎩⎨⎧-<-<---n S n n Sn P n S n n P 于是方差2σ的α-1置信区间为⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(22/1222/2n S n n S n ααχχ而方差σ的α-1置信区间.)1()1(,)1()1(22/1222/2⎪⎪⎭⎫ ⎝⎛-----n S n n S n ααχχ四、双正态总体均值差的置信区间(1)在实际问题中,往往要知道两个正态总体均值之间或方差之间是否有差异,从而要研究两个正态总体的均值差或者方差比的置信区间。
数理统计17:正态总体参数假设检验现在,我们对正态分布的参数假设检验进⾏讨论,这也是本系列的最后⼀部分内容。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:基本步骤正态总体N (µ,σ2)参数的假设检验不外乎遵循以下的步骤:找到合适的统计量,⽤统计量的取值范围设计拒绝域。
假定原假设为真,考虑这个条件下统计量的分布。
根据统计量的分布,根据检验的⽔平要求设置拒绝域的边界值。
设计检验的核⼼在于假定原假设为真,这是因为检验的⽔平是基于弃真概率定义的,也就是说,要在第三步中写出检验的⽔平,就必须在H 0成⽴的情况下找出⼩概率事件的发⽣条件。
⽐如,对于均值的检验⼀共有三种:1.H 0:µ=µ0↔H 1:µ≠µ0;2.H 0:µ≥µ0↔H 1:µ<µ0;3.H 0:µ≤µ0↔H 1:µ>µ0.每⼀种⼜可以细分为⽅差σ2已知和⽅差σ2未知两种情况,但显然不论⽅差是否已知,最核⼼的统计量都应该是¯X,如果⽅差未知可能还要⽤到⽅差的替代:S 2。
以下,对于这三种问题,拒绝域分别应该是这样的:如果H 0被接受,则¯X 既不应该太⼤,也不应该太⼩,拒绝域的基础形式应该是{¯X >c 1}∪{¯X <c 2}.如果H 0被接受,则¯X 不应该太⼩,⽆论多⼤都可以,拒绝域的基础形式应该是{¯X <c }.如果H 0被接受,则¯X 不应该太⼤,⽆论多⼩都可以,拒绝域的基础形式应该是{¯X>c }.当然,这只是拒绝域的基础形式,实际情况下可能不⽌使⽤¯X,但基本思想应该是这样的。
对于⽅差的检验,则将检验统计量换成了S 2,或者均值已知情况下的离差平⽅和Q 2,步骤也和上⾯的差不多。
第21讲 参数估计习题课教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。
教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。
教学难点:矩估计,最大似然估计,正态总体参数的区间估计。
教学时数:2学时。
教学过程:一、知识要点回顾1. 矩估计用各阶样本原点矩n ki i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k = 。
若有参数2g(,(),,)k E X E X E X θ= ()(),则参数θ的矩估计为n n n 2i=1i=1i=1111ˆ(,,,)ki i i X X X n n n θ=∑∑∑ 。
2. 最大似然估计似然函数1()(;)ni i L f x θθ==∏,取对数ln[()]L θ,从ln()d d θθ=0中解得θ的最大似然估计θˆ。
3. 无偏性,有效性当θθ=ˆE 时,称θˆ为θ的无偏估计。
当21ˆD ˆD θθ<时,称估计量1ˆθ比2ˆθ有效。
5. 两个正态总体均差值的区间估计当21σ和22σ已知时,12μμ-的置信水平为1α-的置信区间为当21σ和22σ未知时,12μμ-的置信水平为1α-的置信区间为二 、典型例题解析1.设,0()0, 0x e x f x x θθ-⎧>=⎨≤⎩,求θ的矩估计。
解 ,0dx xe EX x ⎰+∞-=θθ设du dx u x x u θθθ1,1,===则000111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞⎡⎤⎡⎤==-+=+-⎣⎦⎢⎥⎣⎦⎰⎰=θ1故1EXθ=,所以x 1ˆ=θ。
2. 设总体X 在[]b a ,上服从均匀分布,求a 和b 的矩估计。
解 由均匀分布的数学期望和方差知1()()2E X a b =+ (1)21()()12D X b a =- (2) 由(1)解得a EX b -=2,代入(2)得2)22(121a EX DX -=,整理得2)(31a EX DX -=,解得()()a E X b E X ⎧=⎪⎨=⎪⎩ 故得b a ,的矩估计为ˆˆa x b x ⎧=-⎪⎨=+⎪⎩其中∑=-=ni i x x n 122)(1ˆσ。