力的分解的正交分解法
- 格式:docx
- 大小:476.51 KB
- 文档页数:3
力的合成与分解正交分解法一、力的合成1.力的合成(1)合力和力的合成:(2)共点力:特征是作用线“共点”,而不一定是力的作用点“共点”.2.平行四边形定则3.合力的大小及方向F=F21+F22+2F1F2cosθ合力的方向tanβ=F1sinθF2+F1cosθ讨论:(1)在F1、F2大小不变的情况下,F1、F2之间的夹角θ越大,合力F越小;θ越小,合力F越大.(2)当θ=0°时,F=F1+F2,为F的最大值.当θ=90°时,F=F21+F22当θ=120°且F1=F2时,F=F1=F2当θ=180°时,F=|F1-F2|,为F的最小值(3)合力的变化范围为|F1-F2|≤F≤F1+F2合力可以大于分力,可以等于分力,也可以小于分力.4.三角形定则:二、力的分解1.分力与力的分解一个已知力按力的效果进行分解的方法在实际问题中,一个力如何分解,应按下述步骤:(1)先根据力的实际作用效果确定两个实际分力的方向;(2)再根据两个分力的方向画出平行四边形,且注意标度选取;(3)根据平行四边形和学过的数学知识求出两个分力的大小和方向.求解方法:①平行四边形法;②正弦定理法;③相似三角形法;④余弦定理法.思维突破(1)已知力F的大小与方向以及两个分力的方向,则两个分力的大小有惟一确定解,如图2-3-7.(2)已知F的大小与方向以及一个分力的大小和方向,则另一分力的大小和方向有惟一确定解,如图(3)已知力F的大小和方向以及一个分力F1的方向和另一个分力F2的大小,如图当F2=F sinθ时,有惟一解;当F2<F sinθ时,无解;当F>F2>F sinθ时,有两解;当F2>F时,一解.具体做法是以F的矢端为圆心,以F2的大小为半径画圆弧,与F1相切,惟一解,如图(a);相交,两解,如图(b);不相交,无解,如图(c);F2>F时,相交一点,有一解,如图(d).3.正交分解法在物理问题中,常常把一个力分解为相互垂直的两个分力,这种分解方法叫做正交分解法.求多个共点力的合力时,如果连续运用平行四边形定则求解,计算过程十分复杂,如果采用力的正交分解法求合力,计算过程就十分简单.如图2-3-5,其基本步骤是:(1)建立正交坐标系(x轴、y轴).通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定.原则是使坐标轴与尽可能多的力重合,即使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其他方向较简便时,也可选用;(2)分解与坐标轴方向不重合的力;(3)沿着坐标轴方向求合力F x、F y;(4)求F x、F y的合力F,F与F x、F y的关系如下:F=F2x+F2y,其方向为tanα=F y/F x注意:如果F合=0则必然F x=0,F y=0,这是处理多力作用下物体的平衡问题的常用规律.例1:如图所示,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最小的是( )例2:如图所示,质量为m的球放在倾角为α的光滑斜面上,试分析挡板AO与斜面间的倾角β多大时,AO所受的压力最小.例3:某压榨机的结构示意图如图所示,其中B 点为固定铰链,若在A 铰链处作用一垂直于壁的力F ,则由于力F 的作用,使滑块C 压紧物体D ,设C 与D 光滑接触,杆的重力不计,压榨机的尺寸如图所示,求物体D 所受压力大小是F 的多少倍?(滑块C 重力不计)例4:如图所示,在倾角为θ的粗糙斜面上,有一个质量为m 的物体被水平力F 推着静止于斜面上,已知物体与斜面间的动摩擦因数为μ,且μ<tan θ,请你判断力F 的取值范围.作业:1.下列关于合力与分力的叙述不正确的是A .一个物体受到几个力的作用,同时也受到这几个力的合力的作用B .几个力的合力总是大于它各个分力中最小的力C .一个力分解成两个分力,可以得到无数对大小、方向不同的分力D .合力和它相应的分力对物体的作用效果相同2.运动员将杠铃举过头顶,如图所示,设两臂间的夹角为θ,以下说法中正确的是A .θ角大些,手臂承受压力也大些B .θ角大些,手臂承受压力反而小些C .θ角变化时,手臂承受压力一样D .由于条件不足,无法判断3.如图所示,A 、B 两物体的质量分别为m A 和m B ,且m A >m B ,整个系统处于静止状态,小滑轮的质量和一切摩擦均不计,如果绳的一端由Q 点缓慢地向左移到P 点,整个系统重新平衡后,物体A 的高度和两滑轮间绳与水平方向的夹角θ如何变化A .物体A 的高度升高,θ角变大B .物体A 的高度降低,θ角变小C .物体A 的高度升高,θ角不变D .物体A 的高度不变,θ角变小4.用三根轻绳将质量为m 的物块悬挂在空中,如图所示,已知绳AO 和BO 与竖直方向的夹角都是30°,若想保持A 、O 两点的位置不变,而将B 点下移至OB 水平,则此过程中A .OB 绳上的拉力先增大后减小 B .OB 绳上的拉力先减小后增大C .OA 绳上的拉力先增大后减小D .OA 绳上的拉力不断减小5.