2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.5 双曲线 Word版含答案
- 格式:docx
- 大小:111.23 KB
- 文档页数:4
§8.2圆的方程A组基础题组1.(2021课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2B.8C.4D.102.(2021浙江嘉兴一中阶段测试)若P(2,-1)为圆M:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.2x+y-3=0B.x-y-3=0C.x+y-1=0D.2x-y-5=03.(2021浙江湖州德清高级中学月考)已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是( )A. B.1 C. D.4.(2021黑龙江大庆铁人中学月考,4,5分)已知圆C的方程为x2+y2+2x-2y+1=0,当圆心C到直线kx+y+4=0的距离最大时,k的值为( )A. B. C.- D.-5.(2021河北衡水中学一调,5)假如直线l将圆x2+y2-2x-4y=0平分且l不通过第四象限,则l的斜率的取值范围是( )A.[0,2]B.[0,1]C. D.6.(2022福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.67.(2021浙江六校联考文,10,6分)已知点M(2,1)及圆x2+y2=4,则过M点的圆的切线方程为,若直线ax-y+4=0与该圆相交于A、B两点,且|AB|=2,则a= .8.(2022山东,14,5分)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C 的标准方程为.9.(2021湖南,13,5分)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r= .10.(2021湖北,16,5分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准..方程为;(2)圆C在点B处的切线在x轴上的截距为.11.(2021黑龙江双鸭山一中期中,20)已知圆C的半径为2,圆心在x轴正半轴上,直线3x-4y+4=0与圆C相切.(1)求圆C的方程;(2)若过点(0,-3)的直线l与圆C交于不同的两点A(x1,y1),B(x2,y2),且x1x2+y1y2=3,求三角形AOB的面积. B组提升题组1.(2021宁波十校联考,4,5分)直线x+y-2=0截圆x2+y2=4所得劣弧所对的圆心角的大小为( )A. B. C. D.2.(2021山东烟台诊断)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2-2y=0的一条切线,A是切点,若线段PA长度的最小值为2,则k的值为( )A.3B.C.2D.23.(2022陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.4.(2021诸暨高中毕业班检测,12,6分)已知圆C:(x-1)2+y2=25与直线l:mx+y+m+2=0,若圆C关于直线l对称,则m= ;当m= 时,圆C被直线l截得的弦长最短.5.(2021浙江冲刺卷五,14)过点A(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于M,N两点,若|MN|=8,则l的方程为.6.(2021浙江模拟训练冲刺卷一,14)已知圆的方程为x2+y2+2mx+4y+2m2-3m=0,若过点A(1,-2)的圆的切线有两条,则实数m的取值范围是.7.(2022重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= .8.(2021宁波高考模拟文,12,6分)已知实数a,b,c满足a+b=2c,则直线l:ax-by+c=0恒过定点,该直线被圆x2+y2=9所截得的弦长的取值范围为.9.(2021山东济南模拟)已知P是直线3x+4y-10=0上的动点,PA,PB是圆x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.10.(2021湖北华中师大附中期中,14)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围是.11.(2021河南六市一联)如图所示,在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对相互垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等.试求全部满足条件的点P的坐标.12.(2021重庆一中期中,21)已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在PQ所在直线上,且满足·=0,=-.(1)当点P在y轴上移动时,求点M的轨迹C的方程;(2)给定圆N:x2+y2=2x,过圆心N作直线l,此直线与圆N和(1)中的轨迹C共有四个交点,自上而下顺次记为A,B,C,D,假如线段AB,BC,CD的长按此挨次构成一个等差数列,求直线l的方程.A组基础题组1.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b==-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|==5,于是圆P的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2,则|MN|=|(-2+2)-(-2-2)|=4.2.B 依题意知圆心M(1,0),MP⊥AB,而k MP==-1,所以k AB=1,由于直线AB过点P(2,-1),所以直线AB的方程为y-(-1)=x-2,即x-y-3=0.故选B.3.C 圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线3x+4y-2=0的距离,依据点到直线的距离公式得d==,故点N到点M的距离的最小值为d-1=.故选C.4.D 圆C的方程为(x+1)2+(y-1)2=1,圆心为C(-1,1).又直线kx+y+4=0恒过定点A(0,-4),所以当圆心C到直线kx+y+4=0的距离最大时,直线CA垂直于直线kx+y+4=0,而k CA=-5,则由-5×(-k)=-1,得k=-.5.A 圆的方程x2+y2-2x-4y=0可化为(x-1)2+(y-2)2=5,其圆心坐标为(1,2),经过圆心和原点的直线的斜率为2,由题意知直线l过圆心且不过第四象限,则斜率k的取值范围是0≤k≤2.6.D 设Q(cosθ,sinθ),圆心为M,由已知得M(0,6),则|MQ|= ===≤5当sinθ=-时取等号,故|PQ|max =5+=6.7.答案x=2或3x+4y-10=0;±解析若过M点的圆的切线斜率不存在,则切线方程为x=2,阅历证满足条件.若切线斜率存在,可设切线方程为y=k(x-2)+1,由圆心到切线的距离等于半径得=2,解得k=-,故切线方程为y=-(x-2)+1,即3x+4y-10=0.综上,过M点的圆的切线方程为x=2或3x+4y-10=0.由=得a=±.8.答案(x-2)2+(y-1)2=4解析由于圆心在直线x-2y=0上,且圆C与y轴相切,所以可设圆心坐标为(2a,a),则(2a)2=a2+()2,解得a=±1.又圆C与y轴的正半轴相切,所以a=1,故圆C的标准方程为(x-2)2+(y-1)2=4.9.答案 2解析过O作OC⊥AB于C,则OC==1,在Rt△AOC中,∠AOC=60°,则r=OA==2.10.答案(1)(x-1)2+(y-)2=2(2)--1解析(1)记AB的中点为D,在Rt△BDC中,易得圆C的半径r=BC=.因此圆心C的坐标为(1,),所以圆C的标准方程为(x-1)2+(y-)2=2.(2)由于点B的坐标为(0,+1),C的坐标为(1,),所以直线BC的斜率为-1,所以所求切线的斜率为1.由点斜式得切线方程为y=x++1,故切线在x轴上的截距为--1.11.解析(1)设圆心C的坐标为(a,0)(a>0),则圆C的方程为(x-a)2+y2=4.由于圆C与直线3x-4y+4=0相切,所以=2,解得a=2或a=-(舍),所以圆C的方程为(x-2)2+y2=4.(2)依题意知直线l的斜率存在,设直线l的方程为y=kx-3,由得(1+k2)x2-(4+6k)x+9=0,∵l与圆C相交于不同的两点A(x1,y1),B(x2,y2),∴Δ=[-(4+6k)]2-4(1+k2)×9>0,且x1+x2=,x1x2=,∴y1y2=(kx1-3)(kx2-3)=k2·x1x2-3k(x1+x2)+9=-+9,又∵x1x2+y1y2=3,∴+-+9=3,整理得k2+4k-5=0,解得k=1或k=-5(不满足Δ>0,舍去). ∴直线l的方程为y=x-3.∴圆心C到l的距离d==,易得|AB|=2=,又△AOB的边AB上的高h==,所以S△AOB=|AB|·h=××=.B组提升题组1.C 以直线x+y-2=0与圆x2+y2=4的两个交点及圆心为顶点的三角形为等腰三角形.圆x2+y2=4的圆心为原点,由点到直线的距离公式,得原点到直线x+y-2=0的距离为=,所以直线被圆截得的弦长为2=2,所以该三角形为等边三角形,所以劣弧所对的圆心角的大小为.故选C.2.D 圆C:x2+(y-1)2=1,圆心C(0,1),半径r=1,由题意得=,解得k=2或k=-2(舍去),故选D.3.答案x2+(y-1)2=1解析点(1,0)关于直线y=x对称的点(0,1)为圆心,又半径r=1,所以圆C的标准方程为x2+(y-1)2=1.4.答案-1;1解析当圆C关于l对称时,圆心(1,0)在直线mx+y+m+2=0上,得m=-1.直线l:m(x+1)+y+2=0恒过圆C内的点M(-1,-2),当圆心到直线l的距离最大,即MC⊥l时,圆C被直线l截得的弦长最短,k MC==1,由(-m)×1=-1,得m=1.5.答案x=-4或5x+12y+20=0解析当直线l的斜率不存在时,其方程为x=-4,可得交点坐标为(-4,6),(-4,-2),此时|MN|=8,符合题意. 当直线l的斜率存在时,设其方程为y=k(x+4),圆的标准方程为(x+1)2+(y-2)2=25,则圆心到直线l的距离d=,由|MN|=2=8,得25-=16,解得k=-,故l的方程为5x+12y+20=0.综上,直线l的方程为x=-4或5x+12y+20=0.6.答案解析将圆的方程配方得(x+m)2+(y+2)2=-m2+3m+4,则有-m2+3m+4>0;由题意知点A(1,-2)在圆外,则(1+m)2+(-2+2)2>-m2+3m+4,即2m2-m-3>0.由得故实数m的取值范围是<m<4.7.答案4±解析易知△ABC是边长为2的等边三角形,故圆心C(1,a)到直线AB的距离为,即=,解得a=4±.经检验均符合题意,故a=4±.8.答案;[,6]解析依题意,c=,故ax-by+c=0⇔ax-by+=0,即(2x+1)a-(2y-1)b=0,可知直线l过定点.圆心到直线的距离d=,故弦长为2≥2=,当且仅当a=b时等号成立.又弦长≤6,故弦长的取值范围为[,6].9.答案 2解析圆的标准方程为(x-1)2+(y+2)2=1,其圆心为C(1,-2),半径为1,且直线与圆相离,如图所示,四边形PACB的面积等于2S△PAC,而S△PAC=|PA|·|AC|=|PA|=,又|PC|min==3,∴(S△PAC)min==,故四边形PACB面积的最小值为2. 10.答案(3-2,3-2]∪[3+2,3+2)解析圆C的标准方程为(x-m)2+(y-2)2=32,则圆心C(m,2),半径r=4,S△ABC=r2sin∠ACB=16sin∠ACB,∴当∠ACB=90°时,S△ABC取得最大值16,此时△ABC为等腰直角三角形,∴AB=8,则C到AB的距离为4,∴4≤PC<4,即4≤<4,∴16≤(m-3)2+4<32,即12≤(m-3)2<28,∴解得3-2<m≤3-2或3+2≤m<3+2.故实数m的取值范围是(3-2,3-2]∪[3+2,3+2).11.解析(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x-4),圆C1的圆心到直线l的距离为d,由于直线l被圆C1截得的弦长为2,所以d==1.由点到直线的距离公式得d=,从而=1,化简得k(24k+7)=0,所以k=0或k=-,所以直线l的方程为y=0或7x+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(x-a),k≠0,则直线l2的方程为y-b=-(x-a).由于圆C1和C2的半径相等,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即=,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,由于k的取值有无穷多个,所以或解得或这样点P的坐标为或.经检验,上述坐标均满足题目条件.12.解析(1)设M(x,y),P(0,y'),Q(x',0)(x'>0),∵·=0,=-,∴(3,y')·(x,y-y')=0,(x,y-y')=-(x'-x,-y),∴3x+y'y-y'2=0,x'=x,y'=-y,将y'=-y代入3x+y'y-y'2=0,整理得y2=4x,又由x'>0得x>0,∴点M的轨迹C的方程为y2=4x(x>0).(2)圆N:(x-1)2+y2=1,直径为2,圆心为N(1,0),由题意设l的方程为x=my+1,将x=my+1代入y2=4x(x>0),得y2-4my-4=0,设A(x1,y1),D(x2,y2),则y1+y2=4m,y1y2=-4,则|AD|=·=4(m2+1),∵线段AB,BC,CD的长按此挨次构成一个等差数列,∴2|BC|=|AB|+|CD|=|AD|-|BC|,∴|AD|=3|BC|,又|AD|=4(m2+1),|BC|=圆N的直径=2,∴4(m2+1)=6,解得m=±,∴直线l的方程为x-y-=0或x+y-=0.。
浙江省嘉兴市2021 2021学年高考数学二模试卷(理科) Word版含解浙江省嘉兴市2021-2021学年高考数学二模试卷(理科)word版含解2021-2021学年浙江省嘉兴市高考数学二模试卷(理科)一、选择题(每小题5分后,共40分后)1.在△abc中,sina>sinb是a>b的()a.充分不必要条件b.必要不充分条件c.充要条件d.既不充分也不必要条件2.一个几何体的三视图例如图,则该几何体的体积为()a.πb.3.排序:(log43+log83)(log32+log92)=()a.b.c.5d.15c.d.4.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()a.2b.1c.d.5.若sinθ+cosθ=,θ∈[0,π],则tanθ=()a.b.c.2d.26.未知圆x+y4x5=0的弦ab的中点为q(3,1),直线ab交x轴于点p,则|pa|?|pb|=()a.4b.5c.6d.8227.设f1、f2分别为双曲线c:=1(a>0,b>0)的左、右焦点,a为双曲线的左顶点,以f1f2为直径的圆交双曲线某条渐过线于m,n两点,且满足用户∠man=120°,则该双曲线的距心率为()a.8.设f(x)=,其中a∈r,若对任一的非零b.c.d.实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围为()a.rb.[4,0]c.[9,33]d.[33,9]二、填空题(9-12题每小题6分,13-15题每小题6分,共36分)29.已知全集u=r,集合a={x|1≤x≤1},b={x|x2x≥0},则a∩b=,a∪(?ub)=.10.在等差数列{an}中,a1=3,a1+a3=14,则公差d=,an=.11.若向量与满足||=|+|=.12.未知函数f(x)=a=.13.已知实数x,y>0且xy=2,则14.抛物线y=4x的焦点为f,过点(0,3)的直线与抛物线处设a,b两点,线段ab 的垂直平分线交x轴于点d,若|af|+|bf|=6,则点d的横坐标为.2,||=2,(),则向量与的夹角等同于,,则f(2)=,若f(a)=1,则的最小值就是.15.正方体abcda1b1c1d1的棱长为1,底面abcd的对角线bd在平面α内,则正方体在平面α内的影射构成的图形面积的取值范围是.三、答疑题22216.三角形abc中,未知sina+sinb+sinasinb=sinc,其中,角a,b,c面元的边分别为a,b,c.(ⅰ)求角c的大小;(ⅱ)求的值域范围.17.如图,在三棱锥pabc中,pa⊥平面abc,2ac=pc=2,ac⊥bc,d,e,f分别为ac,ab,ap的中点,m,n分别为线段pc,pb上的动点,且有mn∥bc,(ⅰ)求证:mn⊥平面pac(ⅱ)探究:与否存有这样的动点m,使二面角emnf为的直二面角?若存有,谋cm的长度,若不存有,表明理由.18.已知椭圆+=1(a>b>0)的离心率为,过点p(0,1)的动直线l与椭圆交于a,b两点,当l∥x轴时,|ab|=(ⅰ)求椭圆的方程(ⅱ)当|ap|=2|pb|,谋直线l的方程.19.如图,在平面直角坐标系xoy中,设a1=2,有一组圆心在x轴正半轴上的圆an(n=1,2,…)与x轴的交点分别为a0(1,0)和an+1(an+1,0),过圆心an作垂直于x轴的直线ln,在第一象限与圆an交于点bn(an,bn)(ⅰ)试求数列{an}的通项公式(ⅱ)设曲边菱形an+1bnbn+1(阴影右图)的面积为sn,若对任一n∈n,恒设立,试求实数m的值域范围.*++…+≤m20.已知函数f(x)=x+4,g(x)=kx+3(ⅰ)当a∈[3,4]时,函数f(x)在区间[1,m]上的最大值为f(m),试求实数m的值域范围(ⅱ)当a∈[1,2]时,若不等式|f(x1)||f(x2)|<g(x1)g(x2),对任意x1,x2∈[2,4](x1<x2)恒成立,求实数k的取值范围.2021年浙江省嘉兴市中考数学二模试卷(理科)参考答案与试题解析一、选择题(每小题5分后,共40分后)1.在△abc中,sina>sinb是a>b的()a.充分不必要条件b.必要不充分条件c.充要条件d.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推论.专题:计算题.分析:由正弦定理言可得结论.答疑:求解:若sina>sinb设立,由正弦定理=2r,,由sina>sinb,言a>b,所以a>b,反之亦然,故所以a>b,所以a>b.反之,若a>b设立,所以a>b,因为a=2rsina,b=2rsinb,所以sina>sinb,所以sina>sinb就是a>b的充要条件.故挑选c.点评:本题以三角形为载体,考查四种条件,解题的关键是正确运用正弦定理及变形.属于基础题.2.一个几何体的三视图例如图,则该几何体的体积为()a.πb.c.d.考点:由三视图谋面积、体积.专题:空间边线关系与距离.。
