航空燃气涡轮发动机的尾喷管
- 格式:ppt
- 大小:8.68 MB
- 文档页数:77
航天发动机尾喷管材料的简介————高温合金摘要:随着航天航空的迅速发展,对耐高温材料有了更高的要求,但是随着高温材料的发展,它们的加工问题也越来越严峻,急需相应工艺的发展,对高温材料的有效加工必将是高温材料今后有效利用的关键。
关键词:加工工艺,高温合金,切削,应用,发展。
一、零件的材料火箭发动机喷管是用于火箭发动机的一种(通常是渐缩渐阔喷管)推力喷管。
它用于膨胀并加速由燃烧室燃烧推进产生的燃气,使之达到超高音速。
喷嘴的外形:钟罩形或锥形。
在一个高膨胀比的渐缩渐阔喷嘴中,燃烧室产生的高温气体通过一个开孔(喷口)排出。
如果给喷嘴提供足够高的压力(高于围压的2.5至3倍),就会形成喷嘴阻流和超音速射流,大部分热能转化为动能,由此增加排气的速度。
在海平面,发动机排气速度达到音速的十倍并不少见。
一部分火箭推力来自燃烧室内压力的不平衡,但主要还是来自挤压喷嘴内壁的压力。
排出气体膨胀(绝热)时对内壁的压力使火箭朝向一个方向运动,而尾气向相反的方向。
当火箭发动机运转以后,从燃烧室中喷出极高的温度与压力的气体,需要经过尾喷管对高温高压气体调整方向,从而使火箭达到超高音速的要求,所以鉴于如此高温,高压的恶劣环境,则对尾喷管的材料提出很高的要求,这种材料不但需要有极好的耐高温性,需要经受住2000摄氏度到3500摄氏度的高温,还需要有极好的耐冲击性,灼热表面的超高速加热的热冲击,还有高热引起的热梯度应力,有较好的刚度,耐氧化性,耐热疲劳性。
在如此恶劣的工作环境下,我们需要一种满足以上要求的材料,儿高温合金的出现满足了这个要求。
二、高温合金的分类、性能等760℃高温材料变形高温合金变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。
按其热处理工艺可分为固溶强化型合金和时效强化型合金。
GH后第一位数字表示分类号即1、固溶强化型铁基合金 2、时效硬化型铁基合金 3、固溶强化型镍基合金 4、钴基合金 GH后,二,三,四位数字表示顺序号。
飞机上的拉瓦尔喷管是怎么把亚音速气流变成超音速气流的?现代战机所采用的动力装置都是涡喷或者小涵道比的涡扇发动机。
尾喷管是喷气式飞机的发动机的组成部分之一,主要作用是将喷气式飞机燃油燃烧后的产物如二氧化碳、二氧化硫、一氧化碳、氮氧化物、未完全燃烧的小分子烃类物质喷射出去,起到排废气的作用,同时也利用喷射时空气产生的反作用力来推动飞机。
乍一听,这好像也就是个负责排气的很简单的东西,其实则不然。
歼10b尾喷管飞机上的一般由中介管和喷口组成,尾喷管不同的燃气涡轮发动机,尾喷管的设计也不尽相同。
中介管在涡轮后,由整流锥和支撑板组成,起整流作用。
以防止燃气在涡轮后方产生强烈的涡流,影响发动机的推力。
至于喷口,一般为收敛型,但是当飞机的飞行速度越来越高时,为了提高发动机的工作效率,获得更大的推力,这时经常采用一种超声速喷管:拉瓦尔喷管。
拉瓦尔喷管的构造也不复杂,喷管的前半部是由大变小向中间收缩至一个窄喉,后半部分又是截面积逐渐变大的扩张形状的。
就通过这一收敛与扩展,拉瓦尔喷管能使发动机的亚音速气流加速到超音速喷出,从而产生更大的推力。
那么这简简单单的设计为什么会有如此神奇的效果呢?这还要从低速气流与高速气流不同的流动特点说起。
拉瓦尔喷管低速气流的流动特点:低速气流在流动的过程中,由于其密度变化不大,因此可以近似认为是不可压缩的,即密度为常数。
低速气流在变截面管道中的流动情况如下图所示。
当管道收缩时,A2<A1,由不可压缩流体的连续性方程可知,气流的流速将增加V2>V1,又由伯努利方程可知,流速小的地方气流的静压大,流速大的地方气流的静压将减小。