如图所示,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的物体,且B 端系有一根轻绳并绕过定滑轮A ,用力F 拉绳,开始时∠BCA >90°,现使∠BCA 缓慢变小,直到杆BC 接近竖直杆AC.此过程中,轻杆B 端所受的力A .大小不变B .逐渐增大C .逐渐减小D .先减小66.水平横梁的一端A 插在墙壁内,另一端装有一小滑轮B ,一轻绳的一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量m =10 kg 的重物,∠CBA =30°,如图甲所示,则滑轮受到绳子的作用力为(取g =10 m /s 2)A .50 NB .50 3 NC .100 ND .100 3 N7.2010高考如图所示,一物块置于水平地面上.当用与水平方向成600角的F 1力拉物块时,物块做匀速直线运动;当改用与水平方向成300角的F 2力推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为AB 、D 、8.如图所示,用两根细绳把A、B 两小球悬挂在天花板上的同一点O ,并用第三根细线连接A 、B 两小球,然后用某个力F 作用在小球A 上,使三根细线均处于直线状态,且OB 细线恰好沿竖直方向,两小球均处于静止状态,则该力可能为图中的A .F 1B .F 2C .F 3D .F 49.如图所示,用一个轻质三角支架悬挂重物, 已知AB 杆承受的最大压力为2 000 N ,AC 绳承受最大拉力为1 000 N ,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?1212。
正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
利用力的正交分解法求合力:这是一种比较简便的求合力的方法,它实际上是利用了力的分解的原理把力都分解到两个互相垂直的方向上,然后就变成了在同一直线上的力的合成问题了.这样计算起来就简单多了。
力的正交分解法步骤如下:1、正确选定直角坐标系:通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定。
原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其它方向较简便时,也可选用。
一般选水平和竖直方向上的直角坐标;也可以选沿运动方向和垂直运动方向上的直角坐标.在力学计算上,这两种选择可以使力的计算最简单,只要计算到互相垂直的两个方向就可以了,不必求总合力.2、分别将各个力投影到坐标轴上:分别求x轴和y轴上各力的投影的合力和其中:(式中的轴上的两个分量,其余类推。
)这样,共点力的合力大小可由公式:求出。
设力的方向与轴正方向之间夹角是。
∴通过数学用表可知数值。
注意:如果这是处理多个力作用下物体平衡问题的好办法。
计算方法举例:例:如图所示,物体A在倾角为θ的斜面上匀速下滑,求物体受到的摩擦力及动摩擦因数。
分析:选A为研究对象分析A受力作受力图如图,选坐标如图:将不在坐标轴上的重力在x,y坐标上分解:Gx=GžsinθGy=Gžcosθf在x轴(反向),N在y轴上(正向)∵物体匀速下滑则有则一、合力与分力:在实际问题中,一个物体往往同时受到几个力的作用。
如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。
二、力的合成与分解:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
合力与分力有等效性与可替代性。
求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。
高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。
以下是对该知识点的讲解。
1. 力的分解力的分解是指将一个力分解为多个力的效果。
这样做有助于我们更好地理解和分析力的作用。
在力的分解中,我们常使用正交分解法和图解法。
1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。
这种方法常用于解决斜面问题和倾斜物体问题。
在正交分解时,我们可以根据三角函数关系来计算力的分解分量。
1.2 图解法图解法是通过绘制矢量图来展示力的分解。
我们可以使用比例尺来确定力的大小和方向。
通过观察图示,我们可以清楚地看到力的分解效果。
图解法常用于解决平面力系统和多个力合成问题。
2. 力的合成力的合成是指将多个力合成为一个力的效果。
这有助于我们将多个力简化为一个力进行分析。
力的合成有两种常见方法:向量法和平行四边形法。
2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。
在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。
最终的合成力的大小和方向由向量相加或相减的结果得出。
2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。