2020-2021学年浙江省⾼考数学⼆模试卷(理)及答案解析浙江省⾼考数学⼆模试卷(理科)⼀、选择题(本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2} B.{2,3} C.{3} D.{1,3}2.设l,m是两条不同的直线,α是⼀个平⾯,则下列命题正确的是()A.若l⊥m,m?α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m3.“”是“tanθ=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数(其中a∈R)的图象不可能是()A.B.C.D.5.已知{a n}是等差数列,公差为2,{b n}是等⽐数列,公⽐为2.若{b n}的前n项和为,则a1+b1等于()A.1 B.2 C.3 D.46.如图,⼩于90°的⼆⾯⾓α﹣l﹣β中O∈l,A,B∈α,且∠AOB为钝⾓,∠A′OB′是∠AOB在β内的射影,则下列结论错误的是()A.∠A′OB′为钝⾓ B.∠A′OB′>∠AOBC.∠AOB+∠AOA′<πD.∠B′OB+∠BOA+∠AOA′>π7.如图,双曲线﹣=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点p是双曲线右⽀上⼀点,PF1交左⽀于点Q,交渐近线y=x于点R,M是PQ的中点,若RF2⊥PF1,且AM ⊥PF1,则双曲线的离⼼率是()A.B.C.2 D.8.已知0<x<y,2<x2,则下列不正确的是()A.sinx2<sin(﹣y)B.sinx2>sin(2﹣y)C.sin(2﹣x2)<siny D.sinx2<cos(y﹣1)⼆、填空题(本⼤题共7⼩题,多空题每题6分,单空题每题4分,共36分)9.已知φ∈[0,π),函数f(x)=cos2x+cos(x+φ)是偶函数,则φ= ,f(x)的最⼩值为.10.已知函数,则= ,⽅程f(x)=2的解为.11.某⼏何体的三视图如图所⽰(单位:cm),则该⼏何体的体积为cm3,表⾯积为cm2.12.已知x,y∈R且满⾜不等式组,当k=1时,不等式组所表⽰的平⾯区域的⾯积为,若⽬标函数z=3x+y的最⼤值为7,则k的值为.13.已知a>0,f(x)=acosπx+(1﹣x)sinπx,x∈[0,2],则f(x)所有的零点之和为.14.设,已知x,y∈R,m+n=6,则F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最⼩值为.15.如图,设正△BCD的外接圆O的半径为R(<R<),点A在BD下⽅的圆弧上,则(﹣﹣)?的最⼩值为.三、解答题(本⼤题共5⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤)16.在△ABC中,设边a,b,c所对的⾓为A,B,C,且A,B,C都不是直⾓,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC⾯积的最⼤值.17.如图,长⽅体ABCD﹣A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的⼀点,PC=λPD.(Ⅰ)若A1C⊥平⾯PBC1,求λ的值;(Ⅱ)设λ1=1,λ2=3所对应的点P为P1,P2,⼆⾯⾓P1﹣BC1﹣P2的⼤⼩为θ,求cosθ的值.18.已知m∈R,函数f(x)=﹣x2+(3﹣2m)x+2+m.(1)若0<m≤,求|f(x)|在[﹣1,1]上的最⼤值g(m);(2)对任意的m∈(0,1],若f(x)在[0,m]上的最⼤值为h(m),求h(m)的最⼤值.19.已知椭圆C1:=1,直线l1:y=kx+m(m>0)与圆C2:(x﹣1)2+y2=1相切且与椭圆C1交于A,B两点.(Ⅰ)若线段AB中点的横坐标为,求m的值;(Ⅱ)过原点O作l1的平⾏线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最⼩值.20.已知点列P n(x n,)与A n(a n,0)满⾜x n+1>x n,⊥,且||=||,其中n∈N*,x1=1.(I)求x n+1与x n的关系式;(Ⅱ)求证:n2<++…+≤4n2.参考答案与试题解析⼀、选择题(本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2} B.{2,3} C.{3} D.{1,3}【考点】交、并、补集的混合运算.【分析】由题意全集U={1,2,3,4,5},B={2,5},可以求出集合C U B,然后根据交集的定义和运算法则进⾏计算.【解答】解:∵U={1,2,3,4,5},B={2,5},∴C U B={1,3,4}∵A={3,1,2}∴A∩(C U B)={1,3}故选D.2.设l,m是两条不同的直线,α是⼀个平⾯,则下列命题正确的是()A.若l⊥m,m?α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m【考点】直线与平⾯平⾏的判定.【分析】根据题意,依次分析选项:A,根据线⾯垂直的判定定理判断.C:根据线⾯平⾏的判定定理判断.D:由线线的位置关系判断.B:由线⾯垂直的性质定理判断;综合可得答案.【解答】解:A,根据线⾯垂直的判定定理,要垂直平⾯内两条相交直线才⾏,不正确;C:l∥α,m?α,则l∥m或两线异⾯,故不正确.D:平⾏于同⼀平⾯的两直线可能平⾏,异⾯,相交,不正确.B:由线⾯垂直的性质可知:平⾏线中的⼀条垂直于这个平⾯则另⼀条也垂直这个平⾯.故正确.故选B3.“”是“tanθ=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由tanθ=1,解得θ=(k∈Z),即可判断出结论.【解答】解:由tanθ=1,解得θ=(k∈Z),∴“”是“tanθ=1”的充分不必要条件.故选:A.4.函数(其中a∈R)的图象不可能是()A.B.C.D.【考点】函数的图象.【分析】分三种情况讨论,根据函数的单调性和基本不等式即可判断.【解答】解:当a=0时,f(x)=|x|,且x≠0,故A符合,当x>0时,且a>0时,f(x)=x+≥2,当x<0时,且a>0时,f(x)=﹣x+在(﹣∞,0)上为减函数,故B符合,当x<0时,且a<0时,f(x)=﹣x+≥2=2,当x>0时,且a<0时,f(x)=x+在(0,+∞)上为增函数,故D符合,故选:C.5.已知{a n}是等差数列,公差为2,{b n}是等⽐数列,公⽐为2.若{b n}的前n项和为,则a1+b1等于()A.1 B.2 C.3 D.4【考点】等差数列的通项公式.【分析】由已知写出等差数列和等⽐数列的通项公式,得到,再写出等⽐数列的前n项和,列等式求得a1+b1的值.【解答】解:由题意可得a n=a1+2(n﹣1),,∴=,{b n}的前n项和,由,得,∴a1+b1=2.故选:B.6.如图,⼩于90°的⼆⾯⾓α﹣l﹣β中O∈l,A,B∈α,且∠AOB为钝⾓,∠A′OB′是∠AOB在β内的射影,则下列结论错误的是()A.∠A′OB′为钝⾓ B.∠A′OB′>∠AOBC.∠AOB+∠AOA′<πD.∠B′OB+∠BOA+∠AOA′>π【考点】与⼆⾯⾓有关的⽴体⼏何综合题.【分析】由题意画出图形,由已知⼆⾯⾓α﹣l﹣β⼩于90°,∠AOB为钝⾓,结合余弦定理可得∠A′OB′是钝⾓,由此可得答案.【解答】解:如图,在α内射线OA上取点A,过A作交线l的平⾏线AB交射线OB于点B,过A作AA′⊥β,垂⾜为A′,过B作BB′垂直于β,垂⾜为B′,连接A′B′,则有AB∥A′B′,且AB=A′B′,设OA=a,OB=b,AB=c,则OA′<a,OB′<b,∵∠AOB为钝⾓,∴a2+b2<c2,则(OA′)2+(OB′)2<a2+b2<c2=(A′B′)2,在△A′OB′中,由余弦定理可得∠A′OB′>∠AOB为钝⾓.∴∠AOB+∠AOA′>π.∴错误的选项是C,故选:C.7.如图,双曲线﹣=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点p是双曲线右⽀上⼀点,PF1交左⽀于点Q,交渐近线y=x于点R,M是PQ的中点,若RF2⊥PF1,且AM ⊥PF1,则双曲线的离⼼率是()A.B.C.2 D.【考点】双曲线的简单性质.【分析】设PF1的⽅程为y=k(x+c),k>0,联⽴渐近线⽅程求得R的坐标,代⼊双曲线的⽅程,运⽤韦达定理和中点坐标公式,可得M的坐标,再由两直线垂直的条件:斜率之积为﹣1,求得k=,代⼊化简整理,再由离⼼率公式计算即可得到所求值.【解答】解:设PF1的⽅程为y=k(x+c),k>0,联⽴渐近线⽅程y=x,可得R(,),由直线y=k(x+c)代⼊双曲线﹣=1,可得(b2﹣a2k2)x2﹣2ca2k2x﹣a2c2k2﹣a2b2=0,设P(x1,y1),Q(x2,y2),可得x1+x2=,即有中点M(,),由A(a,0),F2(c,0),RF2⊥PF1,可得==﹣,即有bk2+2ak﹣b=0,解得k=(负的舍去),由AM⊥PF1,可得k AM==﹣,即为(c3+a3)k2=a(c2﹣a2),即有(c3+a3)(c﹣a)2=ab2(c2﹣a2)=a(c2﹣a2)2,化为c=2a,即e==2.故选:C.8.已知0<x<y,2<x2,则下列不正确的是()A.sinx2<sin(﹣y)B.sinx2>sin(2﹣y)C.sin(2﹣x2)<siny D.sinx2<cos(y﹣1)【考点】正弦函数的图象;基本不等式.【分析】利⽤基本不等式的性质和正弦函数的单调性得出答案.【解答】解:∵0<x<y,2<x2+y<,∴1<y,∴x2<﹣y<,∴sinx2<sin().故A正确.∵2<x2,∴x2<,y<,∴>>x2>2﹣y,∴sinx2>sin(2﹣y),故B正确.∵2<x2,∴x2<<=<.∴sinx2<sin()=cos(y﹣1).故D正确.故选:C.⼆、填空题(本⼤题共7⼩题,多空题每题6分,单空题每题4分,共36分)9.已知φ∈[0,π),函数f(x)=cos2x+cos(x+φ)是偶函数,则φ= 0 ,f(x)的最⼩值为.【考点】三⾓函数中的恒等变换应⽤.【分析】由函数为偶函数求得φ值,得到f(x)=cos2x+cosx,展开⼆倍⾓余弦,然后利⽤配⽅法求得最值.【解答】解:∵函数f(x)=cos2x+cos(x+φ)是偶函数,∴f(﹣x)﹣f(x)=cos(﹣2x)+cos(﹣x+φ)﹣cos2x﹣cos(x+φ)=0恒成⽴,即cos(﹣x+φ)﹣cos(x+φ)=﹣2sinφ?sin(﹣x)=2sinφ?sinx=0恒成⽴,∵φ∈[0,π),∴φ=0;f(x)=cos2x+cosx=2cos2x+cosx﹣1=.∴f(x)的最⼩值为.故答案为:0,.10.已知函数,则= 0 ,⽅程f(x)=2的解为﹣2或4 .【考点】函数的值.【分析】由,利⽤分段函数的性质能求出的值;由⽅程f (x)=2,得到当x>0时,log2x=2;当x≤0时,x2+x=2.由此能求出结果.【解答】解:∵,∴f()==﹣1,∴=f(﹣1)=(﹣1)2+(﹣1)=0,∵⽅程f(x)=2,∴当x>0时,log2x=2,解得x=4;当x≤0时,x2+x=2,解得x=﹣1或x=1(舍).∴x=﹣2或x=4.故答案为:0;﹣2或4.11.某⼏何体的三视图如图所⽰(单位:cm),则该⼏何体的体积为cm3,表⾯积为cm2.【考点】由三视图求⾯积、体积.【分析】由三视图可知:该⼏何体是由⼀个半球去掉后得到的⼏何体.【解答】解:由三视图可知:该⼏何体是由⼀个半球去掉后得到的⼏何体.∴该⼏何体的体积==cm3,表⾯积=++=cm2.故答案分别为:;.12.已知x,y∈R且满⾜不等式组,当k=1时,不等式组所表⽰的平⾯区域的⾯积为,若⽬标函数z=3x+y的最⼤值为7,则k的值为 2 .【考点】简单线性规划.【分析】作出不等式组对应的平⾯区域,根据z的⼏何意义,利⽤数形结合即可得到k的值.然后即可得到结论.【解答】解:若k=1,则不等式组对应的平⾯区域如图:则A(1,﹣1),B(1,3),由得,即C(,),不等式组所表⽰的平⾯区域的⾯积为S=×4×(﹣1)=2×=,由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,则由图象可知当直线y=﹣3x+z经过点C时,直线y=﹣3x+z的截距最⼤,此时z最⼤,为3x+y=7由,解得,即A(2,1),此时A在kx﹣y﹣k﹣1=0上,则2k﹣1﹣k﹣1=0,得k=2.故答案为:;2;13.已知a>0,f(x)=acosπx+(1﹣x)sinπx,x∈[0,2],则f(x)所有的零点之和为 2 .【考点】函数零点的判定定理.【分析】x=1,,时,f(x)≠0,因此都不是函数f(x)的零点.由f(x)=acosπx+(1﹣x)sinπx=0,化为:tanπx=,(x≠1).分别作出函数y=tanπx,y=,(x≠1)的图象,则此两函数的图象都关于(1,0)成中⼼对称,即可得出.【解答】解:x=1时,f(1)=acosπ=﹣a<0,因此1不是函数f(x)的零点.同理x=,,也不是函数f(x)的零点.由f(x)=acosπx+(1﹣x)sinπx=0,化为:tanπx=,(x≠1,,).作出函数y=tanπx,y=,(x≠1)的图象,则此两函数的图象都关于(1,0)成中⼼对称,由函数的单调性与对称性可得:x∈[0,2],两函数y=tanπx,y=,(x≠1)的图象有且仅有两个交点,并且关于(1,0)成中⼼对称,不妨设交点的横坐标分别为x1,x2,∴x1+x2=2.故答案为:2.14.设,已知x,y∈R,m+n=6,则F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最⼩值为.【考点】函数的最值及其⼏何意义.【分析】由题意可得F≥|x2﹣4y+m|,F≥|y2﹣2x+n|,相加,由绝对值不等式的性质和配⽅⽅法,可得最⼩值.【解答】解:F=max{|x2﹣4y+m|,|y2﹣2x+n|},可得F≥|x2﹣4y+m|,F≥|y2﹣2x+n|,即有2F≥|x2﹣4y+m|+|y2﹣2x+n|≥|x2﹣4y+m+y2﹣2x+n|=|x2﹣2x+y2﹣4y+6|=|(x﹣1)2+(y﹣2)2+1|≥1,即有2F≥1,即F≥,可得x=1,y=2时,F取得最⼩值.故答案为:.15.如图,设正△BCD的外接圆O的半径为R(<R<),点A在BD下⽅的圆弧上,则(﹣﹣)?的最⼩值为﹣.【考点】平⾯向量数量积的运算.【分析】先根据三⾓形为正三⾓形,再设∠CAO=θ,得到AC=2Rcosθ,根据向量的数量的运算得到(﹣﹣)?得到2R2cos2θ﹣2Rcosθ,再构造函数y=2t2﹣2t=2(t﹣)2﹣,即可求出最值.【解答】解:∵△BCD为正三⾓形,∴∠CAD=∠CAB=∠DAB=∠CBD=60°,设∠CAO=θ,∴AC=2Rcosθ,∴(﹣﹣)?=?﹣?﹣=2R2cos2θ﹣×2Rcosθ﹣×2Rcosθ=2R2cos2θ﹣2Rcosθ,设Rcosθ=t,∵<R<,0°≤θ<60°,即<cosθ≤1,∴<t<则y=2t2﹣2t=2(t﹣)2﹣∴当t=,y有最⼩值,即为﹣,故答案为:﹣.三、解答题(本⼤题共5⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤)16.在△ABC中,设边a,b,c所对的⾓为A,B,C,且A,B,C都不是直⾓,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC⾯积的最⼤值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利⽤余弦定理化简已知等式可得,⼜△ABC不是直⾓三⾓形,解得bc=4,⼜b+c=5,联⽴即可解得b,c的值.(Ⅱ)由余弦定理,基本不等式可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,解得,可求,利⽤三⾓形⾯积公式即可得解三⾓形⾯积的最⼤值.【解答】(本题满分14分)解:(Ⅰ)∵,∴,∴,∵△ABC不是直⾓三⾓形,∴bc=4,⼜∵b+c=5,∴解得或…(Ⅱ)∵,由余弦定理可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,∴,∴,所以.∴△ABC⾯积的最⼤值是,当时取到…17.如图,长⽅体ABCD﹣A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的⼀点,PC=λPD.(Ⅰ)若A1C⊥平⾯PBC1,求λ的值;(Ⅱ)设λ1=1,λ2=3所对应的点P为P1,P2,⼆⾯⾓P1﹣BC1﹣P2的⼤⼩为θ,求cosθ的值.【考点】⼆⾯⾓的平⾯⾓及求法;直线与平⾯垂直的判定.【分析】(Ⅰ)法⼀:若A1C⊥PB,则A1C⊥平⾯PBC1,只要AC⊥PB即可,由此能求出结果.法⼆:以D为原点,DA,DC,DD1所在直线为x,y,z轴,建⽴空间直⾓坐标系O﹣xyz,利⽤向量法能求出结果.(Ⅱ)过C作CH⊥BC1交BC1于H,连接P1H,P2H,则∠P1HP2就是所求⼆⾯⾓的⼀个平⾯⾓θ,由此能求出cosθ.【解答】解:(Ⅰ)解法⼀∵A1C⊥BC1若A1C⊥PB,则A1C⊥平⾯PBC1,只要AC⊥PB即可,在矩形ABCD中,,解得,;解法⼆:以D为原点,DA,DC,DD1所在直线为x,y,z轴,建⽴如图空间直⾓坐标系O﹣xyz,B(1,2,0),C1(0,2,1),A1(1,0,1),C(0,2,0),设,若A1C⊥平⾯PBC1,=(﹣1,2,﹣1),=(﹣1,0,1),=(﹣1,﹣2,0),则,解得.(Ⅱ)过C作CH⊥BC1交BC1于H,连接P1H,P2H,∵长⽅体ABCD﹣A1B1C1D1中,AB=2,BC=CC1=1,∴BH=C1H,P1B=P1C1,P2B=P2C1,∴P2H⊥BC1,P1H⊥BC1,则∠P1HP2就是所求⼆⾯⾓的⼀个平⾯⾓θ∵P1C=1,,∴,tanα=tan(∠P2HC﹣∠P1HC)=,所求余弦值cosθ=.。
2021年浙江高三二模数学试卷(金丽衢十二校联考)-学生用卷一、选择题(本大题共10小题,每小题4分,共40分)1、【来源】 2021年浙江高三二模(金丽衢十二校联考)第1题4分设集合A={x∈R|x<x2},集合B={x∈R||x−1|<1},则A∩B=().A. (0,2)B. (1,2)C. (−∞,0)∪(1,+∞)D. ∅2、【来源】 2021年浙江高三二模(金丽衢十二校联考)第2题4分已知点A,B在平面α的两侧,则点A,B到α的距离分别为3和5,则AB的中点到α的距离为().A. 4 B. 3 C. 2 D. 13、【来源】 2021年浙江高三二模(金丽衢十二校联考)第3题4分已知双曲线x2−5y2=25上一点P到其左焦点F的距离为8.则PF的中点M到坐标原点O的距离为().A. 9B. 6C. 5D. 44、【来源】 2021年浙江高三二模(金丽衢十二校联考)第4题4分若实数x,y满足约束条件{4y−3x⩾04x−3y⩾0x+y⩾7,则z=10x+11y的最小值为().A. 74B. 73C. 70D. 05、【来源】 2021年浙江高三二模(金丽衢十二校联考)第5题4分过原点O作曲线16a2+(6x−8y)a+x2+y=0(a≠0)的切线OA,OB,则cos∠AOB=().A. 35B. 45C. 725D. 24256、【来源】 2021年浙江高三二模(金丽衢十二校联考)第6题4分已知a>0,b>0,则“ab⩾100”的一个充分不必要条件是().A. 1a +1b⩽15B. a+b⩾20C. a−blna−lnb⩽10D. a2+b2⩾2007、【来源】 2021年浙江高三二模(金丽衢十二校联考)第7题4分已知函数f(x)的大致图象如下,下列答案中e为自然对数的底数,则函数f(x)的解析式可能为().A. xe xB. x+1e xC. 2e x−e−xD. e x+e−xe x−e−x8、【来源】 2021年浙江高三二模(金丽衢十二校联考)第8题4分正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,则正视图(等腰三角形)的腰长等于().A. 2√5B. 2√6C. 2√7D. 59、【来源】 2021年浙江高三二模(金丽衢十二校联考)第9题4分如图,已知正方体ABCD−A1B1C1D1中,P为平面AB1D1内一动点,P到底面ABCD的距离与到直线AD1的距离相等,则P点的轨迹是().A. 直线B. 圆C. 抛物线D. 椭圆10、【来源】 2021年浙江高三二模(金丽衢十二校联考)第10题4分设集合S={−20,21,5,−11,−15,30,a},我们用f(S)表示集合S的所有元素之和,用g(S)表示集合S的所有元素之积,例如:若A={2},则f(A)=g(A)=2;若B={2,3},则f(B)=2+3,g(B)=2×3.那么下列说法正确的是().A. 若a=0,对S的所有非空子集A i,f(A i)的和为320B. 若a=0,对S的所有非空子集B i,f(B i)的和为−640C. 若a=−1,对S的所有非空子集C i,g(C i)的和为−1D. 若a=−1,对S的所有非空子集D i,g(D i)的和为0二、填空题(本大题共7小题,共36分)11、【来源】 2021年浙江高三二模(金丽衢十二校联考)第11题4分设复数z满足:|z|=z+1+3i(i是虚数单位),则|z|=.12、【来源】 2021年浙江高三二模(金丽衢十二校联考)第12题6分已知(x+1)4(1−2x)3=a0+a1x+a2x2+⋯+a7x7,则a0+a1+⋯+a7=,a6=.13、【来源】 2021年浙江高三二模(金丽衢十二校联考)第13题6分函数f(x)=√3cosx−sinx,x∈(0,π)的值域为,若f(x)=−√2,x∈(0,π),则cos2x=.14、【来源】 2021年浙江高三二模(金丽衢十二校联考)第14题6分老师要从10篇课文中随机抽3篇让学生背,规定至少要背出2篇才能及格.同学甲只能背出其中的6篇,则甲同学能及格的概率为,设抽取的3篇课文中甲能背诵的课文有ξ篇,则随机变量ξ的期望E(ξ)为.15、【来源】 2021年浙江高三二模(金丽衢十二校联考)第15题4分在梯形ABCD中,AB//CD,∠A=90°,AB=2CD=3,AD=2,若EF在线段AB上运动,且EF=1,则CE→⋅CF→的最小值为.16、【来源】 2021年浙江高三二模(金丽衢十二校联考)第16题6分函数f(x)={xe x,x⩾ax,x<a,若存在实数x0,使得对于任意x∈R,都有f(x0)⩾f(x),则实数a的取值范围是;若存在不相等的x1,x2,x3,满足f(x1)=f(x2)=f(x3),则实数a的取值范围是.17、【来源】 2021年浙江高三二模(金丽衢十二校联考)第17题4分设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足:a3<0,且S5S6+ 16=0,则S11的最小值为.三、解答题(本大题共5小题,共74分)18、【来源】 2021年浙江高三二模(金丽衢十二校联考)第18题14分在△ABC中,角A,B,C所对的边分别为a,b,c.(1) 若1+2cosAcosB=2sinAsinB,求角C.(2) 若b2(1+tanA)=(c2−a2)(1−tanA),求角C.19、【来源】 2021年浙江高三二模(金丽衢十二校联考)第19题15分如图,在四棱锥P−ABCD中,M,N分别是AB,AP的中点,AB⊥BC,MD⊥PC,MD//BC,BC=1,AB=2,PB=3,CD=√2,PD=√6.(1) 证明:PC//平面MND.(2) 求直线PA与平面PBC所成角的正弦值.20、【来源】 2021年浙江高三二模(金丽衢十二校联考)第20题15分对任意非零数列{a n},定义数列{f(a n)},其中{f(a n)}的通项公式为f(a n)=(1+1a1)(1+1a2)⋯(1+1a n).(1) 若a n=n,求f(a n).(2) 若数列{a n},{b n}满足{a n}的前n项和为S n,且f(a n)=2n(n+1),b n⋅a n+1=S n.求证f(b n)<43.21、【来源】 2021年浙江高三二模(金丽衢十二校联考)第21题15分如图,设P (0,t ),t ∈R ,已知点F 是抛物线y 2=2px(p >0)的焦点,直线PF 与抛物线交于A ,B 两点(AF <BF ),点C (不同于原点)在抛物线上,PC 不平行于x 轴,且PC 与抛物线上,PC 不平行于x 轴,且PC 与抛物线有且只有一个公共点.当t =2√2时,AF →=12FB →.(1) 求p 的值.(2) 若CA ,CB 分别与x 轴交于D ,E ,设△ADF ,△BEF 和△ABC 的面积分别为S 1,S 2,S ,求S 1⋅S 2S 2的最大值.22、【来源】 2021年浙江高三二模(金丽衢十二校联考)第22题15分设a ∈R ,已知函数f (x )=e x +(x −6)(x −a ),函数g(x)=e x −ln x x −1x. (1) 若a =−5,求函数f (x )的最小值.(2) 若对任意实数x 1和正数x 2,均有f (x 1)+g (x 2)⩾4a −8,求a 的取值范围.(注:e 为自然对数的底数)1 、【答案】 B;2 、【答案】 D;3 、【答案】 A;4 、【答案】 B;5 、【答案】 C;6 、【答案】 A;7 、【答案】 D;8 、【答案】 D;9 、【答案】 A;10 、【答案】暂无;11 、【答案】5;12 、【答案】−16;−20;13 、【答案】[−2,√3);−√32;14 、【答案】23;9 5 ;15 、【答案】154;16 、【答案】(−∞,1e];(0,1);17 、【答案】88;18 、【答案】 (1) π3.;(2) 3π4.;19 、【答案】 (1) 证明见解析.;(2) √105.;20 、【答案】 (1) n+1.;(2) 证明见解析.;21 、【答案】 (1) 2.;(2) 1.16;22 、【答案】 (1) −29.;(2) [−5,e3].;。
