高二理科数学圆锥曲线单元测试汇编
- 格式:doc
- 大小:1.14 MB
- 文档页数:15
遂溪一中高二数学选修2—1圆锥曲线单元测试(理科)(90分钟完卷,总分100分)一、选择题:(本大题共10小题,每小题4分,共40分)1. 双曲线14322=-x y 的渐近线方程是( ) A. x y 23±= B. x y 332±= C. x y 43±= D. x y 34±= 2、抛物线281x y -=的准线方程是( ). A. 321=x B. 2=y C. 321=y D. 2-=y 3、已知4||=AB ,点P 在A 、B 所在的平面内运动且保持6||||=+PB PA ,则||PA 的最大值和最小值分别是 ( )A .5、3B .10、2C .5、1D .6、44、对于椭圆C 1:12222=+by a x ( a >b >0)焦点为顶点,以椭圆C 1的顶点为焦点的双曲线C 2,下列结论中错误的是( )A. C 2的方程为122222=--b y b a x B. C 1、C 2的离心率的和是1 C. C 1、C 2的离心率的积是1 D.短轴长等于虚轴长 5、抛物线x y 122=上与焦点的距离等于8的点的横坐标是( ) A 、2 B 、3 C 、4 D 、56、若双曲线与64422=+y x 有相同的焦点,它的一条渐近线方程是03=+y x ,则双曲线的方程是( )A.1123622=-y x B. 1123622=-x y C. 1123622±=-y x D. 1123622±=-x y 7.若双曲线的两条渐进线的夹角为060,则该双曲线的离心率为 A.2 B.36 C.2或36D.2或3328、与圆x 2+y 2-4y=0外切, 又与x 轴相切的圆的圆心轨迹方程是 ( ).A. y 2=8xB. y 2=8x (x>0) 和 y=0C. x 2=8y (y>0)D. x 2=8y (y>0) 和 x=0 (y<0)9、若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A.4B.2C.1D.1210、已知椭圆222(0)2y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A.02a <<B.02a <<或a > C. 103a <<D.a <<一、 选择题:(4分×10=40分)二、填空题:(4分×4=16分)11. 与椭圆22143x y +=具有相同的离心率且过点(2,)的椭圆的标准方程是 。
《圆锥曲线》单元测试题一、选择题1.已知椭圆方程192522=+y x ,椭圆上点M 到该椭圆一个焦点的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是( )A .2B .4C .8D .23 2.从椭圆的短轴的一个端点看长轴的两个端点的视角为120º,那么此椭圆的离心率为( )A .22B .33C .21D .363.设1>k ,则关于x 、y 的方程1)1(222-=+-k y x k 所表示的曲线是( )A .长轴在y 轴上的椭圆B .长轴在x 轴上的椭圆C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线4.到定点(7, 0)和定直线x =7716的距离之比为47的动点轨迹方程是( )。
A .116922=+y x B .191622=+y x C .1822=+y x D .1822=+y x 5.若抛物线顶点为(0,0),对称轴为x 轴,焦点在01243=--y x 上那么抛物线的方程为( )A .x y 162= B .x y 162-=; C .x y 122=; D .x y 122-=;6.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A .⎝⎛⎭⎫14,94B .⎝⎛⎭⎫23,1C .⎝⎛⎭⎫12,23D .⎝⎛⎭⎫0,12 7.若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A .4B .2C .1D .128.双曲线221(0)x y mn m n-=≠的离心率为2, 有一个焦点与抛物线24y x =的焦点重合,则mn 的值为( ) A .316 B .38 C .163 D .839.设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2± B .43±C .12±D .34± 10.已知椭圆222(0)2y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A.02a <<B.02a <<或2a > C .103a <<D.22a << 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5小题,每小题5分,共25分)11.双曲线8822=-ky kx 的一个焦点是(0,3),那么k 的值为 。
高二数学圆锥曲线综合测试题(考试时间:120分钟,共150分)一、选择题(本大题共12小题,每小题5分,共60分.)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A .1B .5C .4 2D .3+2 2 5.若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233D .26.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b 8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-17169.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( )A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--) 10.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.已知双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则1PF ·2PF = ( )A .-12B .-2C .0D .4 12.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .3 1 2 34 5 6 7 8 9 10 11 12二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.双曲线221tx y -=的一条渐近线与直线210x y ++=垂直,则这双曲线的离心率为__ _。
