云南省永德县勐板中学2019-2020学年八年级下学期期中检测数学试题(无答案)
- 格式:doc
- 大小:165.00 KB
- 文档页数:5
2019-2020年八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1、平行四边形ABCD中,∠B=70°,则∠D等于()A、120°B、110°C、70°D、20°2、下列二次根式中与是同类二次根式的是()A、B、 C、D、3、下列计算正确的是()A、B、C、D、4、函数的图象经过点(2,6),则下列各点不在图象上的是()A、(﹣2,﹣6)B、(6,﹣2)C、(3,4)D、(﹣4,﹣3)5、在三边分别为下列长度的三角形中,哪些不是直角三角形()A、5,13,12B、2,3,C、4,7,5D、1,,6、下列函数中,y随x的增大而增大的是()A、B、(x>0)C、D、(x<0)7、不能判断四边形ABCD是平行四边形的是()A、AB=CD,AD=BCB、AB=CD,AB∥CDC、AB=CD,AD∥BCD、AB∥CD,AD∥BC8、菱形,矩形,正方形都具有的性质是()A、对角线相等且互相平分B、对角线相等且互相垂直平分C、对角线互相平分D、四条边相等,四个角相等9、如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=4,则AB的长为()A、2B、4C、6D、810、如图,E F过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,则S阴影是S矩形ABCD 的()A、B、 C、D、11、在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为()A、24B、24πC、D、12、如图,关于x的函数y=kx﹣k和y=﹣(k≠0),它们在同一坐标系内的图象大致是()A、B、C、D、二、填空题(每空3分,共36分)13、计算:= _________ .14、比较大小:_________ .15、函数y=中,自变量x的取值范围是_________ .16、当m= _________ 时,关于x的方程会产生增根.17、若y﹣2与x成反比例,且x=3时y=﹣2,则y与x的函数关系式为_________ .18、在双曲线(a为常数)上有三点A(﹣1,y1)、B、C(3,y3),则y1,y2,y3由小到大依次为_________ (用“<”连接).19、如图,A为反比例函数的图象上一点,且Rt△AOB的面积为2,则此反比例函数的解析式为_________ .20、已知一直角三角形的面积为30,其中一条直角边长为12,则其斜边上的中线长为_________ .21、如图,在▱ABCD中,E是AD中点,且BE平分∠ABC,若AB=2,则▱ABCD的周长是_________ .22、如图,在正方形ABCD中,延长BC到点E,使CE=AC,连接AE,AE交CD于点F,则∠AFC= _________ .23、如图,△ABC中,AB=10,AC=7,AD是角平分线,CM⊥AD于M,且N是BC的中点,则MN= _________ .24、已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP 的长为_________ .三、解答题(共28分)25、解方程:26、计算.27、如图①,将一组对边平行的纸条沿EF折叠,点A,B分别落在A′,B′处,线段FB′与AD交于点M.(1)试判断△MEF的形状,并证明你的结论;(2)如图②,将纸条的另一部分CFMD沿MN折叠,点C,D分别落在C′,D′处,且使MD′经过点F,试判断四边形MNFE的形状,并证明你的结论;(3)当∠BFE=_________度时,四边形MNFE是菱形.28、已知,如图:△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.29、如图,正比例函数的图象与反比例函数的图象交于A、B两点,点A的横坐标为6.(1)求反比例函数的表达式;(2)点P为此反比例函数图象上一点,且点P的纵坐标为4,求△AOP的面积.30、已知:如图,菱形ABCD的对角线AC与BD交于点O,延长BA到E,使AE=AB,连接OE,延长DE交CA的延长线于F.求证:OE=DF.答案与评分标准一、选择题(每空3分,共36分)三、解答题(共28分)25、解:方程两边都乘(x+2)(x﹣2),得:(x﹣2)2﹣(x2﹣4)=3,解得:x=.检验:当x=时,(x+2)(x﹣2)≠0.∴x=是原方程的解.26、解:=4﹣+3+﹣﹣1=4﹣+2.27、解:(1)△MEF为等腰三角形.证明:∵AD∥BC,∴∠MEF=∠EFB.∵∠MFE=∠EFB,∴∠MEF=∠MFE.∴ME=MF,即△MEF为等腰三角形.(2)四边形MNFE为平行四边形.证法一:∵ME=MF,同理NF=MF,∴ME=NF.又∵ME∥NF,∴四边形MNFE为平行四边形.证法二:∵AD∥BC,∴∠EMF=∠MFN.又∵∠MEF=∠MFE,∠FMN=∠FNM,∴∠FMN=∠MFE,∴MN∥EF.∴四边形MNFE为平行四边形.注:其他正确证法同样得分.(3)60.28、解:过D作DE⊥AB,垂足为E,∵∠1=∠2,∴CD=DE=15,在Rt△BDE中,BE===20,∵CD=DE,AD=AD,∴Rt△ACD≌Rt△AED,∴AB2=AC2+BC2,即(AC+20)2=AC2+(15+25)2,解得AC=30.29、解:(1)∵点A的横坐标为6,∴纵坐标为×6=2,∴k=2×3=6,∴反比例函数的表达式为y=;(2)∵点P的纵坐标为4,∴横坐标为1.5,∴S△AOP=S△OPC+S梯形PCDA﹣S△AOD=S梯形PCDA=(2+4)×(6﹣1.5)=13.5.30、证明:∵菱形ABCD,∴AB=CD,AB∥CD,AC⊥BD,∵AE=AB,∴AE=CD,∴==,∴E为DF的中点,∵∠AOD=90°,∴OE=DF.。
