相关系数和回归直线
- 格式:ppt
- 大小:994.00 KB
- 文档页数:92
6.5 相关系数及回归方程两个变量间的相关关系:①有关概念:相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.如果一个变量的值由小变大时另一个变量的值由小变大,这种相关称为正相关;如果一个变量的值由小变大时另一个变量的值由大变小,这种相关称为负相关;如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系.②回归方程: 是两个具有线性相关关系的变量的一组数据的回归方程,其中是待定参数. 的计算公式.考向一 样本中心【例1-1】某种产品的广告费支出与销售额之间有如下对应数据(单位:百万元),根据下表求出关于的线性回归方程为,则表中的值为( )A. B. C. D.y bx a =+1122()()()n n x y x y x y ,,,,,,a b 、a b 、1122211()()()()nni i i ii i nni ii i x x y y x y nx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑x y y x 6.5175ˆ.yx =+a 505456.564【答案】B【解析】根据规律知道回归直线一定过样本中心,故得到,将坐标代入方程得到的值为.故答案为:B. 【例1-2】已知表中数据y 与x 有较好的线性关系,通过计算得到y 关于x 的线性回归方程为ˆˆ1.05yx a =+,则相应于下列各点的残差中绝对值最小的是( )A .(2,4)B .(4,6)C .(8,10)D .(10,12.5)【答案】D【解析】ˆˆˆ6,8.3,8.3 1.056,2, 1.052x y aa y x ==∴=⨯+∴=∴=+, 相应于点(2,4),(4,6),(8,10),(10,12.5)的残差分别为0.1,0.2,0.4,0---,故选D.【举一反三】1.“关注夕阳、爱老敬老”—某马拉松协会从2013年开始每年向敬老院捐赠物资和现金.下表记录了第x 年(2013年是第一年)与捐赠的现金y (万元)的对应数据,由此表中的数据得到了y 关于x 的线性回归方程.ˆ035ymx =+,则预测2019年捐赠的现金大约是( ) A .5万元B .5.2万元C .5.25万元D .5.5万元【答案】C5,196x y a ==+6.5175ˆ.yx =+a 54【解析】由已知得,29t =, 所以样本点的中心点的坐标为(4.5,3.5),代入.ˆ035ymx =+, 得3.5 4.50.35m =+,即0.7m =,所以0.7035ˆ.x y=+, 取7x =,得ˆ0.770.35 5.25y=⨯+=, 预测2019年捐赠的现金大约是5.25万元.2.某同学将收集到的6组数据对,制作成如图所示的散点图(各点旁的数据为该点坐标),并由这6组数据计算得到回归直线l :y bx a =+$$$和相关系数r .现给出以下3个结论:①0r >;②直线l 恰过点D ;③1b >. 其中正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】A【解析】由图像可得,从左到右各点是上升排列的,变量具有正相关性,所以0r >,①正确; 由题中数据可得: 1.5 2.4 3.54 5.8 6.846x +++++==, 2.1 2.8 3.3 3.5 4.35 3.56y +++++==,所以回归直线过点(4,3.5)D ,②正确;又61621()()10.360.514120.14()iii ii x x yy b x x ==--==≈<-∑∑,③错误.故选A 3.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱【答案】A【解析】∵从散点图可分析得出:只有D 点偏离直线远,去掉D 点,变量x 与变量y 的线性相关性变强, ∴相关系数变大,相关指数变大,残差的平方和变小,故选:A.考向二回归方程【例2】某人经营淡水池塘养草鱼,根据过去40期的养殖档案,该池塘的养殖重量X (百斤)都在20百斤以上,其中不足40百斤的有8期,不低于40百斤且不超过60百斤的有20期,超过60百斤的有12期.根据统计,该池塘的草鱼重量的增加量y (百斤)与使用某种饵料的质量x (百斤)之间的关系如图所示.(1)根据数据可知y 与x 具有线性相关关系,请建立y 关于x 的回归方程ˆˆˆybx a =+;如果此人设想使用某种饵料10百斤时,草鱼重量的增加量须多于5百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过3台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量X 有如下关系:若某台增氧冲水机运行,则商家每期可获利5千元;若某台冲水机未运行,则商家每期亏损2千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机? 