因此,P2<P1。
反之,当管道扩张时,A2>A1,气流的流速将减小,即V2<V1 ,而气流的静压将增加,即P2>P1。
低速气流在变截面管道中的流动注:不可压缩流体的连续性方程:当气流稳定而连续的流过一个变截面管道时,由于流体是不可压缩的,密度不发生变化,管道中的任意一部分气流既不能中断也不能堆积,因此根据质量守恒可知在同一时间内流过管道任意截面的气体质量都是相等的。
《民航概论》课程作业民用航空涡轮喷气发动机各部件简介及其工作原理姓名:***学院(系):民航(飞行)学院专业:*************班级:0710103学号:******************二О一二年十二月二十四日民用航空涡轮喷气发动机各部件简介及其工作原理民用航空自开始以来,随着时代的变迁和人们生活水平的提升,正处于高速发展状态。
各经济发展较迅速的国家均争相发展自己的航空航天产业,民用航空则是一个关系民生的重要组成部分。
我国自1920年开通第一条航线以来,民航正处于跨越式发展阶段,无论是投入还是硬件设施,足以与发达国家相聘美。
然而发动机作为飞机的心脏,一直是遏制民航发展的一个瓶颈。
作为南京航空航天大学民航学院的一名学生,在学习了民航概论,飞行原理等课程后,通过参考各种文献和书籍,我在这仅其中的很小一部分,即航空涡轮喷气发动机发表自己的一些浅薄认知。
民用航空发动机作为飞机的核心,关系着整架飞机的运行及安全。
喷气涡轮发动机共由五部分组成:进气道、压气机、燃烧室、涡轮、尾喷管。
每一个部分各自发挥着作用,又相互影响,相互制约。
1.进气道在民用航空中发动机一般是一个独立的整体,进气道也几乎与机身有一定间隔,并非作为一体化设计,当然也有将发动机与机身进行一体化设计的,一般在军用飞机中较为常见。
进气道作为发动机的起始部分,有着非常重要的作用,对整台发动机的工作有着重要的影响,甚至可以说,如果进气道出问题,整台发动机都不能工作甚至毁坏。
进气道的作用大致为:在各种状态下,将足量的空气以最小的流动损失,顺利地引入压气机;当压气机进口处的气流马赫数小于飞行马赫数时,通过冲压压缩空气,提高空气的压力;在所有飞行条件和发动机工作状态下,进气道的增压过程避免过大的空间和时间上的气流不均匀性,以减少风扇或压气机喘振和叶片振动的危险;进气道的外阻力应尽可能小。
进气道有两种,分别是亚音速进气道和超音速进气道。
在民用航空中,安全始终是放在首要地位,因此绝大部分民用客机是工作在亚音速阶段。
战机机尾喷管工作原理
战机机尾喷管是飞机发动机的重要组成部分,通过喷出高速气流产生推力,推动飞机前进。
它的工作原理主要包括以下几个方面:
1. 喷气效应:喷管内燃烧燃料产生高温高压气体,经过喷嘴排出,产生高速气流,根据牛顿第三定律,气流向后冲,推动飞机向前运动。
2. 喷管形状和喷口设计:喷管内壁经过精心设计,以实现最高效的喷气效果。
常见的喷管形状包括喇叭形、喇叭状膨胀型、可变喷管等。
喷口也被精确地设计成适当的尺寸和形状,以控制气流速度和方向。
3. 负压效应:喷管工作时,在喷嘴的周围形成一个较低压区域。
这种负压效应可以进一步增加喷气效果,增大推力。
4. 后掠板:喷管内还配备了后掠板,它们可以根据喷气流量和飞行状态进行调整,以优化喷气效果和推力。
这些后掠板通常由电动、液压或气压控制。
5. 调节系统:战机机尾喷管通常配备有调节系统,可以根据不同的飞行阶段和任务要求来调整喷气流量和喷气方向。
这些调节系统可以通过电脑、传感器和执行器进行控制。
通过喷管工作原理的优化设计和精确控制,战机可以获得更高的推力和飞行性能,从而提高机动性、速度和作战能力。
标题:CFM56-7B发动机尾喷管损伤检查标准:全面评估与深入探讨尊敬的读者,在工业制造领域,发动机是飞机的心脏,其工作状态直接关系到飞行安全和效率。