2019-2020八年级数学第二学期期中考试试卷一 选择题(每题3分,共36分)1.2)8(-=( ) A 8 B -8 C 22 D -222.不能作为直角三角形三边长的数据是( ) A 1,1,2 B 1,2,5 C 1,2,3 D 2,3,13.下列运算结果是无理数的是( ) A 23×3 B 32×23 C 27÷3 D 22513-4.如图1,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若AC=12,BD=10,AB=7,则△DOC 的周长为( ) A 29 B 25.5 C 22 D 185.若x 化简后能与5合并,则x 的值可以是( ) A 0.5 B 50 C 125 D 256.如图2,从下列四个条件:①AB=BC ,②AC ⊥BD ,③∠ABC=900,④AC=BD 中选两个作为补充条件,使平行四边形ABCD 成为正方形,下列四种选法不正确的是( ) A ①④ B ①③ C ②③ D ①② 7.一个等腰三角形的腰长为10cm ,底边长为12cm ,则等腰三角形的面积为( )A 48cm 2B 96cm 2C 65cm 2D 60cm 28.如图3,直线AB ∥CD ,P 是AB 上的动点,当点P 的位置变化时,△PCD 的面积将( ) A 变大 B 变小 C 不变 D 随点P 的运动而变化9.如图4,已知大正方形的面积为75cm 2,从中剪去两个小正方形,若其中一个小正方形的面积为48cm 2,则图中阴影部分的面积为( ) A 10cm 2 B 12cm 2 C 13cm 2 D 16cm 210.如图5,在平面直角坐标系xOy 中,已知菱形ABCD 的顶点A ,B 的坐标分别为(-3,0),(2,0),点D 在y 轴上,则点C 的坐标是( ) A (4,5) B (5,4) C (4,4) D (5,3)11.如图6,甲以直角三角形的三边为边长作正方形,乙以直角三角形的三边为直径作半圆,面积分别记作S 1,S 2,S 3,则满足S 1+S 2=S 3的是( ) A 只有甲 B 只有乙 C 甲和乙 D 甲和乙都不满足12.如图7,在Rt △ABC 中,AC=3,BC=6,D 为斜边AB 上一动点,DE ⊥BC ,DF ⊥AC ,垂足分别为E ,F ,则线段EF 的最小值为( ) A23 B 3 C 22 D 2二 填空题(每小题3分,共18分)13.全等三角形的对应角相等”的逆命题是 . 14.比较大小:2221×18 (填“>” “<”或“=”) 15.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘处,另一只猴子爬到树顶后直接跃到池塘处(池塘看成一个点),距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高 米.16.如图8,DE 为Rt △ABC 的中位线,点F 在DE 上,且∠AFC=∠BAC=900,若AB=12,AC=5,则DF 的长为 .17.如图9,AD=2,CD=1,BC=2,AB=3,∠ADC=900,则阴影部分的面积为 .18.如图10,先将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连接AD 1,BC 1.若∠ACB=300, AB=1,CC 1=x,当x= 时,四边形ABC 1D 1是菱形.三 解答题19.(8分) 计算: (1)12+3(1-6)+221(2)(23+15)(15-23)20.(8分)如图11,正方形网格中有△ABC ,若每个小方格边长为1,请你根据所学的知识解答下列问题. (1)判断△ABC 的形状,并说明理由;(2)求△ABC 中边AC 上的高.21.(8分)如图12,在平行四边形ABCD 中,点E 在边BC 上,点F 在边DA 的延长线上,且AF=CE ,EF 与AB 交于点G.(1)求证:AC ∥EF ;(2)若G 是AB 的中点,BE=6,求边AD 的长.22.(10分)对实数x ,y 定义下列运算:x ★y=x 2-xy+y 2,x ☆y=y x +x y ,若x=21(7+5),y=21(7-5). (1)求x+y 和xy 的值;(2)求x ★y 和x ☆y 的值.23.(10分)如图13,0是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD.(1)求证:OE ⊥DC ;(2)若∠AOD=1200,DE=2,求矩形ABCD 的面积.24.