§8.6抛物线A组基础题组1.(2022安徽,3,5分)抛物线y=x2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-22.(2021浙江杭州六中期末)已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B. C.2 D.-13.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2021浙江嘉兴桐乡第一中学调研卷一,9,5分)抛物线y2=x的焦点为F,点P(x,y)为该抛物线上的动点,点A,则的最小值是( )A. B. C. D.5.(2022四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.6.(2021陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .7.(2021浙江名校(镇海中学)沟通卷一,14)过抛物线y2=2x的焦点的直线与该抛物线交于A,B两点,且|AB|=4,则AB的中点的横坐标是.8.(2021浙江模拟训练冲刺卷一,11)已知点F为抛物线x2=4y的焦点,O为坐标原点,点M是抛物线准线上一动点,A在抛物线上,且|AF|=2,则|OA|= ;|MA|+|MO|的最小值是.9.(2021浙江新高考争辩卷四(舟山中学),11)已知抛物线C:y2=2px(p>0),抛物线C上横坐标为的点到焦点的距离为3.(1)p= ;(2)点M在抛物线C上运动,点N在直线x-y+5=0上运动,则|MN|的最小值等于.10.(2022超级中学原创猜测卷七,11,6分)已知正六边形ABCDEF的边长是2,抛物线y2=2px(p>0)恰好经过该正六边形的四个顶点,,过抛物线的焦点Q的直线交抛物线于M,N两点.若焦点Q是弦MN靠近点N的三等分点,则该抛物线的标准方程是,直线MN的斜率k等于.11.(2021浙江冲刺卷一,14,4分)已知直线x=my+2与抛物线y2=8x交于A,B两点,点C(-1,0),若∠ACB=90°,则m= .12.(2021浙江名校(绍兴一中)沟通卷五,14)已知M(a,4)为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,N 为y轴上的动点,当sin∠MNF的值最大时,△MNF的面积为5,则p的值为.13.(2021浙江七校联考,18)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 14.(2021福建,19,12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.15.(2021浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.16.(2021浙江模拟训练冲刺卷一,19)已知抛物线C1:x2=4y的焦点为F,过点F且斜率不为零的直线l与抛物线C1相交于不同的两点A,C,并与曲线C2:x2=-4(y-2)相交于不同的两点B,D,其中A,B两点在y轴右侧.(1)求A,B两点的横坐标之积;(2)记直线OA,OB,OC,OD的斜率分别为k1,k2,k3,k4,是否存在常数λ,使得k1+k3=λ(k2+k4)?若存在,求出λ的值;若不存在,请说明理由.B组提升题组1.(2021陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)2.(2022课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.83.(2021宁波高考模拟考试,5,5分)已知F是抛物线y2=4x的焦点,A,B是抛物线上的两点,|AF|+|BF|=12,则线段AB的中点到y轴的距离为( )A.4B.5C.6D.114.(2021河南焦作期中,11)已知点P在抛物线y2=4x上,点M在圆(x-3)2+(y-1)2=1上,点N的坐标为(1,0),则|PM|+|PN|的最小值为( )A.5B.4C.3D.+15.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.76.已知点P为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴相切于点Q,则( )A.Q点位于原点的左侧B.Q点与原点重合C.Q点位于原点的右侧D.以上均有可能7.(2021四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)8.(2021稽阳联考,13,6分)过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.9.(2021浙江六校联考,13,4分)已知F为抛物线C:y2=2px(p>0)的焦点,过F作斜率为1的直线交抛物线C于A、B两点,设|FA|>|FB|,则= . 10.(2021杭州二中高三仿真考,13,4分)已知点A在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.11.(2021嘉兴教学测试二,14,4分)抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为.12.(2022超级中学原创猜测卷五,14,6分)已知抛物线y2=4x的焦点为F,则点F的坐标为,若A,B是抛物线上横坐标不相等的两点,且线段AB的垂直平分线与x轴的交点为M(4,0),则|AB|的最大值为.13.(2021稽阳联考文,19,15分)点P是在平面坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y 的两条切线,切点分别为A,B.(1)设点A(x1,y1),求证:切线PA的方程为y=2x1x-;(2)若直线AB交y轴于R,OP⊥AB于点Q,求证:R是定点并求的最小值.14.(2021浙江五校二联文,19,15分)已知抛物线y2=2x上有四点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.(1)求y1y2的值;(2)求证:MP=MQ.15.(2021浙江冲刺卷一,22)已知点M(0,-1),抛物线E:x2=4y,过点N(-4,1)的直线l交抛物线E于A,B两点,点A在第一象限.(1)若直线MA与抛物线相切,求直线MA的方程;(2)若直线MA交抛物线E于另一点C,问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.16.(2022浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值. A组基础题组1.A 由y=x2得x2=4y,焦点在y轴正半轴上,且2p=4,即p=2,因此准线方程为y=-=-1.故选A.2.D 由题意知,抛物线的焦点为F(1,0),设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1,易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.3.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.4.C 点A是抛物线的准线与x轴的交点,过P作抛物线准线的垂线,记垂足为B,则由抛物线的定义可得==sin∠PAB,当∠PAB最小时,的值最小,此时,直线PA与抛物线相切,可求得直线PA的斜率k=±1,所以∠PAB=45°,的最小值为,故选C.5.B 依题意不妨设A(x1,),B(x2,-),·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3.故选B.6.答案 2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,得p=2.7.答案解析由已知得AB为抛物线的焦点弦,则|AB|=x A+x B+1=4,∴x A+x B=3,故AB的中点的横坐标是.8.答案;解析易知F(0,1).设A(x,y),由|AF|=2,得y+1=2,∴y=1,代入x2=4y得x=±2,所以A(±2,1),则|OA|=.设B(0,-2),因点M在抛物线准线上,则|MO|=|MB|,从而|MA|+|MO|的最小值就是|MA|+|MB|的最小值.因A,B为定点,则|MA|+|MB|的最小值即为|AB|=,故|MA|+|MO|的最小值是.9.答案(1)1 (2)解析(1)依题意得+=3,解得p=1.(2)设M(x,y),则y2=2x.则|MN|的最小值等于点M到直线x-y+5=0的距离d的最小值.而d====,则当y=1时,d min=,故|MN|的最小值等于.10.答案y2=x;±2解析如图所示,依据对称性,可设正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px(p>0)上,A(x1,1),F(x2,2),则即x2=4x1,又|AF|==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,则p===,则抛物线的方程是y2=x,则Q,设直线MN的方程为x=my+.将直线MN的方程与抛物线的方程联立,消去x得y2-my-=0.设M(x3,y3),N(x4,y4),所以y3+y4=m①,y3y4=-②,由于焦点Q是弦MN靠近点N的三等分点,所以=2,所以y3=-2y4③,联立①②③消去y3,y4,得m=±,所以直线MN的斜率k=±2.11.答案±解析设A(x1,y1),B(x2,y2),联立得消去x得y2-8my-16=0,则有y1+y2=8m,y1y2=-16.由∠ACB=90°,知·=0,即有(x1+1)(x2+1)+y1y2=0,则有(my1+3)(my2+3)+y1y2=0,即(m2+1)y1y2+3m(y1+y2)+9=0,则-16(m2+1)+24m2+9=0,解得m=±.12.答案2或8解析设N(0,n),当sin∠MNF的值最大时,有∠MNF=,从而有·=0,得ap+n2-4n=0.又2ap=16,所以n2-4n+4=0,所以n=2,所以N的坐标为(0,2)时,sin∠MNF的值最大.过M作MM'⊥y轴,垂足为M',则梯形OFMM'的面积为10,10=·4,又ap=8,得p=2或8.13.解析(1)直线AB的方程是y=2,由消去y得4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可得x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 由=8x3,得[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.14.解析(1)由抛物线的定义得|AF|=2+.由于|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.15.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理,点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.16.解析(1)设A(x1,y1),B(x2,y2),则x1>0,x2>0.又易知F(0,1),则由A,B,F三点共线得=,即x2=x1,得(x1+x2)x1x2=4(x1+x2),∵x1>0,x2>0,∴x1+x2>0,∴x1x2=4,故A,B两点的横坐标之积为4.(2)存在.明显直线l的斜率存在,且不为零,故可设直线l的方程为y=kx+1(k≠0).由得x2-4kx-4=0.设C(x3,y3),则有x1+x3=4k,且x1x3=-4.则k1+k3=+=+=+==k.由得x2+4kx-4=0.设D(x4,y4),则有x2+x4=-4k,且x2x4=-4.则k2+k4=+=+=+--=+k=+k=3k,∵k≠0,∴k1+k3=(k2+k4).故存在常数λ=,使得k1+k3=λ(k2+k4).B组提升题组1.B 抛物线y2=2px(p>0)的准线方程为x=-,由题设知-=-1,即=1,所以焦点坐标为(1,0).故选B.2.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.3.B 记A,B在抛物线准线x=-1的投影分别为A',B',故|AA'|+|BB'|=|AF|+|BF|=12,由中位线定理可得所求距离d=-1=5,故选B.4.C 由于抛物线y2=4x的焦点为N(1,0),所以|PM|+|PN|的最小值等于点M到抛物线的准线x=-1的距离的最小值.而点M在圆(x-3)2+(y-1)2=1上,则点M到准线x=-1的距离的最小值等于圆心(3,1)到准线的距离减去半径1,即(|PM|+|PN|)min=4-1=3,故选C.5.C 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=, 即y=x-,代入y2=3x,得x2-x+=0,设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+=+=12,故选C.6.B 如图,设直线l,x轴分别与抛物线的准线交于C,D两点,由抛物线的定义知|PC|=|PF|,由圆的切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,得O,Q两点重合.故选B.7.D 明显0<r<5.当直线l的斜率不存在时,存在两条满足题意的直线,所以当直线l的斜率存在时,存在两条满足题意的直线,设直线l的斜率为k,由抛物线和圆的对称性知,k>0、k<0时各有一条满足题意的直线.设A(x1,y1),B(x2,y2),M(x0,y0),k====.记圆心为C(5,0).∵k CM=,k·k CM=-1,∴x0=3.∴r2=(3-5)2+>4(y0≠0),即r>2.另一方面,由AB的中点为M,知B(6-x1,2y0-y1),∴(2y0-y1)2=4(6-x1),又∵=4x1,∴-2y0y1+2-12=0.∴Δ=4-4(2-12)>0,即<12.∴r2=(3-5)2+=4+<16,∴r<4.综上,r∈(2,4).故选D.8.答案±解析由题意设l:x=ty+1,A(x1,y1),B(x2,y2).将x=ty+1代入y2=4x,得y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.又=3,∴y1=-3y2,∴∴t2=,即k=±.9.答案3+2解析过抛物线C的焦点,斜率为1的直线方程为y=x-,代入抛物线C的方程,整理得4x2-12px+p2=0.又由题意可得x A>x B,解得x A=p,x B=p,所以====3+2.10.答案解析由题意知抛物线的准线方程为x=-=-,解得p=1,所以抛物线的方程为y2=2x.设直线MN的方程为x=ty+m,M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),联立直线MN与抛物线的方程,得y2-2ty-2m=0,所以y1y2=-2m.由于·=3,所以x1x2+y1y2=3,即(y1y2)2+y1y2-3=0.由于M,N位于x轴的两侧,所以y1y2=-6,所以m=3,则直线MN恒过点D(3,0).当直线MN绕定点D(3,0)旋转时,旋转到AD⊥MN时,点A到动直线MN的距离最大,且为=.11.答案 4解析设A(x1,y1),B(x2,y2),直线AB的方程为y-3=kx(k<0),即y=kx+3,联立直线AB的方程与抛物线方程消去y,得k2x2+(6k-4)x+9=0,所以x1+x2=.又p=2,依据抛物线的定义有|AF|+|BF|=x1+x2+p=x1+x2+2=6,所以x1+x2==4,解得k=(舍)或k=-2,所以y1+y2=-2(x1+x2)+6=-2,所以线段AB的中点坐标为(2,-1),所以线段AB的垂直平分线的方程为y+1=(x-2),即x-2y-4=0,令y=0,得x=4,所以点D的横坐标为4.12.答案(1,0);6解析抛物线y2=4x的焦点为F(1,0).设A(x1,y1),B(x2,y2),由于线段AB的垂直平分线与x轴的交点为M(4,0),所以|MA|2=|MB|2,即(x1-4)2+=(x2-4)2+,又A,B是抛物线上两点,所以=4x1,=4x2,代入上式并化简得-=4x1-4x2,又x1≠x2,所以x1+x2=4,所以|AB|≤|AF|+|BF|=x1+1+x2+1=6(当且仅当A,B,F三点共线时取等号),所以|AB|的最大值为6.13.解析(1)证明:设以A(x1,)为切点的切线方程为y-=k(x-x1),与x2=y联立得x2-kx+kx1-=0,由Δ=k2-4kx1+4=(k-2x1)2=0得k=2x1,所以切线PA的方程为y=2x1x-.(2)设B(x2,y2),由(1)知点P的坐标为,设直线AB的方程为y=kx+m,与x2=y联立得x2-kx-m=0,所以P,由题意知k·k OP=k·=-2m=-1⇒m=,即R.|PQ|=,|QR|==,所以==|k|+≥2,当且仅当|k|=时,的最小值为2.14.解析(1)设直线AB的方程为x=my+3,与抛物线联立得:y2-2my-6=0,∴y1y2=-6.(2)证明:直线AC的斜率为=,∴直线AC的方程为y=(x-x1)+y1,∴点P的纵坐标为y P===,同理,点Q的纵坐标为y Q=,∴y P+y Q=0,又PQ⊥x轴,∴MP=MQ.15.解析(1)设A(x1,y1)(x1>0),则直线MA的方程为y=x-1,与x2=4y联立消去y,得x1x2-(+4)x+4x1=0,由Δ=-16=0,得=4,而x1>0,故x1=2,即有A(2,1).则直线MA的方程为y=x-1.(2)明显直线BC的斜率存在,设直线BC的方程为y=kx+n,与x2=4y联立消去y,得x2-4kx-4n=0.设B(x2,y2),C(x3,y3),则有x2+x3=4k,x2x3=-4n.由(1)知x1,x3是方程x1x2-(+4)x+4x1=0的两根,且x1≠2.则有x1x3=4,即x1=,从而y1==.由于N,A,B三点共线,所以===+,即有-1=+x2++,化简得x2+x3+x2x3+4=0,即有4k-4n+4=0,得n=k+1.从而直线BC的方程为y=kx+k+1=k(x+1)+1,故直线BC过定点,且定点坐标为(-1,1). 16.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-<m≤.又由于|AB|=4·,点F(0,1)到直线AB的距离为d=,所以S△ABP=4S△ABF=8|m-1|=.记f(m)=3m3-5m2+m+1.令f'(m)=9m2-10m+1=0,解得m1=,m2=1.可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.。
2021年杭州二中高三仿真考数学(理科)试题卷一、选择题一、已知(1)3,Z i i +=-那么复数Z = ( ) A.12i + B.12i - C.2i + D.2i -二、设集合{}{}236,450S x x T x x x =<≤=--≤,那么()R C S T ⋂=( ) A.(]3-∞⋃∞,(6,+) B.(]3-∞⋃∞,(5,+) C.∞⋃∞(-,-1)(6,+) D.∞⋃∞(-,-1)(5,+)3、已知等差数列{}n a 的前n 项和为n S ,且744S S π-=,那么6tan a =( ) A.1 B.333 D.2 4、在ABC ∆中,“30A ∠<”是“1cos 2A >”的( ) A.充分没必要要条件 B.必要不充分条件 C.充要条件 D 既不充分也没必要要条件 五、假设,那么函数()2f x x'的图象是( ) 六、程序框图如右图所示,其输出结果是63,那么a 的初始值,(0)m m >有多少种可能 A.3 B.4 C.5 D.67、如图,点P 在双曲线22221x y a b-=的右支上,12F F 别离是双曲线的左右核心,212PF F F =,直线1PF 与圆222x y a +=相切,那么双曲线的离心率e =( )A.43 B.533.2 八、设,a b 为单位向量,假设向量c 知足()c a b a b -+=-,那么c 的最大值是( )A.222 D .1九、假设0,2x y π<<,且sin cos x x y =,那么( )A.4x y <B.42x x y <<C.2xy x << D .x y < 10、已知函数222()(1)2(11)f x a x bx b b a =--+-<-<,用()card A 表示集合A 中元素的个数,假设使得()0f x >成立的充分必要条件是x A ∈,且()4card A Z ⋂=,那么实数a 的取值范围是( )A.(-1,2)B.(1,2)C.(2,3) D .(3,4) 二、填空题1一、已知31()(12)()()n f x x x n N x*=-+∈的展开式中没有常数项,且26n <<,那么展开式中含2x 的系数是 。