而CFM56-7B发动机作为常见的喷气式飞机发动机之一,在飞行过程中可能会出现尾喷管损伤问题,因此对其损伤检查标准的深入探讨显得尤为重要。
本文将从整体概述、损伤类型、检查标准、个人观点等多方面进行全面评估,并按照从简到繁、由浅入深的方式展开叙述,帮助读者更好地理解CFM56-7B发动机尾喷管损伤检查标准。
一、概述CFM56-7B发动机尾喷管是发动机的重要组成部分,其损伤可能会对发动机工作状态产生严重影响。
而对于CFM56-7B发动机尾喷管损伤检查标准的了解,可以帮助飞机维修人员及时发现并解决问题,确保飞机的飞行安全。
二、损伤类型CFM56-7B发动机尾喷管可能出现的损伤类型包括磨损、裂纹、腐蚀等。
这些损伤可能是由于发动机工作环境、材料质量、使用年限等因素导致的。
对于不同类型的损伤,需要采取不同的检查方法和标准。
三、检查标准对于CFM56-7B发动机尾喷管的损伤检查标准,通常包括外观检查、非破坏性检测、超声波检测等多种方法。
这些检查标准需要严格遵守,并结合实际情况进行综合判断。
四、个人观点在我看来,CFM56-7B发动机尾喷管损伤检查标准的制定和执行,不仅需要依靠丰富的经验和严谨的态度,还需要借助先进的技术手段和设备。
只有全面深入地了解检查标准,并且结合实际情况进行评估,才能更好地保障飞机的飞行安全。
总结回顾通过本文的全面评估和深入探讨,相信读者对于CFM56-7B发动机尾喷管损伤检查标准已经有了更清晰的认识。
在飞机维修保养中,对于尾喷管损伤的及时发现和处理,将对飞机的飞行安全和正常运行起到至关重要的作用。
CFM56-7B发动机尾喷管损伤检查标准是一个复杂而重要的课题,需要我们不断探索和总结经验,以期为飞行安全保驾护航。
感谢您的阅读与支持!此致敬礼随着航空业的发展和飞机运输的日益普及,飞机发动机作为飞机的心脏,其安全运行至关重要。
第4章燃烧室、加力燃烧室和尾喷管Burner and Nozzle第4.1节燃烧的基本知识Basic Knowledge of Burn在空气流中连续不断的喷入燃油,形成火焰,稳定燃烧,必须满足以下两个条件:一、油气比在一定的范围内才能进行燃烧目前航空燃气轮机一般都使用航空煤油作为燃料。
航空煤油在燃烧前由喷咀在高压下将煤油喷成雾状,在空气中蒸发,与空气混合。
煤油与空气的混合比例(油气比)是一个重要的参数。
对一定量的空气来说,喷入的燃油量在燃烧后正好将空气中的氧气完全用完称为理论所需燃油量,实际喷入燃油量与理论所需燃油量之比称为燃料系数用β表示。
对一定量的燃油来说,将燃油完全烧完所需的空气量称为理论所需空气量,实际空气量与理论所需空气量之比称为空气系数或称为余气系数,以α表示。
β<1或α>1表示喷入空气的燃油较少,燃烧后不足以将空气中的氧气燃烧完,这种情况称为贫油;β>1或α<1则表示喷入空气的燃油太多,将空气中的氧气烧完后还有剩余的燃油,这种情况称为富油。
在一定的贫油或富油的范围内(油气比范围内)才能进行燃烧,过于贫油或富油是无法进行燃烧化学反应的。
可以进行燃烧的油气比范围与油气混合后的混气压力和温度有极大的关系。
二、火焰周围气流速度必须低于火焰传播速度β=1的均匀混气在常温常压下火焰的传播速度远低于1m/s,在紊流的气流中,火焰传播速度有所提高,能达到每秒数米或十多米,这与气流的紊流度有很大的关系。
要使火焰能稳定燃烧,它周围的气流速度必须低于火焰传播速度。
第4.2节主燃烧室Burner主燃烧室是航空燃气轮机的主要部件之一,它介于压气机与涡轮之间,压气机出口的气流进入燃烧室,在其中喷入燃油进行燃烧,成为高温燃气进入涡轮。
然而,压气机出口的气流速度一般在150m/s左右,在这样高速的气流里是无法稳定火焰进行燃烧的。