我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。
通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。
力的分解与合成是物理学中非常实用的技巧。
通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。
以上是对高一物理《力的分解与合成》知识点的简要讲解。
希望对您的学习有所帮助!。
3.5力的分解——正交分解法求合力教案一、学习目标:1.知道力的正交分解法2.会运用正交分解法解决多个力作用下的共点力的合力问题3.用力的正交分解求解物体平衡问题二、学习重点:运用正交分解法解决多个力作用下共点力的合力问题三、学习难点:力的正交分解法求解物体平衡问题四、学习过程:提问:复习引入1.什么是力的分解?2.合力与分力的关系是什么?3.力的分解遵循什么原则?4.如何将一个力进行分解?新课教学:★目标一:了解正交分解法,并思考其好处【问题1】如何求这几个共点力的合力呢?这样求解好吗?说明:利用平行四边形求解多个共点力的合力时不管是采用作图法还是计算法(解三角形),都必须进行多次合成,一次接一次地求部分合力的大小和方向,十分麻烦。
【问题2】那么有没有简单一点的方法来求合力呢?进入新课主题:力的正交分解法定义:把一个力分解成两个相互垂直的分力,这种分解方法称为正交分解法。
【问题3】把力沿着两个选定的互相垂直的方向分解,叫做正交分解。
这样分解力有什么好处呢?不垂直会怎样?例1.某人用力F=20 N 斜向上θ =30°的力拉物体,请利用正交分解法求水平和竖直两个方向上的分力.★目标二、熟悉运用正交分解法解决多个力作用下共点力的合力问题的步骤。
正交分解法求合力的一般步骤:❶恰当地建立xOy直角坐标系.一般地选共点力作用线的交点为坐标系原点,坐标轴的选择应根据具体问题来确定.原则上是尽可能使较多的力落在坐标轴上,这样需要分解的力也就少一些.❷沿x、y轴将各力分解.将各个力逐一分解到x轴和y轴上,并找出各个力沿两个坐标轴方向的分量.注意:与坐标轴正方向同向的力取正值,与坐标轴负方向同向的力取负值.❸利用三角函数求x、y轴上各分力的合力F x和F y.F x=F1x+F2x+F3x+⋯+F nxF y=F1y+F2y+F3y+⋯+F ny ❹求出合力的大小和方向.即:F 合=√F x2+F y2,φ=arctan(F yF x)(φ为F合与x轴之间的夹角)例2. 三个共点力F1=20 N、F2=30 N、F3=40 N,它们相互间的夹角为120°,求它们的合力大小.例3. 一个物体受到四个力的作用,已知F1=1N,方向正东;F2=2N,方向东偏北60°,F3=3√3 N方向西偏北30°;F4=4 N方向东偏南60°,求物体所受的合力。
F 2F 1FαβF 2F 1Fαβ第四讲 力的正交分解和三角形法则姓名【知识要点】1.正交分解法把力沿两个互相垂直的方向进行分解的方法叫正交分解法。
sin α2.正交分解法求合力的步骤(1)对物体进行受力分析(2)选择并建立坐标系 以共点力的作用点为坐标原点,建立正交直角坐标系,一般要让尽量多的力在坐标轴上,使所有的力与坐标轴的夹角尽量为特殊角。
(3)把不在坐标轴上的力沿两个坐标轴分解。
(4)同一坐标轴上的矢量进行合成。
F x =F 1x +F 2x = F 1cos α-F 2cos βF y = F 1y + F 2y = F 1sin α+F 2sin β由此式可见,力的个数越多,此方法显得越方便。
(5)然后把x 轴方向的F x 与y 轴方向的F y 进行合成,这时这两个分力的方向夹角为特殊角90°。
所以F 合=22y x F F ,合力的方向与x 轴正方向的夹角为θ=arctan(F y /F x )注:正交分解法求合力时,先交各力分解为两个不同的坐标上的力,依据同向或反向的简单代数运算,再进行(互成直角的)合成,在计算不同角度的多个力的合成中具有十分明显的优越性。
正交分解法求合力,运用了“欲合先分”的策略,降低了运算的难度,是解题中的一种重要思想方法。
3.三角形定则合力与分力的关系遵循平行四边形定则,根据平行四边形的性质,对应边平行相等,即分力与合力构成三角形如图所示:定义:将表示两个分力的有向线段首尾相接,从第一个力的始端指向第二个力的末端的有向线段,就表示这两个力的合力的大小和方向。