高二单元测试题-圆锥曲线数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本题共有12个小题,每小题5分,请将答案填在试卷指定位置。
)1.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14B .12 C . 2 D .42. 若椭圆22221(0)x y a b a b +=>>22221x y a b -=的离心率是( )A .54B .2C .32D . 43.若双曲线1922=-my x 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为 A .2 B .14 C .5 D .254、直线y x b =+与抛物线22x y =交于A 、B 两点,O 为坐标原点,且OA OB ⊥,则b =( ).2A .2B - .1C .1D -5、若直线l 过点(3,0)与双曲线224936x y -=只有一个公共点,则这样的直线有( ) A.1条 B.2条 C.3条 D.4条6、已知定点M (1,),45,4()45--N 、给出下列曲线方程:① 4x +2y -1=0 ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足 MP P N =的所有曲线方程是 ( ) (A )①③ (B )②④ (C )①②③ (D )②③④7、设离心率为e 的双曲线2222:1x y C a b-=(0a >,0b >)的右焦点为F ,直线l 过点F 且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是( )A .221k e -<B . 221k e ->C .221e k -<D .221e k ->8、双曲线两条渐近线的夹角为60º,该双曲线的离心率为( )A .332或2B .332或2 C .3或2 D .3或29、若不论k 为何值,直线(2)y k x b =-+与曲线221x y -=总有公共点,则b 的取值范围是( )A.(B.⎡⎣C.(2,2)-D.[]2,2-10、椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于( )A .2B .4C .6D .3211.过原点的直线l 与双曲线13422-=-y x 交于两个不同的点,则直线l 的斜率的取值范围是 A .(23,23-) B . (33,33-) C . (23,-∞-)⋃(+∞,23) D . (∞-,33-)⋃(+∞,33) 12. 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是 ( ) (A )02=-y x (B )042=-+y x (C )01232=-+y x (D )082=-+y x选择题答案栏第 Ⅱ 卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分) 13.抛物线2(0)x ay a =>的焦点坐标是__________________;14. 椭圆22162x y +=和双曲线2213x y -=的公共点为P F F ,,21是两曲线的一个交点, 那么21cos PF F ∠的值是__________________。
完美WORD 格式.整理圆锥曲线与方程单元测试(高二高三均适用)、选择题A 、25、过抛物线y 4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ()A 、有且仅有一条B 、有且仅有两条C 、有无穷多条D 、不存在6、一个椭圆中心在原点, 焦点R 、F 2在x 轴上,P (2, 3 )是椭圆上一点,且|PF 1|、|F 1F 2|、|PF 2 |成等差数列,则椭圆方程为()7 .设0v k v a 2,那么双曲线 上 - 异 =1与双曲线 % - y 2 = 1有()a — KD +K a b(A )相同的虚轴(B )相同的实轴(C )相同的渐近线(D )相同的焦点8 .若抛物线y 2= 2p x (p > 0)上一点P 到准线及对称轴的距离分别为10和6,则p 的值等于1 •方程x 、.、3y2 1所表示的曲线是 (A )双曲线(B )椭圆(C )双曲线的一部分 (D )椭圆的一部分2 •椭圆2y a21与双曲线—a 2-1有相同的焦点,贝U a 的值是 23.双曲线 2y_ b 2(A ) 2 已知圆x 2(B ) 1 或-2(D ) 11的两条渐近线互相垂直, 那么该双曲线的离心率是 (B ) ..3(C ) 、22y 6x7 0与抛物线y 2 2px(p(D )I0)的准线相切,则()()()()2A 、— 8 2壬162B 、—16 2乞1 62C 、x - 8 2乞1 42x D 、— 16 2上142222(A ) 2 或 18(B ) 2x9、设F 1> F 2是双曲线一 4或18(C ) 2或16 (D ) y 2 1的两个焦点,点P 在双曲线上,且 4或16UULTLUUQPF PFUUU 则 |PF 1 | LULU |PF 2 | 的值等于 A 、2B 、2 210.若点A 的坐标为(3,2) , F 是抛物线y 22x 的焦点,点M 在抛物线上移动时,使MF MA取得最小值的M的坐标为1A . 0,0B .- 1 C . 1,V2 D . 2,22’2 2X y 11、已知椭圆 — F =1 (a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且 BF 丄x 轴,ab直线AB 交y 轴于点P ,若AP 2BP (应为PB),则离心率为 ()A 、二B 、二C 、1D 1223212 .抛物线y22x 上两点A(X 1, yj 、B(X 2, y 2)关于直线1y x m 对称,且x 1 x 2则m 等于()A . 3B. 25C . -D . 322、填空题: 13 .若直线xy2与抛物线y 24x 交于A 、B 两点, 则线段 AB 的中点坐标是。