此外,受涡轮材料耐热性的限制,燃烧室出口的燃气温度一般在1200~1700K范围内,相当于燃料系数β大约在0.25~0.4范围内。
CFM56-7B飞机发动机尾喷管检查标准
CFM56-7B发动机装在波音飞机737NG,发动机尾喷管的检查标准要满足AMM的要求,通常需要包括以下方面:
1. 外观检查:检查尾喷管表面是否有明显的磨损、腐蚀、裂纹等情况。
2. 泄漏检查:检查尾喷管是否有任何燃油或润滑油的泄漏迹象。
3. 清洁检查:清除尾喷管表面的灰尘、污渍和油脂,确保其表面清洁。
4. 疏水孔检查:检查尾喷管上的疏水孔是否有堵塞或阻塞情况,并将其清洁。
5. 排气过热环检查:检查排气过热环是否存在损坏、松动或错位的情况。
6. 尺寸测量:使用合适的工具或设备测量尾喷管的尺寸,确保其符合规定的标准。
7. 张力测量:对尾喷管的固定螺栓进行检查,确认其张力符合规定。
8. 功能测试:检查尾喷管的开关、控制和调节部件是否正常工作。
9. 记录和报告:将检查结果记录并填写相关报告,确保记录完整准确。
航空发动机尾喷管中文名称:尾喷管英文名称:nozzle相关技术:传统的收敛/扩张喷管;新型矢量喷管;操纵机构设计分类:发动机;尾喷管;定义与概念:尾喷管又称排气喷管、喷管或推力喷管。
它是喷气发动机中使高压燃气(或空气)膨胀加速并以高速排出发动机的部件。
国外概况:为了获得大的推力,排气必须具有很高的动能,这意味着具有很高的排气速度。
喷管前后的落压比控制膨胀过程。
当出口压力等于外界压力时,对于给定的发动机来说,就获得了最大得的推力。
尾喷管的功能可以概括如下:·以最下小的总压损失把气流加速到很高的速度;·使出口压力尽可能接近外界大气压力;·允许加力燃烧室工作不影响主发动机工作,这就需要采用可调面积喷管;·如果需要,可使涡扇发动机的核心气流与外涵气流混合;·如果需要,可使推力反向和/或转向;·如果需要,可抑制喷气噪声和红外辐射。
各种不同类型的尾喷管归结为两大类:一类为固定喷管,包括简单收敛喷管和高涵道比分开排气喷管;另一类为可调面积喷管,包括引射喷管、收敛-扩张喷管、塞式喷管以及各种不同类型的非轴对称喷管。
尾喷管类型的选择主要是根据发动机、飞机和任务的综合要求以及适当的权衡分析决定。
对尾喷管的研究主要集中在喷管的内特性和气动载荷两方面。
在喷管的内特性方面所考虑的是喷管的推力系数和流量系数随喷管的流动损失、漏气量、冷却空气损失和气流分离损失的变化,供发动机性能计算用。
在气动载荷研究方面,要估算作用在主喷管、副喷管调节和外鱼鳞片上的气动载荷,用于零件结构强度设计和作动系统设计。
在喷气发动机发展的初期,飞机大多是亚音速或低超音速的,此时一般采用固定的简单收敛喷管。
70年代,高涵道比涡扇发动机采用了分开排气喷管。
在早期的超音超音速飞机的涡喷发动机上采用引射喷管,允许不同流量的外部空气进入喷管,用以冷却,又使进气道与发动机流量匹配更好,底部阻力减小.随着飞行速度的提高,涡扇发动机装备了加力燃烧室,喷管落压比增大,研制出喉部和出口面积都可调的收敛-扩张喷管。
心脏的奥秘之航空发动机尾喷管的进化史(一)作者:***来源:《航空世界》2013年第03期喷管——给予现代喷气式飞机前进动力的最直接装置,但是又往往最不被人注意,成为了“被遗忘的角落”。
提到飞机的动力装置,我们肯定首先想到的是“活塞式”和“喷气式”这一对儿名词,进而“涡喷”、“涡扇”、“推重比”、“涵道比”甚至“喘振”都会一一跃入脑海。
與这些“高光”的名词相比,关于喷管的也许只有“矢量推力”才能人得了军迷的法眼。
然而,这位被遗忘者的作用却丝毫没有受到影响:相反,在很多飞机的设计过程中,喷管成为了设计师的梦魇。
英国极享盛名的老牌飞机厂德·哈维兰公司于40年代初设计英国第一种单发轻型喷气战斗机DH 100“吸血鬼”。