(10分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺测算出学校旗杆的高度.嘉嘉和淇淇分别设计了一个方案.为了计算方便,测量数据均保留了整数,两人的最终结果可能出现误差,根据嘉嘉和淇淇两人的方案,分别求出旗杆的高度.25.(12分)如图15,在菱形ABCD中,AB=4,点H是边AD的中点,点E是边AB上一动点(不与A重合),连接EH 并延长交射线CD于点M,连接AM,DE.(1)求证:四边形AEDM是平行四边形;(2)若∠DAB=600.①当AE取何值时,四边形AEDM是矩形?②当AE取何值时,四边形AEDM是菱形?(3)若∠DAB=450,四边形AEDM有可能是正方形吗?如果可能,求出AE的值;如果不可能,说明理由.2019-2020八年级数学第二学期期中考试试卷参考答案1.A2.A3.B4.D5.C6.D7.A8.C9.B 10.B 11.C 12.D13. 对应角相等的两个三角形全等. 14.< 15. 15 16.4 17.5-1 18. 1 19.(1)33-22 (2)320.(1)直角三角形.AB=5,BC=25,AC=5,AB 2+BC 2=AC 2.(2)设AC 边上的高为h ,则S Rt △ABC =21AB ·BC , S Rt △ABC =21AC ·h ,21AB ·BC=21AC ·h ,h=2. 21.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AF =CE ,∴四边形AFEC 是平行四边形,∴AC ∥EF ;(2)解:∵AD ∥BC ,∴∠F =∠GEB ,∵点G 是AB 的中点,∴AG =BG ,在△AGF 与△BGE 中,,∴△AGF ≌△BGE (AAS ),∴AF =BE =6,∵AF =CE =6,∴BC =BE+EC =12,∵四边形ABCD 是平行四边形,∴AD=BC =12.22.(1)x+y=7,xy=21;(2)x ★y=(x-y )2+xy=5+21=521,x ☆y=)57(21)57(21-++)57(21)57(21+-=)57()57(-++)57()57(+-=)57)(57()57()57(22-+-++=224=12. 23.(1)证明:∵DE ∥AC ,CE ∥BD ,∴DE ∥OC ,CE ∥OD ,∴四边形ODEC 是平行四边形,∵四边形ODEC 是矩形,∴OD =OC =OA =OB ,∴四边形ODEC 是菱形,∴OE ⊥DC ,(2)∵DE =2,且四边形ODEC 是菱形,∴OD =OC =DE =2=OA ,∴AC =4,∵∠AOD =120,AO =DO ,∴∠DAO =30°,且∠ADC =90°∴CD =2,AD =CD =2,∴S 矩形ABCD =2×2=424.嘉嘉:解:设旗杆长为x 米,则绳长为(x+1)米,则由勾股定理可得知: 52+x 2=(x+1)2,解得x=12,旗杆的高度为12米.淇淇:解:设旗杆长为x 米,则绳长为(x-1)米,则由勾股定理可得知: 52+x 2=(x-1)2,解得x=13,旗杆的高度为13米.25.(1)证明:∵四边新ABCD 是菱形,∴AB ∥CD ,∴∠DNE=∠AME ,∵点E 是AD 边的中点,∴AE=DE ,在△NDE 和△MAE 中,∠DNE=∠AME ,∠DEN=∠AEM ,DE=AE ,∴△NDE ≌△MAE (AAS ),∴NE=ME ,∴四边形AMDN 是平行四边形;(2)①当AE=2时,四边形AMDN 是矩形. 理由如下:∵AE=2=21AD=AH ,∠DAB=60°,∴∠AHE=∠AEH=60°,∴∠ADE=30°,∴∠AED=90°,∴平行四边形AEDM 是矩形;②当AE=4时,四边形AEDM 是菱形.理由如下:∵AE=4,∴AE=AD=4,∴△AED 是等边三角形,∴AE=DE ,∴平行四边形AEDM 是菱形. (3)存在.当AE=22时,四边形AEDM 是正方形.。
下学期八年级期中考试卷数学一、填空题1.分解因式:x 2-x=___________________.2.命题“同位角相等,两直线平行”的逆命题是:_____.3.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,∠A =50°,∠ADE =60°,则∠C =_____.4.如图,一根旗杆在离地面5 m 处断裂,旗杆顶部落在离旗杆底部12 m 处,旗杆断裂之前的高为____.5.已知菱形的边长是5cm ,一条对角线长为8cm ,则菱形的面积为________cm 2.6.符号“*”表示一种新的运算,规定,求的值为_______二、选择题7.式子在实数范围内有意义,则x 的取值范围是( )A. x <1B. x≥1C. x≤﹣1D. x >18.下列计算错误的是( ) A. B. C. D.9.的结果是( )A.B. C. 7 D. -710.下列给出的四组数中,是勾股数的一组是( )A. 1、2、3B. 1、2、C. 6,8,10D. 5、12、1011.下列二次根式中,是最简二次根式的是( ).A.B.C.D.12.如图,矩形ABCD 的两条对角线相交于点O ,∠ACB=30°,AB=2,则矩形的面积为( )A.B. 2C. 4D. 13.在平行四边形ABCD 中,=,那么的度数是( ) A. 500B. 1000C. 1300D. 800 14.