浙江省2021版高考数学三模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知集合,则()A .B .C .D .2. (2分) (2020高三上·合肥月考) 若复数满足,其中是虚数单位,则复数的模为()A .B .C .D . 33. (2分) (2017高二下·咸阳期末) 已知随机变量ξ服从正态分布N(2017,σ2),则P(ξ<2017)等于()A .B .C .D .4. (2分)“”是“直线与直线平行”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分)执行右面的程序框图.若输入n=7,则输出的值为A . 2B . 3C . 4D . 56. (2分)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1﹣50号,并分组,第一组1﹣5号,第二组6﹣10号,…,第十组46﹣50号,若在第三组中抽得号码为12,则在第八组中抽得号码为()A . 37B . 38C . 39D . 407. (2分)下列函数中,图象关于点(, 0)对称的是()A . y=sin(x+)B . y=cos(x﹣)C . y=sin(x+)D . y=tan(x+)8. (2分) (2016高二上·乐清期中) 若变量x,y满足约束条件,则z=2x+y的最大值和最小值分别为()A . 4和3B . 4和2C . 3和2D . 2和09. (2分) (2020高一下·荆州期末) 方程的解的个数是().A . 0个B . 1个C . 2个D . 3个10. (2分)(2020·嘉兴模拟) 分别将椭圆的长轴、短轴和双曲线的实轴、虚轴都增加m个单位长度(),得到椭圆和双曲线.记椭圆和双曲线的离心率分别是,则()A . ,B . ,与的大小关系不确定C . ,D . ,与的大小关系不确定二、填空题 (共5题;共6分)11. (1分) (2017高一上·西安期末) 与圆C:(x﹣2)2+(y+1)2=4相切于点(4,﹣1)且半径为1的圆的方程是________.12. (1分)某几何体的三视图如图所示,则该几何体的体积为________13. (1分)公共汽车在8:00到8:20内随机地到达某站,某人8:15到达该站,则他能等到公共汽车的概率为________14. (1分) (2019高二下·景德镇期中) 已知函数则 =________.15. (2分) (2016高一上·湖州期中) 已知函数f(x)=(x﹣a)(x+2)为偶函数,若g(x)= ,则a=________,g[g(﹣)]=________三、解答题 (共6题;共45分)16. (15分) (2017高一上·吉林期末) 已知函数f(x)=2sin(3ωx+ ),其中ω>0(1)若f(x+θ)是周期为2π的偶函数,求ω及θ的值;(2)若f(x)在(0, ]上是增函数,求ω的最大值;(3)当ω= 时,将函数f(x)的图象向右平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.17. (5分)(2017·山西模拟) 已知如图所示的几何体中,四边形ABCD是边长为2的菱形,面PBC⊥面A BCD,点E是AD 的中点,PQ∥面ABCD且点Q在面ABCD上的射影Q′落在AB的延长线上,若PQ=1,PB= ,且()• =0, =2(Ⅰ)求证面PBC⊥面PBE(Ⅱ)求平面PBQ与平面PAD所成钝二面角的正切值.18. (10分)(2013·江西理) 正项数列{an}的前n项和Sn满足:Sn2(1)求数列{an}的通项公式an;(2)令b ,数列{bn}的前n项和为Tn .证明:对于任意n∈N* ,都有.19. (5分)(2017·怀化模拟) 为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房心理预测调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表:买房不买房纠结城市人515农村人2010已知样本中城市人数与农村人数之比是3:8.(Ⅰ)分别求样本中城市人中的不买房人数和农村人中的纠结人数;(Ⅱ)从参与调研的城市人中用分层抽样方法抽取6人,进一步统计城市人的某项收入指标,假设一个买房人的指标算作3,一个纠结人的指标算作2,一个不买房人的指标算作1,现在从这6人中再随机选取3人,令X=再抽取3人指标之和,求X的分布列和数学期望.20. (5分)(2020·南昌模拟) 已知函数(,且,e为自然对数的底).(I)求函数的单调区间(Ⅱ)若函数在有两个不同零点,求a的取值范围.21. (5分)(2017·四川模拟) 已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.(Ⅰ)求点P的坐标;(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共45分)16-1、16-2、16-3、18-1、18-2、19-1、20-1、21-1、。
§8.4椭圆A组基础题组1.(2021广东,8,5分)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=( )A.2B.3C.4D.92.(2022湖北荆门元月调考,11,5分)已知θ是△ABC的一个内角,且sinθ+cosθ=,则方程x2sinθ-y2cosθ=1表示( )A.焦点在x轴上的双曲线B.焦点在y轴上的双曲线C.焦点在x轴上的椭圆D.焦点在y轴上的椭圆3.(2022超级中学原创猜测卷八,7,5分)已知a>0,椭圆+y2=1与双曲线2x2-ay2=1共焦点,过点M(-2,0)的直线l与椭圆交于P1,P2两点,线段P1P2的中点为P,设直线l的斜率为k1(k1≠0),直线OP(O为坐标原点)的斜率为k2,则k1k2的值为( )A.2B.-2C.D.-4.(2021温州二模,13,4分)若椭圆C:+=1(a>b>0)经过点P(0,),且椭圆的长轴长是焦距的两倍,则a= .5.(2022江西,15,5分)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.6.(2021浙江宁波十校联考,13)设P为椭圆+=1上的点,F1,F2为其左,右焦点,且△PF1F2的面积为6,则·= .7.(2022领航高考冲刺卷一,9,6分)已知椭圆+=1的焦点为F1,F2,点P 在椭圆上,若|PF1|=4,则|PF2|= ,∠F1PF2的大小为.8.(2021浙江模拟训练冲刺卷四,15)已知抛物线y2=2px(p>0)与椭圆+=1(a>b>0)有相同的焦点F2,点P是两曲线的一个交点,且=,其中F1,F2分别是椭圆的左,右焦点,则椭圆的离心率e= .9.(2021浙江杭州学军中学第五次月考,21)设椭圆C:+=1(a>b>0)的右焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,=2.(1)求椭圆C的离心率;(2)假如|AB|=,求椭圆C的方程.10.(2021陕西,20,12分)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2. 11.(2021宁波一模,18,15分)如图,设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,过F2作直线l交椭圆于P,Q 两点,若圆O:x2+y2=b2过F1,F2,且△PF1F2的周长为2+2.(1)求椭圆C和圆O的方程;(2)若M为圆O上任意一点,设直线l的方程为4x-3y-4=0,求△MPQ面积S△MPQ的最大值.12.(2021衢州二模,18,15分)已知椭圆C:+=1(a>b>0)过点P,离心率为.(1)求椭圆C的标准方程;(2)设F1、F2分别为椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同两点M,N,记△F1MN的内切圆的面积为S,求当S取最大值时直线l的方程,并求出最大值.13.(2022北京,19,14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点.若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试推断直线AB与圆x2+y2=2的位置关系,并证明你的结论.14.(2021陕西,20,12分)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.B组提升题组1.(2021课标Ⅰ,5,5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=( )A.3B.6C.9D.122.(2021浙江,9,5分)如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在其次、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是( )A. B. C. D.3.(2021衢州二模,7,5分)设点P(x,y)是曲线a|x|+b|y|=1(a>0,b>0)上的动点,且满足+≤2,则a+b的取值范围为( )A.[2,+∞)B.[1,2]C.[1,+∞)D.(0,2]4.(2021温州一模,12,6分)已知F1,F2是椭圆C:+=1的左,右焦点,过右焦点F2的直线l:y=kx+m与椭圆C相交于A,B两点,M是弦AB的中点,直线OM(O为原点)的斜率为,则△ABF1的周长等于,斜率k= .5.(2021浙江,15,4分)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.6.(2022课标Ⅱ,20,12分)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b. 7.(2021金华十校联考,19,15分)已知椭圆C:+=1的左顶点为A(-3,0),左焦点恰为圆x2+2x+y2+m=0(m∈R)的圆心M.(1)求椭圆C的方程;(2)过点A且与圆M相切于点B的直线交椭圆C于点P,P与椭圆C右焦点的连线交椭圆于Q,若B,M,Q三点共线,求实数m的值.8.(2021浙江湖州中学期中,21)已知A、B分别是椭圆C:+=1(a>b>0)的左、右顶点,点D在椭圆C上,且直线DA与直线DB的斜率之积为-.(1)求椭圆C的方程;(2)如图,已知P,Q是椭圆C上不同于顶点的两点,直线AP与QB交于点M,直线PB与AQ交于点N.若直线PQ 过椭圆的右焦点F2,求直线MN的方程.9.(2021浙江宁波十校联考,19)设椭圆C的中心在原点,焦点在x轴上,离心率为,其中一个顶点为P(0,1).(1)求椭圆C的方程;(2)设等腰Rt△PAB是椭圆C的内接三角形,∠APB=90°,点A、P、B按顺时针方向排列,求直线AP的方程.10.(2022超级中学原创猜测卷三,19,15分)如图,中心在坐标原点,焦点在x轴上的椭圆C1和圆心在坐标原点的圆C2都经过点M(0,-3),且椭圆C1的离心率为.(1)求椭圆C1和圆C2的方程;(2)过点M引两条斜率分别为k1,k2的直线分别交C1,C2于点P、Q,若PQ⊥y轴,则是否存在正常数l使得k1=lk2?若存在,求出l;若不存在,请说明理由;(3)在(2)的条件下,求△MPQ的面积的最大值. 11.(2022广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.12.(2022陕西,20,13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连结而成,C1与C2的公共点为A,B,其中C1的离心率为.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.13.(2021浙江名校(衢州二中)沟通卷二,18)如图,已知圆O:x2+y2=1的一条切线与椭圆C:+y2=1交于A,B两点,且切线AB与圆O的切点Q在y轴的右侧,F为椭圆C的右焦点.(1)求△ABF的周长;(2)求△OAB面积的最大值.14.(2021浙江冲刺卷一,21)设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,离心率e=.点P是椭圆C上位于第一象限内的点,满足cos∠F1PF2=,△F1PF2的面积为.(1)求椭圆的方程及点P的坐标;(2)经过点P斜率为k和-k的两直线l1,l2分别与椭圆交于点M,N.①试问直线MN的斜率是否为定值?若是,求出该定值;若不是,请说明理由;②当1≤k≤2时,求直线MN在y轴上的截距的取值范围. A组基础题组1.B 依题意有25-m2=16,∵m>0,∴m=3.故选B.2.D 由于(sinθ+cosθ)2=1+2sinθcosθ=,所以sinθcosθ=-<0,又sinθ+cosθ=>0,且θ是△ABC的内角,所以sinθ>-cosθ>0,故>>0,而x2sinθ-y2cosθ=1可化为+=1,所以方程x2sinθ-y2cosθ=1表示焦点在y轴上的椭圆.3.D 将双曲线2x2-ay2=1化为标准方程为-=1,由题意得a-1=+,解得a=2或a=-(舍去),故椭圆的方程为+y2=1.易知直线l:y=k1(x+2),把y=k1(x+2)代入椭圆的方程并化简得(1+2)x2+8x+8-2=0,设P1(x1,y1),P2(x2,y2),则x1+x2=-,故P,所以k2=×=-,所以k1k2=-.4.答案 2解析椭圆C:+=1(a>b>0)经过点P(0,),则b=,由于椭圆的长轴长是焦距的两倍,则a=2c,又由于a2=b2+c2,所以有a2=3+,解得a=2.5.答案解析设A(x1,y1),B(x2,y2),则+=1①,+=1②.①、②两式相减并整理得=-·.把已知条件代入上式得,-=-×,∴=,故椭圆的离心率e==.6.答案 5解析设P(x0,y0),∵F1(-,0),F2(,0),∴=×2×|y0|=6,得=,则=16-=,∴·=-7+=5.7.答案2;解析依据椭圆的定义得|PF1|+|PF2|=2a=6,由于|PF1|=4,所以|PF2|=2.又|F1F2|=2c=2,在△F1PF2中,依据余弦定理得cos∠F1PF2==-,所以∠F1PF2=.8.答案或解析由=和|PF1|+|PF2|=2a,得|PF2|=.设P(x,y),则有|PF2|=x+=x+c=a,解得x=a-c.又|PF2|====a-ex,则a-ex=a,从而有a-e=a,则-e=0,解得e=或e=.9.解析设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0.(1)由已知得直线l的方程为y=(x-c),其中c=.由得(3a2+b2)y2+2b2cy-3b4=0,解得y1=,y2=.由于=2,所以-y1=2y2,即=2·,整理得离心率e==.(2)由于|AB|=|y2-y1|,所以·=.由=得b=a.所以a=,得a=3,所以b=.故椭圆C的方程为+=1.10.解析(1)由题设知=,b=1,结合a2=b2+c2,解得a=.所以椭圆E的方程为+y2=1.(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0. 由已知可知Δ>0.设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=.从而直线AP,AQ的斜率之和k AP+k AQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.11.解析(1)由已知得解得b=c=1,a=.故椭圆C:+y2=1,圆O:x2+y2=1.(2)设点P(x1,y1),点Q(x2,y2).将直线l的方程代入椭圆方程得41y2+24y-16=0,故y1+y2=-,y1y2=-,所以|PQ|=·|y1-y2|==.为使S△MPQ最大,则使点M到直线l的距离最大.最大距离等于圆心到直线l的距离与圆半径之和,即h=+1=,所以(S△MPQ)最大值=|PQ|·h=.12.解析(1)由题意得+=1,=,a2=b2+c2,解得a=2,b=,c=1,则椭圆C的标准方程为+=1.(2)设M(x1,y1),N(x2,y2),△F1MN的内切圆半径为r,则=(|MN|+|F1M|+|F1N|)·r=·8r=4r,所以要使S取最大值,只需最大,=|F1F2||y1-y2|=|y1-y2|.设直线l的方程为x=ty+1,将x=ty+1代入+=1可得(3t2+4)y2+6ty-9=0(*),∵Δ>0恒成立,∴方程(*)恒有解,∴y1+y2=,y1y2=,==,记m=(m≥1),则==,在[1,+∞)上递减,当m=1,即t=0时,()max=3, 此时l:x=1,S max=.13.解析(1)由题意知,椭圆C的标准方程为+=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.由于OA⊥OB,所以·=0,即tx0+2y0=0,解得t=-.当x0=t时,y0=-,代入椭圆C的方程,得t=±,故直线AB的方程为x=±.圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为y-2=(x-t),即(y0-2)x-(x0-t)y+2x0-ty0=0.圆心O到直线AB的距离d=.又+2=4,t=-,故d===.此时直线AB与圆x2+y2=2相切.综上,直线AB与圆x2+y2=2相切.14.解析(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0, 则原点O到该直线的距离d==,由d=c,得a=2b=2,解得离心率e==.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.①依题意得,圆心M(-2,1)是线段AB的中点,且|AB|=.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.由x1+x2=-4,得-=-4,解得k=.从而x1x2=8-2b2.于是|AB|=|x1-x2|==.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.②依题意得,点A,B关于圆心M(-2,1)对称,且|AB|=.设A(x1,y1),B(x2,y2),则+4=4b2,+4=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1≠x2,所以AB的斜率k AB==.因此直线AB的方程为y=(x+2)+1,代入②得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=|x1-x2|==.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.B组提升题组1.B 抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2.从而椭圆E的半焦距c=2.可设椭圆E的方程为+=1(a>b>0),由于离心率e==,所以a=4,所以b2=a2-c2=12.由题意知|AB|==2×=6.故选B.2.D 焦点F1(-,0),F2(,0),在Rt△AF1F2中,|AF1|+|AF2|=4,|AF1|2+=12,所以可解得|AF2|-|AF1|=2,故双曲线的离心率e==,选D.3.A 由于满足+=2的点(x,y)的轨迹为椭圆,且a=,c=1,b=1,所以椭圆的方程为+x2=1,+≤2表示椭圆的内部和椭圆上的点.又a|x|+b|y|=1表示的曲线在椭圆的内部,所以其顶点,在椭圆的内部或椭圆上,得≤1,≤,所以a ≥1,b≥1,a+b≥2,故选A.4.答案8;-3解析依题意得|AF1|+|AF2|=4,|BF1|+|BF2|=4,|AF1|+(|AF2|+|BF2|)+|BF1|=8,即|AF1|+|AB|+|BF1|=8,△ABF1的周长为8.设A(x1,y1),B(x2,y2),M(x0,y0),则有两式相减得+=0,即+=0.又===,因此+(x1-x2)=0,即=-3,k=-3.5.答案解析设Q的坐标为(x0,y0),FQ的中点为M,由点M在直线y=x上得bx0-cy0+bc=0①.又由于直线FQ垂直于直线y=x,所以=-,即cx0+by0-c2=0②,联立①②得点Q,把点Q的坐标代入+=1并化简得a6=4c6+a4c2,两边同除以a6得4e6+e2-1=0,令t=e2,则0<t<1,则4t3-t+2t-1=0,则[t(2t+1)+1](2t-1)=0,解得t=,由于0<e<1,所以e=. 6.解析(1)依据c=及题设知M,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为. (2)由题意,得原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1<0,则即代入C的方程,得+=1.②将①及c=代入②得+=1.解得a=7,b2=4a=28,故a=7,b=2.7.解析(1)圆M方程化为(x+1)2+y2=1-m,可得M(-1,0),∴c=1.又∵顶点为A(-3,0),∴a=3.∴b2=a2-c2=8, 故椭圆C的方程为+=1.(2)设AP的方程为x=ty-3(t≠0),代入8x2+9y2-72=0,得(8t2+9)y2-48ty=0,解得y A=0,y P=,从而x P=ty P-3=.又右焦点坐标为(1,0),所以PQ的方程为x=y+1,代入8x2+9y2-72=0,得y2+y-64=0,所以y P y Q=,得y Q=,从而x Q=y Q+1=.