其最大的设计特点便是双尾撑气动布局。
了解飞机的朋友都知道,在轻型战斗机中使用双尾撑布局其不仅结构效率会大大下降,气动上也占不到太多便宜。
事实上,这一设计的目的是为了尽可能缩短发动机的喷管长度,以尽可能减少喷管带来的推力损失。
有些朋友可能要问,喷管作为推力的产生装置,为什么会带来推力损失呢?笔者会在后文做详细的分析。
不过英国佬的“馊主意”最后倒是见效了,DH 100也因此成为了资本主义阵营中第一款速度超过800千米/小时的飞机。
令人惊讶的是,“吸血鬼”却远远不是喷管故事的鼻祖,这段渊源可以追溯到二战时期一款活塞式战斗机——P-47D。
为了在高空进行作战,P-47安装了涡轮增压器以增加空气稀薄时的动力输出,并为了安装增压器而在机腹安装了多个管道回路。
依靠强大的动力,P-47在8470米的高度上,可获得690千米/小时的最大平飞速度。
那么,“低调”的喷管是如何起到这样惊人的作用的呢,笔者将从不同角度和大家共同探讨。
啧管的作用俗话说“名不正则言不顺”,喷管具体的指向其实很模糊,笔者和同僚讨论时甚至还遇到了“喷口”與“喷管”这两个名词混淆。
通常意义上,空气吸气式发动机功一能转换部件(喷气发动机的涡轮、加力燃烧室,活塞式发动机的气缸腔等)之后的气动部件称之为喷管(亦作尾喷管,排气装置,喷口等,本文统称喷管),其为发动机总体设计中的最后一个部分。
心脏的奥秘之航空发动机尾喷管的进化史(四)作者:王腾来源:《航空世界》2013年第06期在之前的文章中,我们主要谈了喷口在设计师眼里需要是如何被分解成一个个技术模块,每个模块中又包含哪些常见的问题。
然而出于篇幅和文章性质的原因,我们对大多数的技术问题只做了一个定性的介绍,有兴趣的读着可以自行查阅一些相关的文献资料。
其实喷管虽然功能比较单一,往往也不引人注目,但是航空史上还是有很多的飞机由于其独树一格的排气系统设计而给人留下了深刻的印象。
笔者挑选了几个著名案例与大家分享,看一看整个动力系统中最不起眼的部件是如何完成“逆袭”的。
按照时间顺序,首先出来抢镜的意大利斯蒂伯·卡普罗尼出品的一款验证机,于1932年由路易吉·斯蒂伯(1900-1992年)和卡普罗尼所研制。
它的最大特点是空心的、酒桶形的机身与完全包裹在机身内的发动机,螺旋桨,整个机身就是一个涵道风扇。
由于螺旋桨直径很大,整个机身十分硕壮,看上去更像是卡通画中的飞行器,这一外形也为它赢得了很高的人气。
这个“奇葩”的飞机核心在于给螺旋桨安装了一个排气装置,设计师斯蒂伯称之为“管内螺旋桨”(intubedpropeller)——在机身内安装发动机和螺旋桨并且将机身设计成一个锥形管(文丘里管),应用伯努利原理,压缩螺旋桨的尾流和发动机的废气提高螺旋桨的排气速度,使得飞机的推进效率能够进一步的提高。
斯蒂伯当时在意大利空军工程部工作,对这一种推进方式进行了深入的研究,其中对于管道形状,螺旋桨的匹配等方面的设计思想也启发了后世对航空燃气轮机的设计,无论从功能上还是形式上,这种为螺旋桨设计的排气装置与现代喷气式飞机的尾喷管非常相似。
从另外层面上讲,名不见经传的“管内螺旋桨”在航空推进的历史长卷中的确写下了自己的故事,有些航空史学家认为,路易吉·斯蒂伯是“喷气推进”领域的开山鼻祖。
这个故事比前文的P-47更加有传奇色彩。
在1970年年中,美国空军开始了一项“先进中型短距起降运输计划”(Advanced Medium STOL Transportprogram)研究,美国战术飞机研究中心(TAl),与波音公司、麦道公司和其他公司一起寻找可能的战术运输机设计方案。
航空发动机尾喷管关键字:航空发动机尾喷管摘要:尾喷管又称排气喷管、喷管或推力喷管。
它是喷气发动机中使高压燃气(或空气)膨胀加速并以高速排出发动机的部件。