如图,一只蚂蚁从长为2cm 、宽为2cm ,高是3的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( ).A. 3B. 2C. 5D. 7 三、解答题15.计算题 (1)(2).(3)(4)16.先化简,后求值,其中.17.已知在四边形ABCD 中,AD=BC ,∠D=∠DCE .求证:四边形ABCD 是平行四边形.18.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?19.老张家有一块草坪如图所示.家里想整理它,需要知道其面积.老张测量了草坪各边得知:AB=3米,BC=4米,AD=12米,CD=13米,且.请你帮老张家计算一下这块草坪的面积.20.如图所示,O 是矩形ABCD 的对角线的交点,作DE∥AC,CE∥BD,DE 、CE 相交于点E .求证:(1)四边形OCED 是菱形.(2)连接OE ,若AD=4,CD=3,求菱形OCED 的面积.21. A 、B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A 型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同,求A 型机器每小时加工零件的个数.22. (8分)(2015•聊城)如图,在△ABC 中,AB=BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .求证:四边形BECD 是矩形.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ ;(2)若AD=8cm,AB=6cm,点P从点A出发,以的速度向点D 运动(不与D重合).设点P运动的时间为t秒,请用t表示PD的长;(3)当t为何值时,四边形PBQD是菱形?。
2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3 分)计算6X24^=.2.(3分)已知一个直角三角般的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子J市有意义,则x的取值范围是.4.(3分)如国,在ZUBC中,。
、E分别为A3、4c边的中点,若DE=2,则8c边的长为.5.(3分)如图,一棵大树在离地面3加、5加两处折成三段,中间一段43恰好与地面平行,大树顶部落在离大树底部6加处,则大树折断前的高度是.6.(3分)菱形A3CO的对角线AC=4, 30=2,以AC为边作正方形ACEF,则3尸的长为____ 二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.任B.C. V2QD./8.(4分)判断下列各组数能作为直角三角形三边的是()A. 3, 4, 6B. 4, 5, 7C. 2, 3, ^7D. 7, 6, A/139.(4分)如图,已知菱形A3CD的对角线交于点O, DB=6f AD=5,则菱形A3CD的面积为()10. (4 分)在 RtAABC 中,ZABC=90° , 0 为斜边 AC 的中点,30=5,则 AC=()11. (4分)下列计算中,正确的是( A.收-3) 2二 ±3 B.历+ 如二9C.D.卑一心V 212. (4分)不能判定四边形A3CD 为平行四边形的条件是(13. (4分)如图,延长翅形A5co 的边BC 至点E,使CE=CA,连接AE,若N5AC=三、解答题(本大题共9小题,共70分)15. (6分)计算:倔+(证-3)°-导(2%)216. (6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60々加小,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m 处有一个车速检测仪, 过了 4s 后,测得小汽车距禺测速仪65m.这辆小汽车超速了吗?通过计算说明理由(lw/s=3.6k”i/h)17. (8分)如图,四边形43。
2019~2020学年度下学期八年级期中测试数 学 试 题一、选择题(本大题共16个小题,1~10题每小题3分,11~16题每2题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1x 的取值范围是( ) A .x ≥1且x ≠2 B .x ≤1 C .x >1且x ≠2 D .x <1 2.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 3.在□ABCD 中,∠A =70°,则∠B 的度数为( )A .110°B .100°C .70°D .20°4)A .﹣4B .4C .±4D .25.在平行四边形ABCD 中,已知AB =5,BC =3,则它的周长为( )A .8B .10C .14D .16 6.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 7.下列式子中,为最简二次根式的是( )ABCD8.已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是( )A .2.5B .3 C2 D39.