由B,M,Q三点共线,知MQ⊥AP,故k MQ k AP=-1,即·=-1,解得t=±.所以AP的方程为x=±y-3.故圆心M到AP的距离为1,即圆的半径为=1,从而m=0.8.解析(1)由于点D在椭圆C上,故+=1①,又直线DA与直线DB的斜率之积为-,所以·==-②,由①②解得a2=4,b2=3,所以椭圆C的方程为+=1.(2)设直线PQ的方程为x=ty+1,P(x1,y1),Q(x2,y2),由得(3t2+4)y2+6ty-9=0,所以y1+y2=,y1y2=.由条件知直线AP的方程为x=y-2,直线BQ的方程为x=y+2,联立,解得x M=4,同理得x N=4,所以直线MN的方程为x=4.9.解析(1)设椭圆C的方程为+=1(a>b>0),则b=1,设椭圆的焦距为2c,由于e==,所以c2=a2=a2-b2=a2-1,所以a2=5,所以椭圆C的方程为+y2=1.(5分)(2)设直线PA的斜率为k,则k>0,直线PB的斜率为-.直线PA的方程为y=kx+1(k>0),代入椭圆C的方程+y2=1得(5k2+1)x2+10kx=0,所以x A=,所以|PA|2=(1+k2)=.(8分)同理,|PB|2==,又由于|PA|=|PB|,所以=(k>0),(10分)解得k=1或k=2±.(14分)所以直线PA的方程为y=x+1或y=(2±)x+1.(15分)10.解析(1)设椭圆C1为+=1(a>b>0),由于椭圆C1经过点M(0,-3),∴b=3,又e=,a2-c2=b2,∴c=4,a=5.∴椭圆C1的方程为+=1,设圆C2的方程为x2+y2=r2,∵圆C2经过点M(0,-3),∴r=3,∴圆C2的方程为x2+y2=9.(2)存在.由题意知,直线MP的方程为y=k1x-3,直线MQ的方程为y=k2x-3.联立消去y,整理得(9+25)x2-150k1x=0,∴x P=,则P.同理,由得Q,由于PQ⊥y轴,∴=,化简得=,∴l=±,∵l>0,∴l=.(3)由(2)知,|PQ|==,∴S△MPQ=|PQ||y Q-y M|=··=.下面求的最大值,令|k2|=tanα,其中α∈,则==sin3αcosα,依据基本不等式,得3=sin2α+sin2α+sin2α+3cos2α≥2sin2α+2=2(sin2α+sinαcosα)≥4,∴sin3αcosα≤,当且仅当sin2α=3cos2α,即|k2|=tanα=时,取“=”.此时,S△MPQ取得最大值,且最大值为.11.解析(1)由题意得c=,∵e==,∴a=3,∴b==2,∴椭圆C的标准方程为+=1.(2)当过P点的两条切线的斜率均存在时,不妨设为k1、k2,则过P点的切线方程可设为y-y0=k(x-x0)⇒y=kx+y0-kx0,由消去y,有(4+9k2)x2+18k(y0-kx0)x+9[(y0-kx0)2-4]=0,Δ=[18k(y0-kx0)]2-4(4+9k2)×9[(y0-kx0)2-4]=0,整理得(9-)k2+2x0y0k-+4=0,∴k1k2=(x0≠±3),由已知得k1k2=-1,∴=-1,∴+=13,即此时点P的轨迹方程为+=13.当两条切线中有一条垂直于x轴时,此时两条切线方程应分别为x=3,y=2或x=-3,y=2或x=3,y=-2或x=-3,y=-2,P点坐标为(3,2)或(-3,2)或(3,-2)或(-3,-2),均满足方程+=13(x0≠±3).综上所述,所求P点的轨迹方程为+=13.12.解析(1)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左,右顶点. 设C1的半焦距为c,由=及a2-c2=b2=1得a=2.∴a=2,b=1.(2)由(1)知,上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x-1)(k≠0),代入C1的方程,整理得(k2+4)x2-2k2x+k2-4=0.(*)设点P的坐标为(x P,y P),∵直线l过点B,∴x=1是方程(*)的一个根.由求根公式,得x P=,从而y P=,∴点P的坐标为.同理,由得点Q的坐标为(-k-1,-k2-2k).∴=(k,-4),=-k(1,k+2).∵AP⊥AQ,∴·=0,即[k-4(k+2)]=0,∵k≠0,∴k-4(k+2)=0,解得k=-.经检验,k=-符合题意, 故直线l的方程为y=-(x-1).13.解析(1)设A(x,y)(0<x<2),由已知得F(,0),|AF|====2-x.连结OQ,则OQ⊥AB,∴|AQ|===x,故|AQ|+|AF|=2.同理,|BQ|+|BF|=2,故△ABF的周长为4.(2)设Q(cosθ,sinθ),θ∈∪,则直线AB的方程为xcosθ+ysinθ=1,代入椭圆方程,得(1+3cos2θ)y2-2ysinθ+1-4cos2θ=0.设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=,∴|AB|=·==,又O到直线AB的距离为1,∴S=.设t=cosθ,0<t≤1.f(t)=+3t.∵f(t)=+3t(0<t≤1)在t=时取得最小值,∴f(t)≥f=2,∴S≤1,即△OAB面积的最大值为1.14.解析(1)由e=,得a=2c,∵a2=b2+c2,∴b=c.设|PF1|=m,|PF2|=n,则有又m>n,解得∵cos∠F1PF2=,∴sin∠F1PF2=,∴=mnsin∠F1PF2=×c·c·=c2.∵=,∴c=1,∴a=2,b=,∴椭圆的方程为+=1.设P(x,y),则有·2y=,得y=,代入椭圆方程得x=1,即点P的坐标为.(2)①直线MN的斜率是定值.理由如下:直线l1的方程为y=kx-k+,代入椭圆方程+=1中, 整理得(4k2+3)x2-4(2k2-3k)x+4k2-12k-3=0.此方程的两根为点P,M的横坐标,即1与x M.∵1×x M=,∴x M=,代入直线l1的方程得y M=-,故M.以-k代替k,得点N的坐标为,∴k MN==,即直线MN的斜率为定值.②直线MN的方程为y=-,令x=0,得y=--=-=-2+,∵1≤k≤2,∴-≤-2+≤-.故直线MN在y轴上的截距的取值范围为.。
浙江省2021年高考数学二模试卷(理科)(解析版)浙江省2021年高考数学二模试卷(理科)(解析版)一.选择题:本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.定义集合A?B={x|x∈A或x∈B且x?A∩B},设全集U={x|1<x<10},集合A={x|2<x<6},B={x|5<x<7},则(?UA)?B=()A.[6,7) B.(1,2]∪(5,6)∪[7,10) C.(1,6) D.(1,2]∪(5,6]∪(7,10)2.下列说法正确的是() A.“a2>9”是“a>3”的充分不必要条件 B.“?x0∈R,使得C.若A∧B是假命题,则A∨B是假命题D.“若a<0,则x2+ax+a<0有解”的否命题为“若a≥0,则x2+ax+a<0无解”3.已知数列{an}满足a1=1,若n为奇数时,an+1=2an+1;若n为偶数时,an+1=an+n.则该数列的前7项和为() A.103 B.102 C.100 D.984.设三条不同的直线分别为m,n,l,两个不同的平面分别为α,β.则下列说法正确的是()A.若m∥n,n?α,则m∥αB.若m,n为异面直线,且m?α,n?β,则α∥β C.若m⊥n,α⊥β,m ⊥α,则n⊥β D.若m∥α,m∥β,α∩β=l,则m∥l5.fx)=Asin0<φ<π)ω>0,已知函数((ωx+φ)(A>0,的图象与x 轴的一个交点到其相邻的一条对称轴的距离为为() A.[﹣1,2] B.6.已知平面向量,满足C.,,D..若,则函数f(x)在上的值域”的否定是“”.则对于任意的实数m,的最小值为()A.2 B.1 C. D.7.设双曲线的左、右焦点分别为F1,F2.若左焦点F1关于其中一条渐近线的对称点位于双曲线上,则该双曲线的离心率e的值为() A. B.3C.D.58.在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,AB=AA1=2.若点M在△ABC所在平面上运动,且使得△AC1M的面积为1,则动点M的轨迹为()A.圆二.填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.=(6分)(2021浙江二模)已知函数f(x)当x<0时,不等式f(x)<2的解集为. 10.(6分)(2021浙江二模)若函数则ω= ;= .的最小正周期为2π,= ;,则f(3)B.椭圆 C.双曲线D.抛物线11.(6分)(2021浙江二模)已知实数x,y满足不等式组,若实数,则不等式组表示的平面区域的面积为;若目标函数z=4x+3y的最大值为15,则实数a的值为.12.(6分)(2021浙江二模)已知某几何体的三视图如图,则该几何体的体积为;表面积为.13.(4分)(2021浙江二模)已知正方形ABCD中,点A(2,1),C(6,﹣3).若将点A折起,使其与边BC的中点E重合,则该折线所在直线方程为. 14.(4分)(2021浙江二模)若正数3x+4y+5z=6,则+的最小值.15.(4分)(2021浙江二模)已知函数,若函数 y=f[f(x)﹣a]有6个零点,则实数a的取值范围是.三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(14分)(2021浙江二模)在△ABC中,角A,B,C所对的边分别为a,b,c.若.(1)求角B的大小;(2)若△ABC的面积为,试求边b的最小值.,17.(15分)(2021浙江二模)如图所示,平面ABC⊥平面BCDE,BC∥DE,BE=CD=2,AB⊥BC,M,N分别为DE,AD中点.(1)证明:平面MNC⊥平面BCDE;(2)若EC⊥CD,点P为棱AD的三等分点(近A),平面PMC与平面ABC所成锐二面角的余弦值为,求棱AB的长度.18.(15分)(2021浙江二模)已知二次函数f(x),若f(x)<0时的解集为{x|﹣1<x<4},且f(6)=28.(1)求函数f(x)的解析式;。
2021年浙江省高考第三次模拟考试数学试卷一、单选题(本大题共10小题,共40分)1(4分)已知集合A={x||x|<2},B={x|x2﹣3x<0},则A∩B=()A(0,2)B(0,3)C(2,3)D(﹣2,3)2(4分)双曲线x2﹣=1的渐近线方程是()A y=±xB y=±xC y=±D y=±2x3(4分)若实数x,y满足约束条件,则z=|x﹣2y|的最大值是()A B C2 D4(4分)某几何体的三视图如图所示,则该几何体的体积为()A2 B4 C D125(4分)已知{a n}是等差数列,a1=11,S n为数列{a n}的前n项和,且S5=S7,则S n的最大值为()A66 B56 C46 D366(4分)在△ABC中,角A,B,C所对的边分别是a,b,c,则“”是“△ABC为等腰三角形”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7(4分)已知随机变量ξ满足P(ξ=0)=1﹣p,P(ξ=1)=p,且0<p<1,令随机变量η=|ξ﹣E(ξ)|,则()A E(η)<E(ξ)B E(η)>E(ξ)C D(η)<D(ξ)D D(η)>D(ξ)8(4分)已知函数f(x)=(a≠0)的部分图象如图所示,则()A a<0B a﹣c>0C b﹣c<0 D3a﹣2b+c<09(4分)已知椭圆,F1,F2分别是椭圆的左、右焦点,A是椭圆的下顶点,直线AF2交椭圆于另一点P,若|PF1|=|PA|,则椭圆的离心率为()A B C D10(4分)如图,三棱锥V﹣ABC的侧棱长都相等,底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,E为线段AC的中点,F为直线AB上的动点,若平面VEF与平面VBC 所成锐二面角的平面角为θ,则cosθ的最大值是()A B C D二、填空题(本大题共7小题,共36分,单空题每题4分,多空题每题6分)11(4分)新型冠状病毒疫情期间,5位党员需要被安排到3个不同的路口执勤,每个路口至少安排一人,其中党员甲和乙不能被安排到同一个路口,那么总共有种不同安排方法(用数字作答)12(4分)已知a∈R,若函数在区间x∈(1,2)上存在最小值,则a 的取值范围是13(4分)已知△ABC三边长分别为3,,,P是平面ABC内任意一点,则的最小值是14(6分)我国古代数学名著《算法统宗》中有如下描述:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍请问塔顶层有盏灯,塔底层有盏灯15(6分)已知复数z满足z(1+i)=﹣2+i(i为虚数单位),则z的虚部是,|z|=16(6分)已知多项式(x2+1)(x﹣1)5=a0+a1(x+2)+a2(x+2)2+…+a7(x+2)7=b0+b1x+b2x2+…+b7x7,则a0+a1+a2+…+a7=,b5=17(6分)已知圆O:x2+y2=4,过点作两条互相垂直的直线l1,l2,其中l1交该圆于A,B两点,l2交该圆于C,D两点,则|AB|的最小值是,|AB|+|CD|的最大值是四、解答题(本大题共5小题,共74分)18已知函数(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在上的最大值,并求此时的x值19如图,已知三棱锥P﹣ABC中,平面PAC⊥平面ABC,AB=AC=BC=PA=2,∠PAC=120°,(Ⅰ)证明:BM⊥PC;(Ⅱ)求直线AB和平面PBC所成角的正弦值20已知数列{a n}满足:a1=1,(2n+1)2a n=(2n﹣1)2a n+1(n∈N*)正项数列{c n}满足:对每个n∈N*,c2n﹣1=a n,且c2n﹣1,c2n,c2n+1成等比数列(Ⅰ)求数列{a n},{c n}的通项公式;(Ⅱ)当n≥2时,证明:21已知点F是抛物线C:x2=4y的焦点,P是其准线l上任意一点,过点P作直线PA,PB 与抛物线C相切,A,B为切点,PA,PB与x轴分别交于Q,R两点(Ⅰ)求焦点F的坐标,并证明直线AB过点F;(Ⅱ)求四边形ABRQ面积的最小值22已知a∈R,设函数f(x)=ax2﹣(3a+4)x+6lnx+6,g(x)=3ax(Ⅰ)试讨论f(x)的单调性;(Ⅱ)设函数h(x)=f(x)+g(x),是否存在实数a,使得h(x)存在两个极值点x1,x2,且满足?若存在,求a的取值范围;若不存在,请说明理由注:ln3≈1.10参考答案与试题解析一、单选题(本大题共10小题,共40分)1(4分)已知集合A={x||x|<2},B={x|x2﹣3x<0},则A∩B=()A(0,2)B(0,3)C(2,3)D(﹣2,3)【分析】求出集合A,B,由此能求出A∩B【解答】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={x|x2﹣3x<0}={x|0<x<3},∴A∩B={x|0<x<2}故选:A【点评】本题考查交集的求法,考查交集、并集定义及运算法则等基础知识,考查运算求解能力,是基础题2(4分)双曲线x2﹣=1的渐近线方程是()A y=±xB y=±xC y=±D y=±2x【分析】由双曲线﹣=1(a,b>0),可得渐近线方程y=±x,求得双曲线的a,b,即可得到所求渐近线方程【解答】解:由双曲线﹣=1(a,b>0),可得渐近线方程y=±x,双曲线x2﹣=1的a=1,b=2,可得渐近线方程为y=±2x故选:D【点评】本题考查双曲线的渐近线方程的求法,注意运用双曲线的方程和渐近线方程的关系,考查运算能力,属于基础题3(4分)若实数x,y满足约束条件,则z=|x﹣2y|的最大值是()A B C2 D【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论【解答】解:作出实数x,y满足约束条件对应的平面区域如图:由u=x ﹣2y得y=x﹣,平移直线y=x﹣,由图象可知当直线y=x﹣经过点B(2,0)时,直线y=x﹣的截距最小,此时u最大:2,由,解得A(,),直线经过A时,u取得最小值:,所以z=|x﹣2y|的最大值:2故选:C【点评】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键4(4分)某几何体的三视图如图所示,则该几何体的体积为()A2 B4 C D12【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的体积【解答】解:根据几何体的三视图转换为直观图为三棱柱ABC﹣DEF切去一个三棱锥体C ﹣DEF如图所示:所以:V==4故选:B【点评】本题考查的知识要点:三视图和几何体直观图之间的转换,几何体的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型5(4分)已知{a n}是等差数列,a1=11,S n为数列{a n}的前n项和,且S5=S7,则S n的最大值为()A66 B56 C46 D36【分析】由已知结合等差数列的和公式可求d,然后结合等差数列的性质即可求解【解答】解:因为{a n}是等差数列,a1=11,且S5=S7,∴S7﹣S5=0,所以a6+a7=0,所以2a1+11d=0即d=﹣2,因为a1=11>0,∴a6>0,a7<0,则S n的最大值为S6=6×11+15×(﹣2)=36故选:D【点评】本题主要考查了等差数列的前n项和公式及性质的应用,属于基础试题6(4分)在△ABC中,角A,B,C所对的边分别是a,b,c,则“”是“△ABC为等腰三角形”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】由,根据正弦定理可得:=,化为a=b反之不成立,即可判断出结论【解答】解:由,根据正弦定理可得:=,化为:(a﹣b)(a+b+c)=0,解得a=b∴△ABC为等腰三角形,反之不成立,可能a=c,或b=c∴“”是“△ABC为等腰三角形”的充分不必要条件故选:A【点评】本题考查了正弦定理、方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题7(4分)已知随机变量ξ满足P(ξ=0)=1﹣p,P(ξ=1)=p,且0<p<1,令随机变量η=|ξ﹣E(ξ)|,则()A E(η)<E(ξ)B E(η)>E(ξ)C D(η)<D(ξ)D D(η)>D(ξ)【分析】依题意,ξ服从两点分布,可知E(ξ),D(ξ),再求出E(η)和D(η)即可得到结论【解答】解:依题意,随机变量ξ服从两点分布,故E(ξ)=p,D(ξ)=p(1﹣p),又η=|ξ﹣E(ξ)|,所以η的取值为p,1﹣p,且P(η=p)=1﹣p,P(η=1﹣p)=p,所以E(η)=p(1﹣p)+p(1﹣p)=2p(1﹣p),D(η)=E(η2)﹣E2(η)=[p2(1﹣p)+(1﹣p)2p]﹣[2p(1﹣p)]2=p(1﹣p)[1﹣4p(1﹣p)],∴E(η)﹣E(ξ)=2p(1﹣p)﹣p=p﹣2p2=p(1﹣2p),可能为正也可能为负,即E(η)和E(ξ)大小关系不确定;∵0<p<1,∴D(η)﹣D(ξ)=p(1﹣p)[1﹣4p(1﹣p)]﹣(p﹣p2)=﹣4p2(1﹣p)2<0,∴D(η)<D(ξ)故选:C【点评】本题考查了离散型随机变量的期望与方差,考查了两点分布,考查了大小比较,主要考查分析和解决问题的能力,属于中档题8(4分)已知函数f(x)=(a≠0)的部分图象如图所示,则()A a<0B a﹣c>0C b﹣c<0 D3a﹣2b+c<0【分析】求出原函数的导函数,结合图象可得导函数根的分布,再由二次函数根的分布与系数的关系逐一分析四个选项得答案【解答】解:由f(x)=(a≠0),得f′(x)=,令﹣ax2+(2a﹣b)x+b﹣c=0,由图可知该方程一个根在(﹣1,0)之间,一个根大于1 且二次函数g(x)=﹣ax2+(2a﹣b)x+b﹣c的图象开口向下,则a>0,故A错误;g(0)=b﹣c>0,故C错误;g(1)=a﹣c>0,故B正确;g(﹣1)=﹣3a+2b﹣c<0,则3a﹣2b+c>0,故D错误故选:B【点评】本题考查函数的图象与图象变换,考查函数的单调性与导函数符号间的关系,考查二次函数根的分布与系数的关系,是中档题9(4分)已知椭圆,F1,F2分别是椭圆的左、右焦点,A是椭圆的下顶点,直线AF2交椭圆于另一点P,若|PF1|=|PA|,则椭圆的离心率为()A B C D【分析】画出图形,利用椭圆的性质,结合已知条件,通过余弦定理求解三角形求解即可【解答】解:椭圆,F1,F2分别是椭圆的左、右焦点,A是椭圆的下顶点,直线AF2交椭圆于另一点P,可得|AF1|=|AF2|=a,|PF1|+|PF2|=2a,若|PF1|=|PA|,所以|PF2|=a,|PF1|=a,cos∠APF1==,可得:a2=3c2,所以椭圆的离心率为:故选:A【点评】本题考查椭圆的简单性质的应用,三角形的解法,余弦定理的应用,是基本知识的考查10(4分)如图,三棱锥V﹣ABC的侧棱长都相等,底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,E为线段AC的中点,F为直线AB上的动点,若平面VEF与平面VBC 所成锐二面角的平面角为θ,则cosθ的最大值是()A B C D【分析】连接BE,以E为坐标原点,分别以EB,EC,EV所在直线为x,y,z轴建立空间直角坐标系求出平面VBC与平面VEF的一个法向量,由两法向量所成角的余弦值求解【解答】解:由底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,得Rt△ABC≌Rt△AVC,∴VA=VC=BA=BC设VA=VC=BA=BC=2,由E为线段AC的中点,可得VE=EB=由VE2+BE2=VB2,可得VE⊥EB以E为坐标原点,分别以EB,EC,EV所在直线为x,y,z轴建立空间直角坐标系则C(0,,0),B(,0,0),V(0,0,),设F(x,x﹣,0),,,,设平面VBC的一个法向量为,由,取x=1,得;设平面VEF的一个法向量为,由,取y1=1,得平面VEF与平面VBC所成锐二面角的平面角为θ,则cosθ==令f(x)=当x=时,f(x)min=3∴cosθ的最大值为故选:D【点评】本题考查利用空间向量法求二面角,考查空间想象能力与运算求解能力,关键是建立恰当的空间直角坐标系,是中档题二、填空题(本大题共7小题,共36分,单空题每题4分,多空题每题6分)11(4分)新型冠状病毒疫情期间,5位党员需要被安排到3个不同的路口执勤,每个路口至少安排一人,其中党员甲和乙不能被安排到同一个路口,那么总共有114 