一、概述在航空燃气轮机上,尾喷管的功能是将从涡轮(或加力燃烧室)流出的燃气膨胀加速,将燃气中的一部分热焓转变为动能,从尾喷管高速喷出,产生反作用推力。
有的尾喷管还带有反推力装置,以缩短飞机着陆时的滑行距离;有的尾喷管还带有消音装置,以减少排气的噪声;有的尾喷管可以改变射流方向,称为矢量喷管,它可以使燃气射流向上下左右不同方向偏转一个可以操纵的角度,对飞机产生一个俯仰或左右偏转的力矩,便于在高速飞行中对飞机进行操纵和控制。
二、亚声喷管与超声喷管(Subsonic Nozzle and Supersonic Nozzle)根据尾喷管出口气流喷射速流的不同,可以分为亚声速喷管和超声速喷管两类。
亚声速喷管为收敛形喷管,超声速喷管为收敛扩张形喷管。
尾喷管的压力降(或称膨胀比)以进口截面的总压p5*与出口截面以外的外界大气压力p0之比来表示:能使尾喷管出口气流速度达到声速的膨胀比称为临界膨胀比,即(4.4-1) 式中k'──工质的比热比。
若燃气的比热比k'=1.33,则πe,cr=1.85。
涡轮喷气发动机和涡轮风扇发动机在地面工作时尾喷管的膨胀比根据发动机设计参数的不同可以在很大范围内变化,很多发动机πe在1.5~2.5范围内。
当发动机在超声速条件下飞行时,由于进气道的冲压增压,尾喷管的膨胀比将大得多。
下图给出了作用在收敛形尾喷管内外壁上压力的分布。
尾喷管外壁为均匀的外界大气压力p0,内壁的静压p则大于外界大气压力,随着气流在尾喷管内加速流动,静压下降,到尾喷管出口处,静压降至外界大气压。
当尾喷管的膨胀比达到或超过临界值以后,尾喷管出口最小截面处的气流速度达到声速。
在这种情况下尾喷管出口以外的压力变化不再影响尾喷管内的气体流动,也就不会影响发动机内部的工作。
航天发动机尾喷管材料的简介————高温合金摘要:随着航天航空的迅速发展,对耐高温材料有了更高的要求,但是随着高温材料的发展,它们的加工问题也越来越严峻,急需相应工艺的发展,对高温材料的有效加工必将是高温材料今后有效利用的关键。
关键词:加工工艺,高温合金,切削,应用,发展。
一、零件的材料火箭发动机喷管是用于火箭发动机的一种(通常是渐缩渐阔喷管)推力喷管.它用于膨胀并加速由燃烧室燃烧推进产生的燃气,使之达到超高音速。
喷嘴的外形:钟罩形或锥形.在一个高膨胀比的渐缩渐阔喷嘴中,燃烧室产生的高温气体通过一个开孔(喷口)排出。
如果给喷嘴提供足够高的压力(高于围压的2。
5至3倍),就会形成喷嘴阻流和超音速射流,大部分热能转化为动能,由此增加排气的速度。
在海平面,发动机排气速度达到音速的十倍并不少见。
一部分火箭推力来自燃烧室内压力的不平衡,但主要还是来自挤压喷嘴内壁的压力。
排出气体膨胀(绝热)时对内壁的压力使火箭朝向一个方向运动,而尾气向相反的方向.当火箭发动机运转以后,从燃烧室中喷出极高的温度与压力的气体,需要经过尾喷管对高温高压气体调整方向,从而使火箭达到超高音速的要求,所以鉴于如此高温,高压的恶劣环境,则对尾喷管的材料提出很高的要求,这种材料不但需要有极好的耐高温性,需要经受住2000摄氏度到3500摄氏度的高温,还需要有极好的耐冲击性,灼热表面的超高速加热的热冲击,还有高热引起的热梯度应力,有较好的刚度,耐氧化性,耐热疲劳性。
在如此恶劣的工作环境下,我们需要一种满足以上要求的材料,儿高温合金的出现满足了这个要求。
二、高温合金的分类、性能等760℃高温材料变形高温合金变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金.按其热处理工艺可分为固溶强化型合金和时效强化型合金。
GH后第一位数字表示分类号即1、固溶强化型铁基合金2、时效硬化型铁基合金3、固溶强化型镍基合金4、钴基合金GH后,二,三,四位数字表示顺序号。