如图1,在□ABCD 中,已知AD =12cm ,AB =8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( ) A .8cm B .6cm C .4cm D .2cm 10.如图2,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为( ) AB .3CD .511.等腰三角形腰长为13,底边长为10,则它的面积高为( ) A .90 B .60 C .30 D .25 12.如图3,在△ABC 中,∠C =90°,AC =2,点D 在BC∠ADC =2∠B ,AD BC 的长为( )A .3﹣1B .3 +1C .5﹣1D .5 +1图3 DABE2 1 图2A B E CD 图113.如图4,将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度h cm,则h的取值范围是()A.h≤17cm B.h≥8cmC.7cm≤h≤16cm D.15cm≤h≤16cm14.如图5,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕所成锐角的大小为()A.30°B.45°C.60°D.90°15.如图6,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,-5)B.(0,-6)C.(0,-7)D.(0,-8)16.如图7所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点,若EF=1,则AB=(A.6 B.4C.2 D二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)17.18.如图8,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为19.在平面直角坐标系xOy中,若A的坐标为(1OA为边长的菱形的周长为.20.如图9,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.三.解答题(本大题共6个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)21.(每小题6分,满分12分)(1)计算:2122⎛⎫-⎪⎝⎭.图5A BFCM图7 EA BCDF图9E(2)已知2x =2y =+22x xy y ++的值. 22.(每小题满分8分)已知a 、b 、c 是△ABC 的三边,且满足422422a b c b a c +=+,试判断△ABC 的形状.阅读下面解题过程:解:由422422a b c b a c +=+得:442222a b a c b c -=-①2222222()()()a b a b c a b +-=-②即222a b c +=③∴△ABC 为Rt △.④试问:以上解题过程是否正确: .若不正确,请指出错在哪一步? (填代号) 错误原因是 . 本题的结论应为 .23.(每题满分10分) 如图10,□ABCD 中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠BAC的角平分线,交AD 于点E ,连接EF . (1)求证:四边形ABFE 是菱形;(2)若AB =4,∠ABC =60°,求四边形ABFE 的面积.A B C F图10 E24.(本题满分10分)如图11,在△ABC 中,AB =AC ,△ABC 的高BD ,CE 交于点F . (1)求证:FB =FC .(2)若FB =5,FD =3,求AB .A BCD F 图11 E如图12,点E 在□ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ; (2)设□ABCD 的面积为S ,四边形AEDF 的面积为T ,求ST 的值.ABCF图12E已知:如图13,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.图13AB C备用图1AB C备用图2。
学校2019-2020学年度第二学期八年级期中检测数学试题一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列各组数中,以它们为边长的线段能构成直角三角形的是()A. 2,4,5B.1,1,√2C.6,8,11D. 5,12,122.下列各式从左到右的变形中,是因式分解的为()A.y2−4y+4=(y−2)2B. a(x+y)=ax+ayC. t2−16+3t=(t+4)(t−4)+3tD. 6x3y2=2x2y⋅3xy3.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.4.已知x>y,则下列不等式不成立的是()A. −3x<−3yB. 2x>2yC. −3x+6>−3y+6D. x−6>y−65.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A. (−a,b−2)B. (−a+2,b+2)C. (−a+2,−b)D. (−a,b+2)6.