附:对于一组数据()()()1122,,,,n n x y x y x y ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为1221ˆni ii ni i x y nxy bx nx ==-=-∑∑()()()121,niii ni i x x y y x x ==--=-∑∑ˆˆay bx =- 【答案】(1)337y 1313x =+$当10x =时,此方案可行.(2)应提供2台增氧冲水机 【解析】(1)依题意,5,4,x y ==()()5126iii x x y x =--=∑()()()515213ˆ,13iii i i x x y y bx x ==--∴==-∑∑337ˆ451313a y bx =-=-⨯=$所以3371313y x =+$当10x =时,67ˆ513y=>,故此方案可行. (2)设盈利为Y ,安装1台时,盈利5000Y =, 安装2台时,12040,3000,5X Y p <<==;440,10000,5X Y p ==…. 14()300010000860055E Y ∴=⨯+⨯=安装3台时,12040,1000,5X Y p <<==; 4060,8000,X Y =剟3;5P =160,15000,5X Y P >==. 13()1000800055E Y ∴=⨯+⨯11500080005+⨯=.86008000>,故应提供2台增氧冲水机.【举一反三】1.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据(),(1,2,,6)i i x y i =,如表所示:已知611606i i y y ===∑.(1)若变量,x y 具有线性相关关系,求产品销量y (百件)关于试销单价x (千元)的线性回归方程ˆˆˆy bx a =+;(2)用(1)中所求的线性回归方程得到与i x 对应的产品销量的估计值i y .当销售数据(),i i x y 对应的残差的绝对值ˆ1i i y y -≤时,则将销售数据(),i i x y 称为一个“好数据”.现从6个销售数据中任取3个子,求“好数据”个数ξ的分布列和数学期望()E ξ.(参考公式:线性回归方程中ˆˆ,ba 的估计值分别为1221ˆˆˆ,)ni ii nii x y nxyb ay bx xnx =-=-==--∑∑. 【答案】(1) ˆ482yx =-+ (2)见解析 【解析】(1)由611606i i y y ===∑,可求得48t =,故11910ni ii x y==∑,=1980nx y ,21199ni i x ==∑,2=181.5nx ,代入可得122119101980704199181.517.5ni ii ni i x y nx yb x nx==---====---∑∑,ˆˆ604 5.582ay bx =-=+⨯=, 所以所求的线性回归方程为ˆ482yx =-+. (2)利用(1)中所求的线性回归方程ˆ482yx =-+可得,当13x =时,170y =;当24x = 时,266y =;当35x =时,362y =;当46x =时,458y =;当57x =时,554y =;当68x =时,650y =.与销售数据对比可知满足||1(1,2,,6)i i y y i -≤=的共有4个“好数据”:(3,70)、(4,65)、(5,62)、(6,59) 于是ξ的所有可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ∴ξ 的分布列为:所以1232555E ξ=⨯+⨯+⨯=.考向三 非线性回归【例3】近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:根据以上数据,绘制了如图所示的散点图.(1)根据散点图判断,在推广期内,y a bx =+与(,xy c d c d =⋅均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表l 中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表所示:已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用. 参考数据:其中lg i i u y =,7117i i u u ==∑.【答案】(1)xy c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;(2)y 关于x 的回归方程式为:0.25ˆ 3.4710xy=⨯,第8天使用扫码支付的人次为347人次;(3)1.66元.