种不同安排方法(用数字作答)【分析】分3,1,1和2,2,1两类,每类中用间接法先不考虑甲乙直接用排列组合数公式求出安排方法,再减去甲乙在一个路口的分法,最后把求出的两类相加即可【解答】解:分为两类:第一类有一路口分3人时,用间接法先随意分然后减去甲乙在一起的分法应有C A﹣C C A=42种;有两路口分2人时,用间接法先随意分然后减去甲乙在一起的分法应有A﹣C C A=72种,则由加法原理共有42+72=114种故答案为:114【点评】本题考查基本原理,排列组合数公式的应用,用间接法解决该题可避免讨论,简化运算,属于中档题12(4分)已知a∈R,若函数在区间x∈(1,2)上存在最小值,则a的取值范围是【分析】当a>0时,由函数的单调性可知y=在(1,2)内的范围,结合题意得到关于a的不等式组求解;当a=0时,由函数的单调性可知不合题意;当a<0时,结合对勾函数的性质可确定最值点所满足的范围【解答】解:当a>0时,y=在(1,2)上单调递增,可得<y<,若函数在区间x∈(1,2)上存在最小值,则,即f(x)min=0,得<a<;当a=0时,f(x)=,在(1,2)上单调递增,不存在最小值,不合题意;当a<0时,=,∵x∈(1,2),∴e x∈(e,e2),又(当且仅当,即时取等号),∴若函数在区间x∈(1,2)上存在最小值,则e<<e2,解得<a<∴a的取值范围是故答案为:【点评】本题考查利用函数在区间内的最值求解参数的范围问题,关键是通过分类讨论的方式根据函数的单调性确定参数在不同范围时,函数的最值点或区间端点值的符号,由此构造不等式求解结果,属难题13(4分)已知△ABC三边长分别为3,,,P是平面ABC内任意一点,则的最小值是【分析】====当,即P是△ABC的重心时取等号然后分类求解的值,则的最小值可求【解答】解:====当,即P是△ABC的重心时取等号△ABC三边长分别为3,,,若|BC|=,则,此时原式=;若|BC|=3,则,此时原式=;若|BC|=,则,此时原式=∴的最小值是故答案为:﹣【点评】本题考查平面向量的线性运算,向量的数量积运算,考查运算求解能力,是中档题14(6分)我国古代数学名著《算法统宗》中有如下描述:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍请问塔顶层有 3 盏灯,塔底层有192 盏灯【分析】设从上向下的灯的数记为{a n},数列{a n}是以2为公比的等比数列且S7=381,结合等比数列的求和公式可求a1,进而可求【解答】解:设从上向下的灯的数记为{a n},则数列{a n}是以2为公比的等比数列且S7==381,解可得,a1=3,所以a7=3×26=192故答案为:3,192【点评】本题主要考查了等比数列的求和公式及通项公式的简单应用,属于基础试题15(6分)已知复数z满足z(1+i)=﹣2+i(i为虚数单位),则z的虚部是,|z|=【分析】利用复数的运算法则求出z,再由复数虚部,模的定义即可得出【解答】解:因为z(1+i)=﹣2+i,所以z====﹣+i,则z的虚部是,|Z|==,故答案是,【点评】本题考查了复数的运算法则、复数的虚部,模的定义,属于基础题16(6分)已知多项式(x2+1)(x﹣1)5=a0+a1(x+2)+a2(x+2)2+…+a7(x+2)7=b0+b1x+b2x2+…+b7x7,则a0+a1+a2+…+a7=﹣64 ,b5=11【分析】令x=﹣1可求第一个空,根据b5为x5的系数;求出第二个空【解答】解:∵令(x2+1)(x﹣1)5=a0+a1(x+2)+a2(x+2)2+…+a7(x+2)7;令x=﹣1可得2×(﹣2)5=a0+a1+a2+…+a7;即a0+a1+a2+…+a7=﹣64;∵(x2+1)(x﹣1)5=b0+b1x+b2x2+…+b7x7,∴b5为x5的系数;含x5的项为:x2•x3•(﹣1)2+1×x5=11x5;故b5=11;故答案为:﹣64,11【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,式子的变形是解题的关键,属于中档题17(6分)已知圆O:x2+y2=4,过点作两条互相垂直的直线l1,l2,其中l1交该圆于A,B两点,l2交该圆于C,D两点,则|AB|的最小值是 2 ,|AB|+|CD|的最大值是【分析】先由弦长最小只需圆心到直线的距离最远⇒弦长|AB|的最小值;然后对直线l1的斜率的情况进行讨论,求得|AB|+|CD|,研究其最大值即可【解答】解:若|AB|长度最小,则圆心到直线l1距离d最长,所以直线l1⊥OP,d max=,所以|AB|min=2=2①当直线l1斜率不存在时,由上可知|AB|=2,|CD|=4,此时|AB|+|CD|=6;②当直线l1斜率为0时,可得:|AB|=4,|CD|=2,此时|AB|+|CD|=6;③当直线l1斜率存在时,设直线l1方程为:y=k(x﹣),此时直线l2方程为:y=﹣(x﹣),∵圆心O到直线l1的距离d1=,∴|AB|=2=2=2=2,同理|CD|=2=2=2,令=t,则t∈(0,3),此时|AB|+|CD|=2(+)=2=2,t∈(0,3),易知当t=时,|AB|+|CD|的最大值为2故答案分别为:2;2【点评】本题主要考查圆中的弦长公式及弦长之和的最值问题,属于中档题四、解答题(本大题共5小题,共74分)18已知函数(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在上的最大值,并求此时的x值【分析】(Ⅰ)利用三角函数关系式的变换的应用和正弦型函数的性质的应用求出结果(Ⅱ)利用函数的定义域的应用求出函数的值域【解答】解:(Ⅰ),=,=,∴T=π(Ⅱ),所以所以即所以f(x)的最大值为当,即x=时,函数f(x)取得最大值【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型19如图,已知三棱锥P﹣ABC中,平面PAC⊥平面ABC,AB=AC=BC=PA=2,∠PAC=120°,(Ⅰ)证明:BM⊥PC;(Ⅱ)求直线AB和平面PBC所成角的正弦值【分析】解法一:(1)取AC的中点E,PC的中点F,连AF,ME,BE,证明AF⊥PC,ME ⊥PC,证明BE⊥AC,BE⊥PC推出PC⊥面MBE,说明PC⊥BM(2)过E作EH⊥MB垂足为H,EH即是E到面PBC的距离,通过求解三角形求解即可解法二:(1)取AC的中点E,连ME、EB,证明BE⊥PC,推出PC⊥面MBE,即可证明PC ⊥BM(2)过P作PO⊥CA交其延长线于O,连BO可得PB2=PO2+BO2,令A到面PBC的距离为h O,通过V A﹣PBC=V P﹣ABC,求出h O,转化求解AB与面PBC所成角的正弦值解法三:(1)取AC的中点O,建立如图所示的坐标系,通过,推出BM⊥PC,(2)求出面PBC的法向量,利用空间向量的数量积求解AB与面PBC所成角的正弦值【解答】解法一:(1)取AC的中点E,PC的中点F,连AF,ME,BE∵PA=AC,∴AF⊥PC,又∵,∴M是CF的中点,∴AF∥ME,ME⊥PC,又∵AB=BC,∴BE⊥AC,又∵面PAC⊥面ABC且二平面交于AC,∴BE⊥面PAC,BE⊥PC又∵ME∩BE=E,∴PC⊥面MBE,∴PC⊥BM(2)由①知PC⊥面MBE,∴面MBE⊥面PBC且交于MB,∴过E作EH⊥MB垂足为H,EH 即是E到面PBC的距离,∵BE⊥ME,∴,又∵E是AC的中点,∴A到面PBC的距离,∴AB与面PBC所成角的正弦值为解法二:(1)取AC的中点E,连ME、EB,∵AB=BC=2,∴BE⊥AC,CE=1,又∵面PAC⊥面ABC且交于AC∴BE⊥面PAC,∴BE⊥PC,∵PA=AC=2,∠PAC=120°,又∵,∴,∠PCA=∠APC=30°,∵,∴,CM⊥ME,∴PC⊥面MBE,PC⊥BM(2)过P作PO⊥CA交其延长线于O,∵面PAC⊥面ABC且交于AC,∴PO⊥面ABC,连BO可得PB2=PO2+BO2,又∵AC=AP=2,∠PAC=120°,∴,,AO=1,又∵,∴,∴,∴,∴,令A到面PBC的距离为h O,则V A﹣PBC=V P﹣ABC∴,,∴AB与面PBC所成角的正弦值为解法三:(1)取AC的中点O,建立如图所示的坐标系,由已知可得,,∴,,∴∴BM⊥PC,(2)由(1)可知,设面PBC的法向量为,则,令y=1,则,z=3,,∴AB与面PBC所成角的正弦值为【点评】本题考查直线与平面垂直的判断定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力,是中档题20已知数列{a n}满足:a1=1,(2n+1)2a n=(2n﹣1)2a n+1(n∈N*)正项数列{c n}满足:对每个n∈N*,c2n﹣1=a n,且c2n﹣1,c2n,c2n+1成等比数列(Ⅰ)求数列{a n},{c n}的通项公式;(Ⅱ)当n≥2时,证明:【分析】(Ⅰ)先由题设条件⇒{}为常数列,进而求得a n,再由题设条件分别求出当n为奇数、偶数时的c n,即可求得a n与c n;(Ⅱ)分别利用放缩法、裂项相消法求证出与即可【解答】解:(Ⅰ)解:由已知可得:,即,∴{}为常数列,∴,又a1=1,∴又∵,∴(n为奇数);又∵c2n﹣1,c2n,c2n+1是等比数列,∴,∴c2n =(2n﹣1)•(2n+1),∴(n是偶数),综上可得,c n=(Ⅱ)证明:先证:①当n=2时,,显然成立;②当n≥3时,,∴n≥3时,,∴==再证:①n=2时,左边=,右边=,成立;②n≥3时,==﹣综上,所以【点评】本题主要考查构造法求数列通项公式及利用放缩法、裂项相消法证明不等式,难度较大21已知点F是抛物线C:x2=4y的焦点,P是其准线l上任意一点,过点P作直线PA,PB 与抛物线C相切,A,B为切点,PA,PB与x轴分别交于Q,R两点(Ⅰ)求焦点F的坐标,并证明直线AB过点F;(Ⅱ)求四边形ABRQ面积的最小值【分析】(I)解法一:F(0,1),设,求出PA的方程,PB的方程,通过P在PA,PB上,得到说明直线AB过焦点F(I)解法二:F(0,1),设AB直线方程为y=kx+m,通过得x2﹣4kx﹣4m=0,利用韦达定理,切线方程求出m,即可说明结果(II)由(I)知,代入C:x2=4y得x2﹣2x0x﹣4=0,通过韦达定理以及弦长公式,点到直线的距离求解三角形的面积,利用函数的单调性求解最小值即可【解答】解:(I)解法一:F(0,1),设,则即同理又P在PA,PB上,则,所以所以直线AB过焦点F(I)解法二:F(0,1),设AB直线方程为y=kx+m,则由得x2﹣4kx﹣4m=0,所以x1+x2=4kx1•x2=﹣4m,过A的切线方程为,过B的切线方程为,所以交点P的坐标为因为P在直线y=﹣1上,所以x1•x2=﹣4m=﹣4,所以m=1即直线过焦点F(II)由(I)知,代入C:x2=4y得x2﹣2x0x﹣4=0,则,则,P到AB的距离,所以,由(1)知,则,所以,令,则,在[2,+∞)上是增函数,则四边形ABRQ面积的最小值为3【点评】本题考查直线与抛物线的位置关系的综合应用,切线方程的求法以及函数的单调性的判断,最值的求法,考查分析问题解决问题的能力,是难题22已知a∈R,设函数f(x)=ax2﹣(3a+4)x+6lnx+6,g(x)=3ax(Ⅰ)试讨论f(x)的单调性;(Ⅱ)设函数h(x)=f(x)+g(x),是否存在实数a,使得h(x)存在两个极值点x1,x2,且满足?若存在,求a的取值范围;若不存在,请说明理由注:ln3≈1.10【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出h(x)的解析式,求出h(x)的导数,结合题意得到=a(x1+x2)﹣4+,令t=>1,则=﹣2+,问题转化为8tlnt﹣3(t2﹣1)ln3>0,构造函数,根据函数的单调性判断即可【解答】解:(Ⅰ)f(x)的定义域是(0,+∞),f′(x)=,(i)若a≤0,则ax﹣2<0,则f(x)在(0,)递增,在(,+∞),(ii)若0<a<,则f(x)在(0,)递增,在(,)递减,在(,+∞)递增,(iii)若a=,则f(x)在(0,+∞)递增,(iV)若a>,则f(x)在(0,)递增,在(,)递减,在(,+∞)递增;(Ⅱ)h(x)=f(x)+g(x)=ax2﹣4x+6lnx+6,h′(x)=2ax﹣4+=,若y=h(x)有2个极值点,则ax2﹣2x+3=0有2个解x1,x2,则x1+x2=,x1x2=,且△=4﹣12a>0,x1>0,x2>0,故0<a<,则=a(x1+x2)﹣4+,令t=>1,则x1﹣x2=(x1﹣x2)•=(x1﹣x2)(+)×=(t ﹣),∴=﹣2+,若>﹣2,则>,即8tlnt﹣3(t2﹣1)ln3>0,令m(t)=8tlnt﹣3(t2﹣1)ln3,m(3)=0,m(1)=0,m′(t)=8lnt+8﹣6tln3,m′(1)=8﹣6ln3>0,m′(3)=8﹣10ln3<0,m″(t)=,故y=m′(t)在(1,)递增,在(,+∞)递减,又m′(1)>0,m′(3)<0,则在区间(,3)内存在t0使得m′(t0)=0,函数y=m(x)在(1,t0)递增,在(t0,3)递减,由m(3)=0,m(1)=0,故t∈(1,3)时满足,=t+2+==,故a=∈(,),即实数a的范围是(,)【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,分类讨论思想,是一道综合题。
浙江省2021年数学高考理数三模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高一上·云南期中) 已知 ,则 =()A .B .C .D .2. (2分) (2019高二下·梅县期末) 在复平面内,复数对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2019高二上·桂林期末) 已知双曲线C: =1(a>0,b>0)的右项点为A,过A作双曲线C的一条渐近线的平行线,且该直线与另一条渐近线交于点M,若( + ) =0,则C的离心率为()A .B .C . 2D .4. (2分)已知等比数列{an}的公比为正数,且a3·a7=4a24 , a2=2,则a1=()A . 1B .C . 2D .5. (2分)已知随机变量服从正态分布,且,则()A . 0.6B . 0.4C . 0.3D . 0.26. (2分)一几何体的三视图如图所示,则该几何体的体积为()A . 200+9πB . 200+18πC . 140+9πD . 140+18π7. (2分)执行如图所示的程序框图(其中[x]表示不超过实数x的最大整数),则运行后输出的结果是()A . 31B . 33C . 35D . 378. (2分) (2016高二上·上杭期中) 设x,y满足线性约束条件,若z=ax﹣y(a>0)取得最大值的最优解有多个,则实数a的值为()A . 2B .C .D . 39. (2分) (2017高三上·泰安期中) 已知函数的最小正周期为4π,则()A . 函数f(x)的图象关于原点对称B . 函数f(x)的图象关于直线对称C . 函数f(x)图象上的所有点向右平移个单位长度后,所得的图象关于原点对称D . 函数f(x)在区间(0,π)上单调递增10. (2分)已知、分别为椭圆C的两个焦点,点B为其短轴的一个端点,若为等边三角形,则该椭圆的离心率为()A .B .C . 2D .11. (2分)下面几种推理是合情推理的是()1)由圆的性质类比出球的有关性质;2)由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;3)已知数列{an}满足a1=5,a2=5,an+1=an+6an﹣1(n≥2).由an+1=an+6an﹣1可推出a n+1+2a n=3(an+2an ﹣1)(n≥2),故数列{an+1+2an}是等比数列.4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n﹣2)•180°.A . (1)(2)B . (1)(3)C . (1)(2)(4)D . (2)12. (2分)棱锥被平行于底面的平面所截,若截得的小棱锥的侧面积与棱台的侧面积之比为9:16,则截得的小棱锥的体积与棱台的体积之比为()A . 27:98B . 3:4C . 9:25D . 4:7二、填空题 (共4题;共4分)13. (1分)(2020·池州模拟) 已知的展开式中二项式系数之和为512,则展开式中常数项为________.14. (1分)(2018·广东模拟) 已知分别是定义在上的奇函数和偶函数,且,当时,(为常数),则 ________.15. (1分) (2017高二下·孝感期末) 已知F1、F2是某等轴双曲线的两个焦点,P为该双曲线上一点,若PF1⊥PF2 ,则以F1、F2为焦点且经过点P的椭圆的离心率是________ .16. (1分)(2019·黄冈模拟) 已知数列满足,为数列的前项和,则的值为________.三、解答题 (共7题;共85分)17. (10分)(2013·新课标Ⅰ卷理) 如图,在△A BC中,∠ABC=90°,,BC=1,P为△ABC内一点,∠BPC=90°(1)若,求PA;(2)若∠APB=150°,求tan∠PBA.18. (10分)(2019·菏泽模拟) 2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了120人进行调查,经统计男生与女生的人数比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.(1)完成列联表,并判断能否有99%的把握认为“对冰壶运动是否有兴趣与性别有关”?有兴趣没有兴趣合计男30女15合计120(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取8人,求抽取的男生和女生分别为多少人?若从这8人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.附: ,其中n=a+b+c+dP 0.1500.1000.0500.0250.0102.072 2.0763.841 5.024 6.63519. (15分) (2019高三上·凤城月考) 如图,与都是边长为2的正三角形,平面平面,平面, .(1)证明:直线平面(2)求直线与平面所成的角的大小;(3)求平面与平面所成的二面角的正弦值.20. (10分) (2017高二上·南通期中) 在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)与双曲线﹣y2=1有相同的焦点F1 , F2 ,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若|MF1|+|MF2|=2 .(1)求椭圆的方程;(2)若|MF|= ,求抛物线的方程.21. (15分)(2012·四川理) 已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(1)用a和n表示f(n);(2)求对所有n都有成立的a的最小值;(3)当0<a<1时,比较与的大小,并说明理由.22. (10分)(2019·菏泽模拟) 已知曲线的参数方程为(为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.23. (15分)已知二次函数f(x)=ax2+x+1,a∈R,a≠0).(1)若不等式f(x)>0的解集为,求实数a的值;(2)当a∈[﹣2,0]时,不等式f(x)>0恒成立,求实数x的取值范围;(3)对x∈[0,2]时,不等式f(x)>0恒成立,求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共85分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