不等式组{12(x+2)−3>0x>m的解集是x>4,那么m的取值范围是()A. m>4B. m<4C. m≥4D. m≤47.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A. 20°B. 50°C. 40°D. 70°8.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下结论:①EF=AP;②△APF和△CPF可以分别看作由△BPE和△APE绕点P顺时针方向旋转90°得到的;③△EPF是等腰直角三角形;④S△ABC=2S四边形AEPF.其中始终成立的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本题满分18分,共有6道小题,每小题3分)9.已知等腰三角形的两边长分别是2和5,则周长是____.10.如图,函数y1=−2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式−2x≤ax+3的解集是______.11.一件商品的进价是500元,标价为600元,打折销售后要保证利润率不低于8%,此商品最多降价多少元?如果设此商品降x 元,那么可列不等式______.12.如图,在△ABC中,∠BAC=60°,点D是BC边上一点,连接AD,过点D分别作DE⊥AB于E,DF⊥AC于F.若AD=12,且DE=DF,则DE的长为______.13.如图,在△ABC中,∠ACB=90°,AC=BC=4cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点D处,连接BD,那么线段BD=______cm.14.如图,在直角坐标系中,已知点A(−3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形(1),(2),(3),(4)…,则三角形(2022)的直角顶点的坐标为______.三.作图题(本题满分4分)15.如图,已知线段a,h求作:△ABC,使AB=AC,BC=a,高AD=ℎ.(不写作法,保留作图痕迹,写出结论)四.解答题16. (本小题满分16分,每小题4分)(1)分解因式① 22363ay axy ax ++ ② ()()22916b a b a +--(2)解不等式(组)并把②的解集在数轴上表示出来 ①1215312≤+--x x ②()48211032x x x x -<-⎧⎪⎨+>⎪⎩①②17. (本题满分6分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2、C 2的坐标.18. (本题满分10分)如图,已知∠A =∠D =90°,点E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =DC ,BE =CF.求证:(1)AF=DE(2)若OP⊥EF,求证:OP平分∠EOF.19.(本题满分10分)(1)(2)若商场规定B型台灯的进货数量不超过A型台灯数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20.(本题满分12分)已知,如图,在△ABC中,∠ABC=60°,AB=12cm,BC=18cm,动点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s,同时,动点P从点B出发,沿BC向点C匀速运动,速度为3cm/s,当点P停止运动时,点Q也随之停止运动,连接PQ,设运动的时间为t 秒(0<t<6).(1)当t为何值时,PQ⊥AB?(2)设四边形AQPC的面积为S(cm2),求S与t的函数关系式;(3)是否存在某一时刻使得点B在线段PQ的垂直平分线上?若存在,求出此时t的值,并求出此时四边形AQPC的面积;若不存在,请说明理由;。
2019-2020学年八年级下学期期中考试数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1、下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③ B.①③⑤ C.①②③ D.①②③⑤2、在菱形ABCD中,如果∠B=110°,那么∠D的度数是A.35° B.70° C.110° D.130°3、在三边分别为下列长度的三角形中,是直角三角形的是()A.9,12,14 B.2,, C.4,3, D.4,3,54、化简的结果是()A.﹣ B.﹣ C.﹣ D.﹣5、如图,在▱ABCD中,∠ODA=90°,AC=20cm,BD=12cm,则AD的长为()A.8cm B.10cm C.12cm D.16cm6、已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形形状是(A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形 D.直角三角形7、下列运算正确的是()A.﹣= B. =2 C.