【解析】(1)根据散点图判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;(2)由(1)知回归方程为x y c d =⋅,两边同时取常用对数得:()lg lg lg lg xy c dc d x =⋅=+⋅,设lg y u =,lg lg u c d x ∴=+⋅,又4x =, 1.54u =,721140i i x ==∑,7172221750.1274 1.547lg 0.2514074287i ii i i x u xu d x x==--⨯⨯∴====-⨯-∑∑,把样本中心点()4,1.54代入lg lg u c d x =+⋅,即1.54lg 0.254c =+∙,解得:4ˆl 0.5gc=, 0.5405ˆ.2ux ∴=+, lg 0.540.25y x ∴=+,y ∴关于x 的回归方程式为:()0.540.250.540.250.2510101040ˆ 3.71xx x y +==⨯=⨯,把8x =代入上式得,23.4734ˆ107y=⨯=, 活动推出第8天使用扫码支付的人次为347人次;(3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4, 则()20.1P Z==,()11.80.30.152P Z ==⨯=, ()11.60.60.30.73P Z ==+⨯=,()11.40.30.056P Z ==⨯=; 分布列为:所以,一名乘客一次乘车的平均费用为:20.1 1.80.15 1.60.7 1.40.05 1.66⨯+⨯+⨯+⨯=(元). 【举一反三】1.为方便市民出行,倡导低碳出行.某市公交公司推出利用支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,在推广期内采用随机优惠鼓励市民扫码支付乘车.该公司某线路公交车队统计了活动推广期第一周内使用扫码支付的情况,其中 (单位:天)表示活动推出的天次, (单位:十人次)表示当天使用扫码支付的人次,整理后得到如图所示的统计表1和散点图. 表1:(1)由散点图分析后,可用作为该线路公交车在活动推广期使用扫码支付的人次关于活动推出天次的回归方程,根据表2的数据,求此回归方程,并预报第8天使用扫码支付的人次(精确到整数).表2:表中,.(2)推广期结束后,该车队对此期间乘客的支付情况进行统计,结果如表3.表3:统计结果显示,扫码支付中享受5折支付的频率为,享受7折支付的频率为,享受9折支付的频率为.已知该线路公交车票价为1元,将上述频率作为相应事件发生的概率,记随机变量为在活动期间该线路公交车搭载乘客一次的收入(单位:元),求的分布列和期望.参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为参考数据:,,.【答案】(1) ,人次为2447 (2)见解析【解析】(1)由题意得,,,关于的线性回归方程为,关于的回归方程为,当时,,第8天使用扫码支付的人次为2447;(2)由题意得的所有取值为0.5,0.7,0.9,1,,,,,的分布列为:1.有下列说法:①若某商品的销售量y (件)关于销售价格x (元/件)的线性回归方程为5350y x =-+,当销售价格为10元时,销售量一定为300件;②线性回归直线y bx a =+$$$一定过样本点中心(,)x y ;③若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1;④在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;⑤在线性回归模型中,相关指数2R 表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好;其中正确的结论有几个( ) A .1 B .2C .3D .4【答案】B【解析】①当销售价格为10时,销售量的预估值为300件,但预估值与实际值未必相同,①错误; ②由最小二乘法可知,回归直线必过(),x y ,②正确;③若两个随机变量为负相关,若线性相关性越强,相关系数r 越接近1-,③错误; ④残差图中,带状区域越窄,模型拟合度越高,④错误;⑤相关指数2R 越接近1,拟合度越高,则在线性回归模型中,回归效果越好,⑤正确. 可知正确的结论为:②⑤,共2个本题正确选项:B2.已知下表为x 与y 之间的一组数据,若y 与x 线性相关,则y 与x 的回归直线y bx a =+必过点( )A .(2,2)B .(1.5,0)C .(1,2)D .(1.5,4)【答案】D【解析】由题可得32x =,4y =, 22223333(0)(14)(1)(34)(2)(54)(3)(74)102222ˆ233335(0)(1)(2)(3)2222b --+--+--+--===-+-+-+-,3ˆ4212a=-⨯=,则回归方程为ˆ21yx =+,将A ,B ,C ,D 四项分别代入方程,只有(1.5,4)这个点在直线上,故选D 。
线性回归中的相关系数山东 胡大波线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量就是否就是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法就是绘制散点图;另外一种方法就是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法统计中常用相关系数r 来衡量两个变量之间的线性相关的强弱,当i x 不全为零,y i 也不全为零时,则两个变量的相关系数的计算公式就是:()()nnii i ixx y y x ynx yr ---==∑∑r 就叫做变量y 与x 的相关系数(简称相关系数).