高二圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.2 B. 12C. 2D. 14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( ) A .圆 B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A. 双曲线B.抛物线C. 椭圆D.以上都不对8.方程02=+ny mx 与)02+mx 的曲线在同一坐标系中的示意图应是( )B 二、填空9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。
高二数学(理科)圆锥曲线单元卷答案一、选择题(本大题共10小题,每小题5分,共50分).1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 (D )A .2B .3C .5D .72。
曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( A) (A )焦距相等 (B ) 离心率相等 (C )焦点相同 (D )准线相同3.已知21,F F 是椭圆)0(12222>>=+b a by a x 的两个焦点,AB 是过1F 的弦,则2ABF ∆的周长是 ( B)A.a 2 B 。
a 4 C.a 8 D 。
b a 22+4.一动圆与圆221x y +=外切,同时与圆226910x y x +--=内切,则动圆的圆心在(B ).A 一个椭圆上 .B 一条抛物线上 .C 双曲线的一支上 .D 一个圆上5.已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是(C ) A.k <1 B.k >2 C.k <1或k >2 D.1<k <26.抛物线y 2=4px (p >0)上一点M 到焦点的距离为a ,则M 到y 轴距离为 (A )A 。
a -p B.a+p C.a -2p D.a+2p 7.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( C )A .(7,B .(14,C .(7,±D .(7,-±8。
(全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是(A )A .43B .75C .85D .3 9.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为(D ) A .2- B .2 C .4- D .410。
我们把离心率12e =的椭圆叫做“优美椭圆”。
高二年单元考试试卷(圆锥曲线)一、选择题(60分)1.已知双曲线()222:1016x y C a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( )A. 4312x y ±=B. 40x =C. 1690x y ±=D. 430x y ±=2.平面直角坐标系中,已知O 为坐标原点,点A 、B 的坐标分别为(1,1)、()3,3-. 若动点P 满足OP OA OB λμ=+,其中λ、R μ∈,且1λμ+=,则点P 的轨迹方程为 A. 0x y -= B. 0x y +=C. 230x y +-=D. ()()22125x y ++-=3.抛物线22(0)y px p =>上横坐标为6的点到焦点的距离是10,则焦点到准线的距离是( )A. 4B. 8C. 16D. 324.椭圆221mx y += ) A. 1 B. 1或2 C. 2 D. 2或45.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NFF ∆的面积为( )C. 2D. 36.抛物线有如下光学性质:由焦点的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A. 43-B. 43C. 43±D. 169- 7.已知点12,F F 是椭圆2222x y +=的左、右焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A. 2B.8.椭圆22221x y a b +=(0a b >>)上存在一点P 满足F 2π∠AP =, F 为椭圆的左焦点,A 为椭圆的右顶点,则椭圆的离心率的范围是( )A. 10,2⎛⎫ ⎪⎝⎭B. 0,2⎛ ⎝⎭C. 1,12⎛⎫⎪⎝⎭ D. 2⎛⎫ ⎪ ⎪⎝⎭9.把离心率12e =的曲线()2222:10,0x y C a b a b-=>>称之为黄金双曲线.若以原点为圆心,以虚半轴长为半径画圆O ,则圆O 与黄金双曲线C ( )A. 无交点B. 有1个交点C. 有2个交点D. 有4个交点10.已知,则方程是与在同一坐标系内的图形可能是( )A B C D11.设直线()1y k x =+与抛物线24y x =相交于M 、N 两点,抛物线的焦点为F ,若F 2F M =N ,则k 的值为( )A. 23±B. 3±C. 2±D. 12.已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是( )A. B. C. 2 D. 3二、填空题(20分)13.已知是抛物线 的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.14.抛物线的焦点为F ,其准线与双曲线相交于两点,若△为等边三角形,则=________15.已知椭圆 离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形面积为16,则椭圆的方程为_______________16.设椭圆2222x :1(a b 0)y C a b+=>>的左右焦点为12,F F ,过2F 作x 轴的垂线与C 相交于,A B 两点,1F B 与y 轴相交于D ,若1A D F B ⊥,则椭圆C 的离心率等于 .三、解答题17(10分).设命题p :方程221231x y k k -=++表示双曲线;命题q :斜率为k 的直线l 过定点()2,1,P -且与抛物线24y x =有两个不同的公共点.若p q ∧是真命题,求k 的取值范围.18(12分).(1)已知椭圆的离心率为,短轴一个端点到右焦点的距离为4,求椭圆的标准方程。