2021年高三第三次高考模拟考试理数试题 含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2|13,|680A x x B x x x =-≤≤=-+<,则等于( )A .B .C .D .2.设是虚数单位,若为纯虚数,则实数的值为( )A .2B .-2C .D .3.函数与在上都是递减的,实数的取值范围是( )A .B .C .D .4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的概率是( )A .B .C .D .5.在如图所示的算法流程图中,输出的值为( )A .11B .12C .13D .156.下列双曲线中,与双曲线的离心率和渐近线都相同的是( )A .B .C .D .7.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,该多面体的体积是( )A .32B .16C .D .8.在约束条件0024x y y x t y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当时,其所表示的平面区域的面积为,与之间的函数关系用下列图像表示,正确的应该是( )A .B .C .D .9.函数的最小正周期为,给出下列四个命题:(1)的最大值为3;(2)将的图像向左平移后所得的函数是偶函数;(3)在区间上单调递增;(4)的图象关于直线对称.其中正确说法的序号是( )A .(2)(3)B .(1)(4)C .(1)(2)(4)D .(1)(3)(4)10.已知()()()()4241220126243111x x a a x a x a x ++=+++++++,则的值为:( ) A . B . C . D .11.已知定义在的函数,若仅有一个零点,则实数的取值范围是( ) A . B . C . D .12.将半径都为1的4个彼此相切的钢球完全装入形状为正三棱台的容器里,该正三棱台的高的最小值为( )A .B .C .D .第Ⅱ卷二、填空题:本大题共四小题,每题5分,满分20分.13.已知向量与的夹角为120°,,则等于___________.14.数列满足1120212112n n n n n a a a a a +⎧⎛⎫≤< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤< ⎪⎪⎝⎭⎩,若,则___________. 15.已知是抛物线上的一条动弦,且的中点横坐标为2,则的最大值为___________.16. 的三个内角的对边分别是,其面积.若,则边上的中线长的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知各项均为正数的数列的前项和,且.(1)求的通项公式;(2)若数列满足,求的前项和.18.(本小题满分12分)某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者学校高三年级随机抽取了100名学生,调查结果如下表:喜爱不喜爱总计男学生60 80女学生总计70 30(1)完成上表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有个男生去观看演出的分布列及期望.附:0.100 0.050 0.0102.7063.841 6.63519.(本小题满分12分)如图,四棱锥的侧面是正三角形,底面为菱形,点为的中点,若.(1)求证:;(2)若,求二面角的余弦值.20.(本小题满分12分)已知直线与椭圆相交于不同的两点,且线段的中点的坐标为.(1)求椭圆的离心率;(2)设为坐标原点,且,求椭圆的方程.21.(本小题满分12分)已知函数()()()()()()2231,ln 134x f x x e g x a x x a x a a R =+=+++-+∈. (1)若,求函数的单调区间;(2)若恒成立,求的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,是的一条切线,切点为,直线都是的割线,已知.(1)若,求的值;(2)求证:.23. (本小题满分10分)选修4-4:坐标系与参数方程已知直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,两点极坐标分别为.(1)求曲线的参数方程;(2)在曲线上取一点,求的最值.24. (本小题满分10分)选修4-5:不等式选讲设函数.(1)若,求不等式的解集;(2)若不等式的解集为,求的值.参考答案一、选择题CAAC BCDA DBBC二、填空题13. 4 14. 15. 6 16.三、解答题17.(本小题12分)解:(1)由,解得,由假设,因此,故的通项为......................6分(2)由1323133132nb n nn n==+--++............................8分得前项和1111323132233n nii ib i i n===+-=+∑∑................12分18.(本小题12分)解:(1)喜爱不喜爱总计男学生60 20 80女学生10 10 20总计 70 30100将表中的数据代入公式计算,得()2210060102010100 4.7627030802021K ⨯⨯-⨯==≈⨯⨯⨯, 由于,所以有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”...............5分(2)由题意知:这10名学生中有8名男生和2名女生 ,故可取值3,4,5..........6分()()()32415082828255510101056214055623,4,5252925292529C C C C C C P X P X P X C C C ============.........................................................8分故其分布列为:3 4 5.........................................10分该分布满足超几何分布,故其期望.....................12分19.(本小题12分)(1)证明:由得,从而,且,又∵,∴平面,而平面,得,又∵,∴..................................6分(2)解:如图建立直角坐标系,其中为坐标原点,轴平行于,的中点坐标,连结,又知,由此得到:()333331,,,0,,,2,0,04422GA PB BC ⎛⎫⎛⎫=--=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,有, ∴,∵的夹角为等于所求二面角的平面角,20.(本小题12分)解:(1)设,代入椭圆,两式相减:()()()()22121212120b x x x x a y y y y -++-+=,由题意可知:代入上式得,∵,∴,从而所求离心率........................5分(2)由(1)得椭圆的方程为:,与直线联立方程组并化简得:,从而,得,且,................................................7分∵,∴,有得:,解得:(满足).故所求的椭圆的方程为............................12分21.(本小题12分)解:(1)当,,得,或,得.故所求增区间为和,减区间为………………………………4分(2)由,有()()()2231ln 134xx e a x x a x a +≥+++-+, 令()()()()2231ln 134x h x x e a x x a x a =+-+----, ①当时,()()()2323312x a h x x e x a x '=+--+-+, 1°当时,()()()23233012x a h x x e x a x '=+--+-=+, 2°当时,()()()2323312x a h x x e x a x '=+--+-+ ()()()()22123232311011x x a x e x a x e a x x ⎛⎫<+--+-=+-+-< ⎪++⎝⎭, 3°当时,()()()2323312x a h x x e x a x '=+--+-+ ()()()()22123232311011x x a x e x a x e a x x ⎛⎫>+--+-=+-+-> ⎪++⎝⎭, 在递减,在递增,∴,②当时,在时,,即,而对于函数,不妨令,有()()()()4223ln 13ln 123ln 112314a a g x a x x a x a a x a a e a -⎛⎫=+++-+>++-=-+++-= ⎪⎝⎭,故在内存在,使得不恒成立,综上:的取值范围是..................................12分22.(本小题满分10分)(1)证明:由题意可得:四点共圆,∴,∴,∴,又∵......................4分(2)∵为切线,为割线,∴,又∵,∴,∴,又∵,∴,∴,又∵,∴∴................................................10分23.(本小题满分10分)解:(1)由,得,即,故所求参数方程为:(为参数)..............................4分(2)由已知条件知两点直角坐标分别为,令,()()()()222222cos 12sin cos 12sin 8sin 12AP BP t t t t t +=++++-++=+, 故当,有最小值4,,有最大值20............................10分24.(本小题满分10分)解:(1)时,由得,当时,有,得;时,有,解集为空集;时,有,得,综上,所求解集为...........................4分(2)法一:由的解集为知:是方程一个根,得而当时,由解得,合题意;当时,由解得,合题意.综上:..........................10分法二:不等式可化为:,分别作出及的图象由图可知若的解集为,则有:,解得:..........................................10分•f8 31109 7985 禅f=N36467 8E73 蹳 &23880 5D48 嵈K 36298 8DCA 跊。
浙江省2021届理科数学复习试题选编31:双曲线一、选择题1 .〔浙江省六校联盟2021届高三回头联考理科数学试题〕F 1和F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 是双曲线左支的一点,1PF ⊥2PF ,1PF =C,那么该双曲线的离心率为〔 〕A1BC1D2 .〔浙江省绍兴市2021届高三教学质量调测数学〔理〕试题〔word 版〕 〕双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,O 为坐标原点,以O F为直径的圆与双曲线的一条渐近线相交于O ,A 两点.假设△AOF 的面积为2b ,那么双曲线的离心率等于 〔 〕A .3B .5C .23D .253 .〔浙江省2021年高考模拟冲刺〔提优〕测试二数学〔理〕试题〕直线过点(2,1)P 与曲线1422=-y x 恰有一个公共点,那么满足条件的直线的条数为 〔 〕A .1B .2C .3D .44 .〔浙江省杭州高中2021届高三第六次月考数学〔理〕试题〕设双曲线C:22221x y a b -=(a >0,b >0)的右焦点为F ,左,右顶点分别为A 1,A 2.过F 且与双曲线C 的一条渐近线平行的直线l 与另一条渐近线相交于P ,假设P 恰好在以A 1A 2为直径的圆上,那么双曲线C 的离心率为 〔 〕 AB .2CD .35 .〔浙江省2021年高考模拟冲刺〔提优〕测试一数学〔理〕试题〕1F ,2F 分别是双曲线)0,0(12222>>=-b a by ax 的左、右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,假设点M 在以线段21F F 为直径的圆外,那么双曲线离心率的取值范围是 〔 〕A .)2,1(B .)3,2(C .)2,3(D .),2(∞+6 .〔浙江省嘉兴市2021届高三上学期根底测试数学〔理〕试题〕焦点在y 轴上的双曲线的渐近线过椭圆221416x x +=和椭圆2231164x y +=的交点,那么双曲线的离心率是 〔 〕A .233B .2C .5D .527 .〔2021年杭州市第一次高考科目教学质量检测理科数学试题〕设双曲线22143x y -=的左,右焦点分别为12,F F ,过1F 的直线交双曲线左支于,A B 两点,那么22BF AF +的最小值为〔 〕A .192B .11C .12D .168 .〔浙江省温岭中学2021届高三高考提优冲刺考试〔三〕数学〔理〕试题 〕21F F 、分别是双曲线:C 12222=-by a x 的左、右焦点,假设2F 关于渐近线的对称点恰落在以1F 为圆心,||1OF 为半径的圆上,那么C 的离心率为: 〔 〕A .3B .3C .2D .29 .〔浙江省嘉兴市2021届高三第二次模拟考试理科数学试卷〕设m 是平面α内的一条定直线,P 是平面α外的一个定点,动直线n 经过点P 且与m 成︒30角,那么直线n 与平面α的交点Q 的轨迹是 〔 〕 A .圆B .椭圆C .双曲线D .抛物线10.〔【解析】浙江省镇海中学2021届高三5月模拟数学〔理〕试题〕双曲线方程为22221(0,0)x y a b a b-=>>,离心率为2,12,F F 分别是它的左、右焦点,A 是它的右顶点,过1F 作一条斜率为(0)k k ≠的直线与双曲线交于两个点,M N ,那么MAN ∠为 〔 〕A .锐角B .直角C .钝角D .锐角、直角、钝角都有可能11.〔浙江省温岭中学2021届高三高考提优冲刺考试〔五〕数学〔理〕试题〕F 1、F 2是双曲线C:)0(12222>>=-b a by a x 的两个焦点,过曲线C 的左焦点F 1(-c ,0)和虚轴端点B(0,b )作直线l 交曲线C 左支于A 点,右支与D 点,连接AO 、DF 2,AO∥DF 2 ,那么双曲线的离心率为 〔 〕A .3B .6C .36+D .25+12.〔浙江省考试院2021届高三上学期测试数学〔理〕试题〕如图,F 1,F 2是双曲线C:22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线与C 的左、右两支分别交于A ,B 两点.假设 | AB | : | BF 2 | : | AF 2 |=3:4 : 5,那么双曲线的离心率为〔 〕A .13B .15C .2D .313.〔浙江省“六市六校〞联盟2021届高三下学期第一次联考数学〔理〕试题〕设F 1,F 2 是双曲线)0,(1x 2222>=-b a b y a 的左、右焦点,假设双曲线右支上存在一点P 满足212F F PF =,且54cos 21=∠F PF ,那么双曲线的渐近线方程为 〔 〕A .043=±y xB .053=±y xC .034=±y xD .045=±y x14.〔浙江省海宁市2021届高三2月期初测试数学〔理〕试题〕点P 是双曲线C :)0,0(12222>>=-b a b y a x 左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M,N 两点(如图),点N恰好平分线段PF 2,那么双曲线的离心率是〔 〕A .5B 2C .3D .215.〔2021年普通高等学校招生统一考试浙江数学〔理〕试题〔纯WORD 版〕〕如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.假设四边形21BF AF 为矩形,那么2C 的离心率是xyOM NP 1F 2F 〔第9题〕xy OA B F 1F 2(第9题图)〔 〕A .2B .3C .23 D .26 16.〔浙江省宁波市2021届高三第一学期期末考试理科数学试卷〕设圆锥曲线C 的两个焦点分别为F 1,F 2,假设曲线C 上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=4:3:2, 那么曲线C 的离心率等于 〔 〕A .2332或B .23或2 C .12或2 D .1322或17.〔浙江省嘉兴市第一中学2021届高三一模数学〔理〕试题〕双曲线c: )0(12222>>=-b a b y a x ,以右焦点F 为圆心,|OF |为半径的圆交双曲线两渐近线于点M 、N (异于原点O),假设|MN|=a 32,那么双曲线C 的离心率是〔 〕A1+18.〔浙江省黄岩中学2021年高三5月适应性考试数学(理)试卷 〕A,B,P 是双曲线12222=-by a x (0>a ,0>b )上不同的三点,且A,B 连线经过坐标原点O,假设直线PA,PB 的斜率乘积3=⋅PB PA k k ,那么双曲线的离心率为 〔 〕A .2B .3C .2D .519.〔浙江省温州中学2021届高三第三次模拟考试数学〔理〕试题〕双曲线22221(0,0)x y a b a b-=>>,12A A 、是实轴顶点,F 是右焦点,()0,B b 是虚轴端点,假设在线段BF 上(不含端点)存在不同的两点(1,2)i p i =,使得12(1,2)i P A A i ∆=构成以12AA 为斜边的直角三角形,那么双曲线离心率e 的取值范围是〔〕A .)+∞B.1,)2+∞ C.1(1,)2D .1)220.〔浙江省湖州市2021年高三第二次教学质量检测数学(理)试题(word 版) 〕A B P ,,是双曲线()2222100y x a b a b-=>>,上不同的三点,且A B ,连线经过坐标原点O ,假设直线PA PB ,的斜率乘积3PA PB k k ⋅=,那么双曲线的离心率为 〔 〕AB C .2D21.〔浙江省温州市2021届高三第三次适应性测试数学(理)试题〔word 版〕 〕是双曲线14222=-y ax 的左焦点,双曲线右支上一动点P ,且x PD ⊥轴,D 为垂足,假设线段PD FP -的最小值为52,那么双曲线的离心率为 〔 〕A .53B .52C .25D .522.〔浙江省杭州市2021届高三第二次教学质检检测数学〔理〕试题〕双曲线2222:1(0,0)y x C a b a b ,A,B 是双曲线的两个顶点.P 是双曲线上的一点,且与点B 在双曲线的同一支上.P 关于y 轴的对称点是Q 假设直线AP,BQ 的斜率分别是k 1,k 2, 且k 1·k 2=45,那么双曲线的离心率是 〔 〕A .5 B .94C .32D .9523.〔浙江省温州市十校联合体2021届高三上学期期末联考理科数学试卷〕抛物线()022>=p px y 与双曲线()0,012222>>=-b a by a x 有相同的焦点F ,点A 是两曲线的交点,且x AF ⊥轴,那么双曲线的离心率为 〔 〕A .12+B .13+C .215+ D .2122+24.〔浙江省名校新高考研究联盟2021届高三第一次联考数学〔理〕试题〕P 为双曲线C :221916x y -=上的点,点M 满足1OM =,且0OM PM ⋅=,那么当PM 取得最小值时的点P 到双曲线C 的渐近线的距离为 〔 〕A .95 B .125C .4D .5二、填空题25.〔浙江省永康市2021年高考适应性考试数学理试题 〕双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A ,B 两点,且与其中一条渐近线垂直,假设FB AF 4=,那么该双曲线的离心率为____;26.〔浙江省乐清市普通高中2021届高三上学期期末教学质量检测数学〔理〕试题〕设O 为坐标原点,B A ,是双曲线1322=-y x 的渐近线上异于O 的两点,且2||||==OB OA ,那么→→⋅OB OA =_______.27.〔浙江省金丽衢十二校2021届高三第二次联合考试理科数学试卷〕我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“黄金伙伴〞.1F 、2F 是一对“黄金伙伴〞的焦点,P 是它们在第一象限的交点,当6021=∠PF F 时,这一对“黄金伙伴〞中双曲线的离心率是_______28.〔浙江省温州市2021届高三第二次模拟考试数学〔理〕试题〕己知F 1,F 2分别是双曲线1222=-b y x 的左、右焦点,A 是双曲线上在第一象限内的点,假设 |AF 2|=2且∠F 1AF 2=450.廷长AF 2交双曲线右支于点B,那么ΔF 1AB 及的面积等于___29.〔浙江省建人高复2021届高三第五次月考数学〔理〕试题〕A 、B 分别是双曲线22:4C x y -=的左、右顶点,那么P 是双曲线上在第一象限内的任一点,那么PBA PAB ∠-∠=__________.30.〔浙江省五校联盟2021届高三下学期第一次联考数学〔理〕试题〕设双曲线2222:1(0)x y C a b a b-=>>的右焦点为F ,左右顶点分别为12,A A ,过F 且与双曲线C 的一条渐近线平行的直线l 与另一条渐近线相交于P ,假设P 恰好在以12A A 为直径的圆上,那么双曲线的离心率为______________.31.〔浙江省宁波市2021届高三第一学期期末考试理科数学试卷〕如果双曲我的两个焦点分别为12(0,3)(0,3)F F 和,其中一条渐近线的方程是22y x =,那么双曲线的实轴长为______. 32.〔浙江省诸暨中学2021届高三上学期期中考试数学〔理〕试题〕设双曲线22221(0,0)x y a b a b-=>>的右顶点A ,x 轴上有一点(2,0)Q a ,假设双曲线上存在点P ,使AP PQ ⊥,那么双曲线的离心率的取值范围是____________33.〔温州市2021年高三第一次适应性测试理科数学试题〕双曲线22221x y a b-=的一条渐近线方程为2y x =,那么其离心率为____34.〔浙江省五校联盟2021届高三下学期第二次联考数学〔理〕试题〕双曲线22221(0,0)x y a b a b -=>>的渐近线与圆22420x y x +-+=有交点,那么该双曲线的离心率的取值范围是___________.浙江省2021届理科数学复习试题选编31:双曲线参考答案一、选择题 1. C 2. D3. B 解:因为点(2,1)P 在渐近线上,故旋转直线一周只有2条符合条件.4. A5. D6. B7. B 解:由题意,得:显然,AB 最短即通径,2min23b AB a=⋅=,故()22min11BF AF +=8. D解析:方法一:设),(y x P 为2F 关于渐近线x aby l =:的对称点,那么有: ⎪⎩⎪⎨⎧+⋅=-=-2)2c x a b y b a c x y (,解得:⎪⎪⎩⎪⎪⎨⎧+=+-=2222222)(b a abc y b a b a c x , 由PO PF ⋅1=0可得:0222=++y cx x ,将上式代入化简可得:0))((2)(2222222=+-++b a b a b a ,即223a b =,即224a c =,即2==ace ,应选D. 方法二:如图:设2F 关于其渐近线的对称点为P,连接PO ﹑1PF ,由于点P 恰落在以1F 为圆心,||1OF 为半径的圆上,故有11PF PO OF c ===,易得02160PF =∠F ,01230PF =∠F 故12PF PF ⊥,又2OH PF ⊥,故0260OHF ∠=,即3600==tan a b ,即2==ace .应选D. 9. C:动直线n 的轨迹是以点P 为顶点、以平行于m 的直线为轴的两个圆锥面,而点Q 的轨迹就是这两个圆锥面与平面α的交线.10.答案:B 解析:由离心率为2,可得2c a =,223b a =,那么双曲线方程为22233xy a -=.设1122(,),(,)M x y N x y ,因直线MN 的斜率不为零,那么可设其方程为2x my a =-,与双曲线方程联立得222(31)1290m y amy a --+=,从而有2310m -≠,1221231amy y m +=-,且11. C 提示 联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=1)(2222b y ax c x c b y 削去x 得02322=+-b y c by221221,2b y y b c y y =⋅=+(*),由题意的2212y y =代入(*)中,得到⎪⎩⎪⎨⎧==2222223by b c y ,削去y 得4489c b =,可以解得2692+=e .12. A13. C 14. A 15. D 16. D 17. C 18. C 19. D 20. C 21. A 22. C 23. A 24. B二、填空题26. 2±,-4 27. 3 28. 4 29.略 30. 231.32. (1,234.。