说明:(1)对于相关系数r ,首先值得注意的就是它的符号,当r 为正数时,表示变量x ,y 正相关;当r 为负数时,表示两个变量x ,y 负相关;(2)另外注意r 的大小,如果[]0.751r ∈,,那么正相关很强;如果[]10.75r ∈--,,那么负相关很强;如果(]0.750.30r ∈--,或[)0.300.75r ∈,,那么相关性一般;如果[]0.250.25r ∈-,,那么相关性较弱.下面我们就用相关系数法来分析身边的问题,确定两个变量就是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高.解:(1)66.8x =,67y =,102144794i i x ==∑,102144929.22i i y ==∑,4475.6x y =,24462.24x =,24489y =,10144836.4i i i x y ==∑,所以10i ix ynx yr -∑44836.4104475.6(4479444622.4)(44929.2244890)-⨯=--80.40.9882.04≈≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则101102211010i ii i i x yxyb x x==-=-∑∑44836.4447560.46854479444622.4-=≈-,670.468566.835.7042a y bx =-=-⨯=.故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =⨯+=, 所以当父亲身高为73英寸时,估计儿子的身高约为69、9英寸.点评:回归直线就是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这就是此类问题常见题型.例2 10其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 就是否具有相关关系;(2)如果y 与x 就是相关关系,求回归直线方程. 解:(1)由已知表格中的数据,利用计算器进行计算得 101710ii x==∑,101723i i y ==∑,71x =,72.3y =,10151467i i i x y ==∑.102150520ii x==∑,102152541i i y ==∑.1010i ix yx yr -=∑0.78=≈.由于0.78r ≈,由0.780.75>知,有很大的把握认为x 与y 之间具有线性相关关系. (2)y 与x 具有线性相关关系,设回归直线方程为y a bx =+,则1011022211051467107172.31.2250520107110i ii i i x yx yb x x==--⨯⨯==≈-⨯-∑∑,72.3 1.227114.32a y bx =-=-⨯=-.所以y 关于x 的回归直线方程为 1.2214.32y x =-.点评:通过以上两例可以瞧出,回归方程在生活中应用广泛,要明确这类问题的计算公式、解题步骤,并会通过计算确定两个变量就是否具有相关关系.。
线性回归中的相关系数 Prepared on 24 November 2020线性回归中的相关系数山东 胡大波线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法.一、关于相关系数法统计中常用相关系数r 来衡量两个变量之间的线性相关的强弱,当i x 不全为零,y i 也不全为零时,则两个变量的相关系数的计算公式是:()()n n i i i i x x y y x y nx y r ---==∑∑r 就叫做变量y 与x 的相关系数(简称相关系数).说明:(1)对于相关系数r ,首先值得注意的是它的符号,当r 为正数时,表示变量x ,y 正相关;当r 为负数时,表示两个变量x ,y 负相关;(2)另外注意r 的大小,如果[]0.751r ∈,,那么正相关很强;如果[]10.75r ∈--,,那么负相关很强;如果(]0.750.30r ∈--,或[)0.300.75r ∈,,那么相关性一般;如果[]0.250.25r ∈-,,那么相关性较弱. 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线.二、典型例题剖析例1 测得某国10对父子身高(单位:英寸)如下:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求回归直线方程;(3)如果父亲的身高为73英寸,估计儿子身高.解:(1)66.8x =,67y =,102144794ii x ==∑,102144929.22i i y ==∑,4475.6x y =,24462.24x =, 24489y =,10144836.4i i i x y ==∑,所以10ii x y nx y r -=∑44836.4104475.6(4479444622.4)(44929.2244890)-⨯=--80.40.9882.04=≈≈, 所以y 与x 之间具有线性相关关系.(2)设回归直线方程为y a bx =+,则101102211010ii i i i x y xy b x x ==-=-∑∑44836.4447560.46854479444622.4-=≈-, 670.468566.835.7042a y bx =-=-⨯=.