﹣= D. =2﹣8、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2 B.3 C.4 D.59、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,则BE的长为()A. B.2 C.4﹣4 D.4﹣210、已知a<b,则化简二次根式的正确结果是()A.B.C.D.11、实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定12、已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,BP长为()A.1 B.2 C.2.5 D.3二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上13、小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?(填对或错).14、已知x=+1,则x2﹣2x+4= .15、如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD的面积.16、如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.17、如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若EF=2,BC=10,则AB的长为.18、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= .三、解答题(共66分。
2019-2020年八年级下学期期中考试数学试题 Word版含答案(IV)一.精心选一选,旗开得胜(每小题3分,共30分)1. 把直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的( )A.8倍B.4倍错误!未找到引用源。
C. 2倍D. 6倍2.两个直角三角形全等的条件是()A. 一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面的性质中,平行四边形不一定具有的是()A.内角和为360°B.邻角互补C.对角相等D. 对角互补4.如图,如果平行四边形ABCD的对角线AC、BD相交于点O,那么图中的全等三角形共有()A.1对B.2对C.3对D.4对第4题图5.□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线的和是()A.18B.28C.36D.466. 若点M(x,y)满足x+y=0,则点M位于()A. 第一、三象限两坐标轴夹角的平分线上;B. x轴上;C. 第二、四象限两坐标轴夹角的平分线上;D. y轴上。
7.已知x、y为正数,且||+(y2-3)2=0,如果以x,y的长为直角边作一直角三角形,那么以此直角三角形的斜边为边长的正方形的面积为()A.5B.25C.7D.158.在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个第9题图第10题图10. 如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若 BD= 6,则四边形CODE的周长是 ( )A.10 B.12 C.18 D.24二.细心填一填,一锤定音(每小题3分,共30分)11. 在RtABC中,∠C=90°,∠A=65°,则∠B= .12一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为cm .13.如图,已知□ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是 .1 第13题图 第15题图 第17题图14.□ABCD 的周长为60cm,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm, 则 AB= cm.15.如图,已知在□ABCD 中,AB=4cm,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线 于点F ,则DF= cm.16. 一个多边形的每一个外角等于30°,则此多边形是 边形,它的内角和等于 。
勐板中学2019——2020学年八年级下学期期中数学检测
一、选择题(每小题2分,共20分)
1、要使13-x 有意义,则x 的取值范围是 。
2、________,228=- 6 ÷(12 +1
3
)=______________ 3、 3是 的平方根,
49的算术平方根是 。
4、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。
5、如图,沿倾斜角为30︒的山坡植树,要求相邻俩棵树的水平距离AC 为2m ,那么相邻两棵树
的斜坡距离AB 约为 m 。
(精确到0.1m ,可能用到的数据41.12≈,73.13≈)。
6、已知一个三角形的三边长分别是12cm ,16cm ,20cm ,则这个三角形的面积为 。
7、在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要___________m .