高二数学《圆锥曲线》单元测试题及答案讲述高二数学《圆锥曲线》单元测试题一、多项选择题(每题5分,共60分)61.下列曲线中离心率为的是()2x2y2x2y2x2y2x2y2a??1b??1c??1d??1244246410x2y2??1的长轴位于y轴上。
如果焦距为4,则M的值为()2。
椭圆10?mm?2a.4b.5c.7d.83.假设焦点在x轴上的双曲线的虚轴长度为2,焦距为23,则双曲线的渐近线方程为()ay??2xby??2xcy??24.抛物线x?12xdy??十、221y上的一点m到焦点的距离为1,则点m的纵坐标是()417157a.b.c.0d.16816x2y2??1左5右。
已知F1和F2分别是椭圆的右焦点,椭圆的弦De穿过焦点F1。
如果直线de169的倾角为?(a?0),那么?def2的周长是()a.64b.20c.16d.随?变化而变化x2y2?2.1(b>0)的准线正好是圆x2?y2?2倍?切线为0,然后是B的6。
如果是双曲线16b值等于()a、 4b。
8c。
23d。
43 pf?pf1xy27.已知P是椭圆??1上的点F1和F2分别是椭圆的左焦点和右焦点,如果1| pf1 |?|如果PF2 | 225922,则△f1pf2是()a.33b、 23c.3d.33x2y28.如图,直线mn与双曲线c:2-2=1的左右两支分别交于m、n两点,AB和双曲线C的右引导线在点P相交,F是右焦点。
如果| FM |=2 | FN |,则=λ(λ∈r) ,,则实数λ的取值为()11a.b.1c.2d.23X2y29。
如果双曲线2?2.在1的右分支上有一个点(a?0,B?0),它到达右焦点和左对齐ab线的距离相等,则双曲线的离心率的取值范围是()a、(1,2]b.(1,2?1]c[2,?)d、 [2?1,?)12y2210。
如图所示,圆圈F:(x?1)?Y1和抛物线x?4.通过F和投掷的直线物线和圆依次交于a、b、c、d四点,求ab?CD的值是()a1b2c3d无法确定X2y211。
圆锥曲线--高考真题汇编第一节椭圆1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25 C.35【解析】解法一(利用焦点三角形面积公式):设122F PF θ∠=,π02θ<<.22212222cos sin 1tan 3cos cos 2cos sin 1tan 5F PF θθθθθθθ--∠====++,解得1tan 2θ=.由椭圆焦点三角形面积公式得1222121tantan 6322F PF F PF S b b θ∠===⨯=△.121211322F PF P P S F F y ===△,解得23P y =.则代入椭圆方程得292P x =,因此302OP ==.故选B.解法二(几何性质+定义):因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.解法三(向量法):由解法二知12152PF PF ⋅=,221221PF PF +=.而()1212PO PF PF =+,所以1213022PO PF PF =+===.故选B.2.(2023全国甲卷文科7)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【分析】解法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;解法二:根据椭圆的定义以及勾股定理即可解出.【解析】解法一:因为120PF PF ⋅=,所以1290F PF ∠= ,从而122121tan 4512F PF S b PF PF ===⨯⋅ △,所以122PF PF ⋅=.故选B.解法二:因为120PF PF ⋅=,所以1290F PF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选B.3.(2023新高考I 卷5)设椭圆()2212:11x C y a a +=>,222:14x C y +=的离心率分别为1e ,2e .若21e =,则a =()A.233B.【解析】11a e a =,232e =,由21e =可得32=,解得233a =.故选A.4.(2023新高考II 卷5)已知椭圆22:13x C y +=的左、右焦点分别为12,F F ,直线y x m =+与C 交于,A B 两点,若1F AB △的面积是2F AB △面积的2倍,则m =()A.23B.3C.3-D.23-【解析】设AB 与x 轴相交于点(),0D m -,由122F AB F AB S S =△△,得122F DF D=.又12F F =23F D =,则有()3m --=,解得3m =.故选C.第二节双曲线1.(2023新高考I 卷16)已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =- ,则C 的离心率为.【解析】解法一:建立如图所示的平面直角坐标系,设()()()12,0,,0,0,F c F c B n -,由2223F A F B =- 可得52,33A c n ⎛⎫- ⎪⎝⎭,又11F A F B ⊥ 且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,()1,F B c n = ,则()22118282,,03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =,又点A 在C 上,则2222254991c n a b -=,整理可得2222254199c n a b-=,代入224n c =,可得222225169c c a b -=,即222162591e e e -=-,解得295e =或()215e =舍.故355e =.解法二:由2223F A F B =-可得2223F A F B =,设222,3F A x F B x ==,由对称性可得,13F B x =,由定义可得,122AF x a =+,5AB x =,设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x a xθ+==,解得x a =,所以1224AF x a a =+=,222F A x a ==,在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,2295a c =,所以355e =.2.