2021年浙江省新高考测评卷数学(第三模拟)(wd无答案)一、单选题(★★) 1. 已知全集,集合,,则()A.B.C.D.(★★) 2. 已知复数满足,则复数(其中为虚数单位)的模为()A.B.C.1D.2(★★) 3. 已知等差数列的前项和为,且,,则()A.7B.8C.9D.10(★★★) 4. “ ”是“ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(★★) 5. 已知离散型随机变量的所有可能取值为0,1,2,3,且,,若的数学期望,则()A.19B.16C.D.(★★) 6. 已知定义在上的Dirichlet函数则下列说法正确的是()A.存在,使得B.对任意的有理数,总有C.函数的单调性与函数的单调性是一致的D.对任意的,的值始终为一个常数(★★) 7. 的展开式中的系数为,则实数的值为()A.B.C.D.(★★) 8. 如图,在四棱锥中,底面为正方形,,且为线段上的动点(不含端点),设二面角的大小为,直线与平面所成的角为,直线与所成的角为,则()A.,B.,C.,D.,(★★★) 9. 已知数列满足,,则()A.B.C.35D.(★★★★) 10. 已知定义在上的函数满足:①对任意的,,;②当时,;③ .若对于任意的两个正实数,,不等式恒成立,则实数的最小值是()A.B.C.D.二、填空题(★) 11. 已知点,椭圆的右焦点为,若线段的中点恰好在椭圆上,则椭圆的长轴长为______.三、双空题(★★) 12. 已知某空间几何体的三视图如图所示,则该几何体的体积为 ______ ,表面积为______ .(★★★) 13. 已知不等式组表示的平面区域是一个三角形区域,则实数的取值范围是______;若的最大值为30,则实数______.(★★★) 14. 在中,是的中点,且,,则______;若的面积为,则______.四、填空题(★★★★) 15. 在生物学研究过程中,常用高倍显微镜观察生物体细胞.已知某研究小组利用高倍显微镜观察某叶片的组织细胞,获得显微镜下局部的叶片细胞图片,如图所示,为了方便研究,现在利用甲、乙等四种不同的试剂对、、、、、这六个细胞进行染色,其中相邻的细胞不能用同种试剂染色,且甲试剂不能对细胞染色,则共有______种不同的染色方法(用数字作答).五、双空题(★★★)16. 如图,在四边形中,,,,,,分别为边,上的动点,且,则______,的最小值为______.六、填空题(★★★) 17. 已知双曲线的右焦点为,虚轴的上端点为,点,为上两点,点为弦的中点,且,记双曲线的离心率为,则______.七、解答题(★★) 18. 已知函数.(1)求函数的最小正周期和单调递减区间.(2)若对任意的,方程(其中)始终有两个不同的根,.①求实数的值;②求的值.(★★★) 19. 如图,在四棱柱中,,是等边三角形,.(1)求证:;(2)若,,,求直线与平面所成角的正弦值.(★★★★) 20. 已知等比数列的公比为,且,数列满足,.(1)求数列的通项公式.(2)规定:表示不超过的最大整数,如,.若,,记求的值,并指出相应的取值范围.(★★★★) 21. 已知抛物线,圆,当时,抛物线与圆仅有两个交点.(1)求抛物线的方程;(2)如图,若圆与抛物线有四个交点,且交点分别为,,,,求四边形面积的最大值.(★★★★) 22. 已知函数.(1)若单调递增,求实数的取值范围;(2)若函数有两个极值点,,且,求证:.。
§8.5双曲线A组基础题组1.(2021安徽,6,5分)下列双曲线中,渐近线方程为y=±2x的是( )A.x2-=1B.-y2=1C.x2-=1D.-y2=12.(2022广东,4,5分)若实数k满足0<k<9,则曲线-=1与曲线-=1的( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等3.(2021广东,7,5分)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( )A.-=1B.-=1C.-=1D.-=14.(2021四川,5,5分)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=( )A. B.2 C.6 D.45.(2021课标Ⅰ,5,5分)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A. B.C. D.6.(2021课标Ⅱ,11,5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. B.2 C. D.7.(2021浙江冲刺卷四,6)已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,A和B是以坐标原点O为圆心,以|OF2|为半径的圆与该双曲线的渐近线在y轴右侧的两个交点,且△AF1B是正三角形,则双曲线的离心率为( )A. B. C.2 D.8.(2021绍兴一模,6,5分)曲线x2-3y2=0与双曲线C:-=1(a>0,b>0)的四个交点与C的两个虚轴顶点构成一个正六边形,则双曲线C的离心率为( )A. B. C. D.9.(2021杭州二中仿真考,7,5分)已知点P为双曲线-=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左,右焦点,且|F1F2|=,I为三角形△PF1F2的内心,若=+λ成立,则λ的值为( )A. B.2-1 C.+1 D.-110.(2021浙江名校(柯桥中学)沟通卷三,6)若双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,点P是第一象限内双曲线上的点,若直线PA,PB的倾斜角分别为α,β,则α+β的值是( ) A. B. C. D.11.(2021浙江测试卷,6)已知双曲线x2-=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点( )A.(3,0)B.(1,0)C.(-3,0)D.(4,0)12.(2021哈三中二模)过双曲线-=1(a>0,b>0)的右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点,则双曲线离心率的取值范围为( )A.(1,)B.(1,+1)C.(+1,)D.(,)13.(2021江苏,12,5分)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为.14.(2022领航高考冲刺卷五,15,4分)若等轴双曲线C的左,右顶点A,B分别为椭圆+y2=1(a>0)的左,右焦点,点P是双曲线上异于A,B的点,直线PA,PB的斜率分别为k PA,k PB,则k PA·k PB= .15.(2022超级中学原创猜测卷十,13,4分)设F1,F2分别是双曲线-=1(a>0,b>0)的左,右焦点,若双曲线的右支上存在一点P,使点P在以F1F2为直径的圆上,且|PF1|=|PF2|,则该双曲线的离心率为.16.(2021浙江镇海中学测试卷二,14)双曲线x2-y2=2021的左、右顶点分别为A1、A2,P为其右支上不同于A2的一点,且∠A1PA2=4∠PA1A2,则∠PA1A2= .B组提升题组1.(2021福建,3,5分)若双曲线E:-=1的左、右焦点分别为F1、F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于( )A.11B.9C.5D.32.(2021浙江名校(绍兴一中)沟通卷五,6)已知双曲线-=1的右焦点为F,左顶点为P,上,下虚轴端点为M,N,若FM与PN交于点A,已知|AF|=|AP|,则此双曲线的离心率为( )A. B. C. D.3.(2021杭州一模,7,5分)设F为双曲线C:-=1(a>0,b>0)的右焦点,过点F且斜率为-1的直线l与双曲线C 的两条渐近线分别交于A,B两点,若=-3,则双曲线C的离心率e=( )A. B. C. D.4.(2022领航高考冲刺卷六,7,5分)设A1、A2分别为双曲线C:-=1(a>0,b>0)的左、右顶点,若在双曲线C上存在点M,使得·<2,则双曲线C的离心率的取值范围是( )A.(,3)B.(1,)C.(,+∞)D.(1,3)5.(2022山西八校联考,12,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.26.(2021温州二模,8,5分)如图所示,A,B,C是双曲线-=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是( )A. B. C. D.37.(2021浙江六校联考,7,5分)已知双曲线-=1(a>0,b>0)的左,右焦点分别为F1,F2,P为双曲线上任一点,且·最小值的取值范围是,则该双曲线的离心率的取值范围为( )A.(1,]B.[,2]C.(1,2]D.[2,+∞)8.(2021浙江名校(衢州二中)沟通卷二,7)过双曲线-=1(b>a>0)的左焦点F(-c,0)(c>0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若E为FP的中点,则双曲线的离心率为( )A. B. C. D.9.已知双曲线-=1的左、右焦点分别为F1、F2,P为双曲线左支上一点,M为双曲线渐近线上一点(渐近线的斜率大于零),则|PF2|+|PM|的最小值为( )A.2-B.2C.2+D.2+210.(2021湖北,8,5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则( )A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e211.(2021浙江测试卷,10,5分)设动点A,B均在双曲线C:-=1(a>0,b>0)的右支上,O为坐标原点,双曲线C的离心率为e,则( )A.若e>,则·存在最大值B.若1<e≤,则·存在最大值C.若e>,则·存在最小值D.若1<e≤,则·存在最小值12.(2021太原二模)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1、F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )A.|OA|>|OB|B.|OA|<|OB|C.|OA|=|OB|D.|OA|与|OB|大小关系不确定13.(2021湖南,13,5分)设F是双曲线C:-=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为. 14.(2021山东文,15,5分)过双曲线C:-=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.15.(2022山东,15,5分)已知双曲线-=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.A组基础题组1.A A选项中,渐近线方程为x2-=0,即y=±2x.故选A.2.A ∵0<k<9,∴9-k>0,25-k>0.∴-=1与-=1均表示双曲线,又25+(9-k)=34-k=(25-k)+9,∴它们的焦距相等,故选A.3.C 由已知得解得故b=3,从而所求的双曲线方程为-=1,故选C.4.D 双曲线x2-=1的右焦点为F(2,0),其渐近线方程为x±y=0.不妨设A(2,2),B(2,-2),所以|AB|=4,故选D.5.A 若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈.故选A.6.D 设双曲线E的标准方程为-=1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M在第一象限内,则易得M(2a,a),又M点在双曲线E上,于是-=1,解得b2=a2,∴e==.7.C 设点A(x,y)在第一象限,由得即得A(a,b).同理得B(a,-b).由|AB|=|AF1|,得2b=,即(c+a)2=3b2=3(c2-a2).又c+a≠0,从而c+a=3(c-a),即c=2a,故离心率e==2.8.B 设曲线x2-3y2=0与双曲线C:-=1(a>0,b>0)在第一象限的交点为A(x A,y A),则正六边形的边长为2|y A|=b.又由曲线方程与双曲线方程联立消去x得|y A|2=,所以|y A|2==⇒5a2=3b2,所以=,所以双曲线C的离心率为==,故选B.9.D 设△PF1F2的内切圆半径为r,由双曲线的定义得|PF1|-|PF2|=2a,|F1F2|=2c,=r|PF1|,=r|PF2|,=r·2c=cr.由题意得r|PF1|=r|PF2|+λcr,所以λ==.由于|F1F2|=,所以2c==,即+-1=0,解得=-1或=--1(舍去),故选D.10.D 双曲线的左顶点为A(-a,0),右顶点为B(a,0).设P(m,n)(m>a,n>0),则直线PA的斜率k PA=,直线PB的斜率k PB=,∴k PA·k PB=①.∵P(m,n)是双曲线x2-y2=a2上的点,∴m2-n2=a2,将n2=m2-a2代入①式得k PA·k PB=1.∴α+β=.11.A 明显直线AP,AQ的斜率存在,且不为0,设直线AP的斜率为k,k≠±.则AP的方程为y=k(x+1).由得(k2-2)x2+2k2x+k2+2=0,则-1·x P=,故x P=,则有P.以-代替k,得Q.当k≠±1且k≠±时,k PQ=,直线PQ的方程为y=(x-3),此时直线PQ过点(3,0).当k=±1时,有x P=x Q=3,直线PQ的方程为x=3,此时,直线PQ也过点(3,0).故选A.12.D 由题意可得2<<3,则双曲线的离心率e===∈(,),故选D.13.答案解析双曲线x2-y2=1的一条渐近线为直线y=x,明显直线y=x与直线x-y+1=0平行,且两直线之间的距离为=.由于点P为双曲线x2-y2=1的右支上一点,所以点P到直线y=x的距离恒大于0,结合图形可知点P到直线x-y+1=0的距离恒大于,结合已知可得c的最大值为.14.答案 1解析由题意得,等轴双曲线C的方程为x2-y2=a2(a>0),∴双曲线的左顶点为A(-a,0),右顶点为B(a,0),设P(m,n),则直线PA的斜率为k PA=,直线PB的斜率为k PB=,∴k PA·k PB=①,∵P(m,n)是双曲线x2-y2=a2(a>0)上的点,∴m2-n2=a2,∴n2=m2-a2,代入①式得k PA·k PB=1.15.答案+解析由点P在以F1F2为直径的圆上,可知PF1⊥PF2.在Rt△F1PF2中,|PF1|2+|PF2|2=|F1F2|2=4c2.由已知|PF1|=|PF2|,得|PF1|=c,|PF2|=c.由双曲线的定义知|PF1|-|PF2|=2a,即c-c=c=2a,所以双曲线的离心率e===+.16.答案解析设∠PA1A2=α,则∠PA2x=5α.又设P(x0,y0),则-=2021.tan5α==,tanα==,∴tan5α·tanα=·==1,从而sin5αsinα=cos5αcosα,即cos6α=0,∴α=.B组提升题组1.B |PF1|=3<a+c=8,故点P在双曲线的左支上,由双曲线的定义得|PF2|-|PF1|=2a=6,所以|PF2|=9,故选B.2.C 设双曲线的左焦点为F',连结NF',则必有FM∥F'N,所以==⇒=⇒3c2=4a2⇒e=.3.D F(c,0),直线l的方程为y=-x+c,而渐近线的方程是y=±x,由得A,由得B.∴=,=.由=-3,得=-,得5a=3b,结合c2=a2+b2得c2=a2+a2,解得e=.4.B 由题意知A1(-a,0),A2(a,0),设M(x,y),则=,=,∴·=(*).∵M(x,y)在双曲线-=1上,∴y2=b2,代入(*)式得,=,则<2,即=e2-1<2,又e>1,故1<e<.5.A 解法一:设椭圆方程为+=1(a1>b1>0),离心率为e1,双曲线的方程为-=1(a2>0,b2>0),离心率为e2,它们的焦距为2c,不妨设P为两曲线在第一象限的交点,F1,F2分别为左,右焦点,则易知解得在△F1PF2中,由余弦定理得(a1+a2)2+(a1-a2)2-2(a1+a2)·(a1-a2)cos60°=4c2,整理得+3=4c2,所以+=4,即+=4.设a=,b=,∴+=a·b≤|a|·|b|=×=×=,故+的最大值是,故选A.解法二:不妨设P在第一象限,|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理得m2+n2-mn=4c2.设椭圆的长轴长为2a1,离心率为e1,双曲线的实轴长为2a2,离心率为e2,它们的焦距为2c,则+===.∴===,易知-+1的最小值为.故=.故选A.6.A 如图所示,设左焦点为F',由OA=OB,OF=OF',BF⊥AC以及双曲线的对称性可知四边形AFBF'为矩形,设AF=m,则|FC|=|FB|=|AF'|=2a+m,|CF'|=4a+m.在Rt△ACF'中,|AF'|2+|AC|2=|CF'|2,即(2a+m)2+(2a+2m)2=(4a+m)2,整理得m=a.在Rt△FAF'中,|AF|2+|AF'|2=|F'F|2,即a2+(3a)2=(2c)2,整理得4c2=10a2,故e=,故选A.7.B 设P(x,y),则·=(x+c,y)·(x-c,y)=x2-c2+y2=x2-c2-b2,|x|≥a,所以当|x|=a时,(·)min=a2-c2∈,则即所以离心率e=∈[,2],故选B.8.D 设右焦点为F2,连结F2P,OE,则F2P⊥FP,且|PF2|=2|OE|=2a,∴|EF|=b.∴|PF|=2b.过点P作直线x=-c的垂线,垂足为M,则|PM|=|PF2|=2a.∴|MF|==2.在Rt△FPF2中,2=|PF|·|PF2|=|FF2|·|MF|,即2b·2a=2c·2,平方整理得a2c2=(c2-a2)b2=(c2-a2)2,即有ac=c2-a2,∴e2-e-1=0,∴e=,故选D.9.C 由题意,知双曲线的焦点为F1(-4,0),F2(4,0),符合题意的渐近线方程为y=x,即x-y=0.作出符合题意的几何图形如图所示,连结PF1,F1M,由双曲线的定义,可知|PF2|-|PF1|=2,所以|PF2|+|PM|=|PF1|+|PM|+2.由图形可知|PF1|+|PM|≥|F1M|,所以当F1,P,M三点共线时,|PF1|+|PM|的值最小,即|F1M|最小,故依据点到直线的距离公式可得此时的最小值为d==,故所求的最小距离为2+.10.D 依题意有e1==,e2==.而-=,∵a>0,b>0,m>0,∴当a>b时,<,有e1<e2;当a<b时,>,有e1>e2.故选D.11.D 设A(x1,y1),B(x2,y2),其中x1≥a,x2≥a,则·=x1x2+y1y2=x1x2±.若·=x1x2+,明显没有最大值,而当x1=x2=a时,·有最小值a2.若·=x1x2-=x1x2-,由+≥2x1x2,得·≥x1x2-·=x1x2-(x1x2-a2),即·≥x1x2+b2,若a2≥b2,即1<e≤,则·≥·a2+b2=a2. 当x1=x2=a时,·有最小值a2.故若1<e≤,则·存在最小值.12.C 由于点Q为三角形PF1F2内切圆的圆心,故过点F2作PQ的垂线并延长交PF1于点N,易知垂足B为F2N的中点,连结OB,则|OB|=|F1N|=(|F1P|-|F2P|)=a.设内切圆与PF1,PF2分别切于G,H,则由内切圆性质可得|PG|=|PH|,|F1G|=|F1A|,|F2A|=|F2H|,故|F1P|-|F2P|=|F1A|-|F2A|=2a,设|OA|=x,则有x+c-(c-x)=2a,解得|OA|=a,故有|OA|=|OB|=a,故选C.13.答案解析不妨设F为左焦点(-c,0),点P在第一象限,由于线段PF的中点恰为双曲线C虚轴的一个端点,由中点坐标公式得P(c,2b),又P在双曲线C上,∴-=1,∴=5,∴e==.14.答案2+解析如图,F1,F2为双曲线C的左,右焦点,将点P的横坐标2a代入-=1中,得y2=3b2,不妨令点P的坐标为(2a,-b),此时==,得到c=(2+)a,即双曲线C的离心率e==2+.15.答案x±y=0解析c2=a2+b2,①由双曲线截抛物线的准线所得线段长为2c知,双曲线过点,即-=1.②由|FA|=c,得c2=a2+,③由①③得p2=4b2.④将④代入②,得=2.∴=2,即=1,故双曲线的渐近线方程为y=±x,即x±y=0.。