8、已知正方形的一条对角线长为4 cm ,则它的面积是_________ cm 2.
9、菱形的两条对角线长为6和8,则菱形的边长为_________,面积为_________. 10、□ABCD 中,若∠A ∶∠B =2∶3,则∠C =_________,∠D =_________.
二、填空题(每小题2分,共20分) 11、下列计算正确的是 ( )
A 、36=
B 、39-=-
C 、39=
D 、393= 12、下列各组数中不能作为直角三角形的三边长的是 ( )
A. 1.5, 2, 3;
B. 7, 24, 25;
C. 6 ,8, 10;
D. 9, 12, 15. 13、要使式子32+x 有意义,字母x 的取值必须满足( )
13
5m
(7题)
4题
5题
A 、0≥x
B 、23≥
x C 、32≥x D 、2
3-≥x 14、下列运算正确的是 ( ) A 、235=
- B 、312914
= C 、323
21
+=- D 、()
52522
-=-
15.如果三条线段首尾顺次连接组成直角三角形,那么这三条线段长的比不可能是( )
A .1:2:3
B .3:4:5
C .8:15:17
D . 5:3:4
16、现有两根木棒的长度分别为40cm 和50cm, 若要钉成一个直角三角形框架,那么所需的另一根木
棒的长为( )
A .30cm
B .40cm
C .50cm D.以上都不对
17、如果一个四边形有三个角的外角分别是80°,85°,90°,那么它的第四个角是( ) A .105° B .95° C .85° D .75° 18、□ABCD 的周长为36 cm ,AB =
7
5
BC ,则较长边的长为 ( ) A .15 cm B .7.5 cm C .21 cm D .10.5 cm 19、如图,在□ABCD 中,点M 为边CD 的中点,如DC =2AD , 则AM ,BM 夹角度数是( )
A .90°
B .95°
C .85°
D .100° 19题 20、下列定理中,没有逆定理的是 ( )
A .三边对应相等的两个三角形全等
B . 中垂线上的点到线段两端的距离相等
C .全等三角形的对应角相等
D .直角三角形斜边上的中线等于斜边的一半 三、计算题(共60分)
21、计算(每小题4分,共20分) (1)、27
3 (2)、22
1
223+
-
(3)、3222233--+ (3)、32
218+-
(5)、()(
)
13132+-
22、((6分)小东拿一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来
拿,结果秆比城门高1米,当他把秆斜着时,两端刚好顶着城门的对角,问竿长多少米?
23、(6分)一个长10米的梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8米,梯
子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由。
B
C
A A ’
B ’
24、6分)如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平四边形.
25、(6分)已知等腰梯形ABCD,AD∥BC,E为梯形内一点,且EA=ED,
求证:EB=E C.
26、(6分)已知:如图9,□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,求证:
四边形AFCE是菱形.
27、(8分)如图,Rt△ABC,∠BAC=90°,点D,E分别为边AB,BC的中点,点F在CA延长线上,
且∠FDA=∠B.
(1)求证:AF=DE;
(2)若AC=3,BC=5,求四边形AEDF的周长.。