故所求的回归直线方程为0.468535.7042y x =+.(3)当73x =英寸时,0.46857335.704269.9047y =⨯+=,所以当父亲身高为73英寸时,估计儿子的身高约为英寸.点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:其中x 为高一数学成绩,y 为高二数学成绩.(1)y 与x 是否具有相关关系;(2)如果y 与x 是相关关系,求回归直线方程.解:(1)由已知表格中的数据,利用计算器进行计算得101710i i x ==∑,101723i i y ==∑,71x =,72.3y =,10151467i i i x y ==∑. 102150520i i x ==∑,102152541i i y ==∑.1010ii x y x y r -=∑0.78=≈.由于0.78r ≈,由0.780.75>知,有很大的把握认为x 与y 之间具有线性相关关系.(2)y 与x 具有线性相关关系,设回归直线方程为y a bx =+,则1011022211051467107172.3 1.2250520107110ii i i i x y x y b x x ==--⨯⨯==≈-⨯-∑∑, 72.3 1.227114.32a y bx =-=-⨯=-.所以y 关于x 的回归直线方程为 1.2214.32y x =-.点评:通过以上两例可以看出,回归方程在生活中应用广泛,要明确这类问题的计算公式、解题步骤,并会通过计算确定两个变量是否具有相关关系.。
线性回归中的相关系数文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性回归中的相关系数山东胡大波线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法.一、关于相关系数法统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当x不全为零,y ii也不全为零时,则两个变量的相关系数的计算公式是:r就叫做变量y与x的相关系数(简称相关系数).说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关;(2)另外注意r的大小,如果[]r∈,,那么正相关很强;如果[]0.751r∈--,,那10.75么负相关很强;如果(],或[)r∈,,那么相关性一般;如果0.300.75r∈--0.750.30[]r∈-,,那么相关性较弱.0.250.25下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线.二、典型例题剖析例1测得某国10对父子身高(单位:英寸)如下:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高.解:(1)66.8x =,67y =,102144794i i x ==∑,102144929.22i i y ==∑,4475.6x y =,24462.24x =,24489y =,10144836.4i i i x y ==∑,所以10i ix ynx yr -=∑80.40.9882.04≈≈, 所以y 与x 之间具有线性相关关系.(2)设回归直线方程为y a bx =+,则101102211010i ii i i x yxyb x x==-=-∑∑44836.4447560.46854479444622.4-=≈-,670.468566.835.7042a y bx =-=-⨯=.故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =⨯+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸.点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型.例2 10名同学在高一和高二的数学成绩如下表:其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 是否具有相关关系;(2)如果y 与x 是相关关系,求回归直线方程. 解:(1)由已知表格中的数据,利用计算器进行计算得 101710i i x ==∑,101723i i y ==∑,71x =,72.3y =,10151467i i i x y ==∑.102150520ii x==∑,102152541i i y ==∑.0.78=≈.由于0.78r ≈,由0.780.75>知,有很大的把握认为x 与y 之间具有线性相关关系. (2)y 与x 具有线性相关关系,设回归直线方程为y a bx =+,则1011022211051467107172.31.2250520107110i ii i i x yx yb x x==--⨯⨯==≈-⨯-∑∑,72.3 1.227114.32a y bx =-=-⨯=-.所以y 关于x 的回归直线方程为 1.2214.32y x =-.点评:通过以上两例可以看出,回归方程在生活中应用广泛,要明确这类问题的计算公式、解题步骤,并会通过计算确定两个变量是否具有相关关系.。