y x F 2x O α F 1x F 1F 2F 2y F 1y βxO F xy α FF y注:相似形问题的解题步骤 : 1.对物体进行受力分析2.画出力的矢量三角形与几何三角形3.由对应边成比例关系求出未知力【典型例题】例1:确定正六边形内五个力的合力例2:如图所示,细线的一端固定于A 点,线的中点挂一质量为m 的物体,另一端B 用手拉住,当AO 与竖直方向成 θ角,OB 沿水平方向时,AO 及BO 对O 点的拉力分别是多大?例3:如图所示,力F 1、F 2、F 3、F 4在同一平面内构成共点力,其中F 1=20N 、F 2=20N 、F 3=N F N 320,2204=,各力之间的夹角在图中已标出,求这四个力的合力大小和方向.例4:如图所示,拉力F 作用在重为G 的物体上,使它沿水平地面匀速前进,若物体与地面的动摩擦因数为μ,当拉力最小时和地面的夹角θ为多大?例5.将一个20N的力进行分解,其中一个分力的方向这个力成30度角,试讨论:(1)另一个分力的大小不会小于多少?20,则已知方向的分力的大小是多少?(2)若另一个分力大小是N3例6:如图所示,将质量为m的小球,用长为L的轻绳吊起来,并靠在光滑的半径为r的半球体上,绳的悬点A到球面的最小距离为d.(1)求小球对绳子的拉力和对半球体的压力.(2)若L变短,问小球对绳子的拉力和对半球体的压力如何变化?【经典练习】1.已知两个力的合力大小为10N,其中一个分力与合力夹角为37°,则另一个分力的大小是()A.不可能大于8N B.不可能小于8NC.不可能大于6ND.不可能小于6N2.如图所示,将力F(大小已知)分解为两个分力F1和F2,F2与F的夹角θ小于90°,则( )A.当F 1>F sin θ时,肯定有两组解B.当F >F 1>F sin θ时,肯定有两组解C.当F 1<F sin θ时,有惟一一组解D.当F 1<F sin θ时,无解3.如图所示,物体重15N ,当对物体施加20N 与水平方向成60°角的力的作用,物体沿竖直墙壁向上匀速滑动.求(1)物体对墙壁的压力大小.(2)物体与墙壁间的动摩擦因数.4.如图所示,为一悬挂重物的三角支架示意图,三角形三边长长度之比为4:3:2:: BC AC AB L L L ,当支架顶端悬挂的重物为G 时,BC 杆和AC 绳受到的力分别为多少?第四讲 力的正交分解和三角形法则(作业)姓名1.一根轻质细绳能承受的最大拉力为G ,现将一重量为G 的物体系于绳的中点,两手分别握住绳的两端,先并拢,然后缓慢地左右对称地分开,若想绳不断,两段绳间的夹角不能超过( )A.45°B.60°C.120°D.135°2.若两个共点力的大小均为10N ,欲使其合力也为10N ,则这两个力的夹角一定是( ) A .30° B .60° C .90° D .120°3.下列各图中三角形的三边各代表一个力,以下说法中正确的是( )① ② ③ ④A.图①中三个力的合力为零B.图②中三个力的合力为2F 3C.图③中三个力的合力为2F 1D.图④中三个力的合力为2F 24.如图所示,小船在河流中逆水行驶,右岸上一个纤夫用力F 1拉小船,F 1与河的中心线夹角为 试求:在左岸上的一个小孩至少用多大的力F 2拉小船,才能使小船受的合力F 的方向沿河的中心线?F 2的方向如何?设F 2与F 1共点.5.已知共面的三个力F 1=20N ,F 2=30N ,F 3=40N 力作用在物体的同一点上,三力之间的夹角都是0120,求合力的大小和方向。
力的分解的正交分解法
力的分解的正交分解法
正交分解法:是把力沿着两个选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量的运算. 力的正交分解法步骤如下:<1)正确选定直角坐标系.通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴分解的力尽可能少. <2)分别将各个力投影到坐标轴上.分别求x轴和y轴上各力的投影合力Fx和Fy,其中:Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+……注意:如果F合=0,可推出Fx=0,Fy=0,这是处理多个作用下物体平衡物体的好办法,以后会常常用到. 第一步,选定研究对象.第二步,对选定的研究对象进行受力分析! 第三步,建立直角坐标系. 通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即使需要向两坐标轴分解的力尽可能少.不在坐标轴上的力,分别将各力投影在坐标轴上. 第四步,分别求x轴和y轴上各力的投影合力Fx和Fy,其中:Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+……注意:如果F合=0,可推出Fx =0,Fy=0.
力的分解时什么情况下两分力相等?当两个分力和合力的夹角相等时,组成的平行四边形是一个菱形,两条邻边就相等,两个分力就相等。
请问一下2个分力夹角θ与合力有什么关系吗?是随着其增大而减小吗?在什么情况下会先增大后减小或先减小后增大?分力和合力夹角θ它们的大小关系有着很直接的关系,如果两个分力相等时,夹角等于120度,分力合力相等,当夹角小于120度,合力大于分力,当大于120度时分力大于合力。
在牛顿第二定律,小车的质量和钩码的质量有什么关系为什么?为什么做这个实验后所画的图前半段是直的,而后半段成了曲线,?是这个图像
吧!
这个实验是高中比较难的一个,要求小车的质量要远远大于钩码的质量,这样误差就会较小,图中为直线,之所以后来变成曲线就是因为,横坐标表示小车质量的倒数,越向右小车质量越小,就不满足小车的质量远大于钩码的质量了,取个极限,小车质量为零,钩码就做自由落体,图像会趋近于g,所以是曲线.
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。