(2023全国甲卷理科8)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255 D.455【解析】由5e =,则222222215c a b b a a a +==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离22235521d ⨯-==+,所以弦长221452155AB r d =--.故选D.3.(2023全国甲卷文科9)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255D.455【解析】由e =,则222222215c a b b a a a+==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离55d ==,所以弦长5AB =.故选D.4.(2023北京卷12)已知双曲线C 的焦点为()2,0-和()2,0,离心率为,则C 的方程为.【分析】根据给定条件,求出双曲线C 的实半轴、虚半轴长,再写出C 的方程作答.【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C ,得ca,解得a =,则b =所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=.因为()2,0F c ,不妨设渐近线方程为所以222bc bcPF c a b ==+设2POF θ∠=,则tan θ=第三节抛物线2.(2023全国乙卷理科13,文科13)已知点A 在抛物线2:2C y px =上,则A 到C 的准线的距离为.【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【解析】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.3.(2023新高考II 卷10)设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p=,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.第四节直线与圆锥曲线的位置关系1.(2023全国乙卷理科11,文科12)已知,A B 是双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【分析】设直线AB 的斜率为AB k ,OM 的斜率为k ,根据点差法分析可得9AB k k ⋅=,对于A ,B ,D 通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【解析】设()11,A x y ,()22,B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,设直线AB 的斜率为AB k ,OM 的斜率为k ,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1k =,9AB k =,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得2k =-,92AB k =-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()()22454456144545610∆=⨯-⨯⨯=⨯⨯-<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3k =,3AB k =,则:3AB y x =.由双曲线方程可得1a =,3b =,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :4k =,94AB k =,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确.故选D.2.(2023新高考I 卷22)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【解析】(1)设(,)P x y ,则22212x y y ⎛⎫+-= ⎪⎝⎭,故21:4W y x =+.(2)解法一:不妨设三个顶点,,A B C 在抛物线214y x =+上,且AB BC ⊥,显然,AB BC 的斜率存在且不为0,令222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,AB BC k a b k b c =+=+,1AB BC k k =-,即()()1a b b c ++=-,即1a b b c-+=+,本题等价于证明332AB BC +>,令||||AB BC b c m +=--=,则m b c =-+-,(未知数有,,a b c ,通过转化(放缩),将变量归一)由221ABBC kk =⋅,即()()22221AB BC k k a b b c =++=⋅,不妨设()221AB k a b =+≤,则m b c=-+-b =-+b c ≥--c ≥-()b b c =+-+1b a b=+++()3221a b a b⎡⎤⎣⎦++=+.令a b t +=,则()()1232323323222211223411332t t a b ta b tt t⎡⎤⎢⎥⎛⎫⎢⎥++⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎛⎫⨯ ⎪⎝⎭+++==≥=+⎣⎦,当212t =时取等号,又()2321t m t+≥取等时必有21t =,因此取不到等号,所以332m >.解法二:如图所示,先将第一问中的曲线下移14个单位,其表达式为2x y =.不妨设,,A B D 三点在抛物线上,再设()2,A t t 及AB 的斜率为k .由题意知AD 的斜率为1k -,因为11k k ⎛⎫⋅-= ⎪⎝⎭,故而可再使01k <≤,直线AB 的方程()2y t k x t -=-,即2y kx kt t =-+,与曲线联立可得220x kx kt t -+-=,由此可知()222222221211414412AB k x x k k kt t k k kt t k k t=+-=+--=+-+=+-同理,21112AD t k k=++,由此可知矩形ABCD 的周长ρ满足2211122122k k t t k kρ+-++=+2211122212k k t k t k k=+-+++22t t≥-+①12+2k t tk⎫-+⎪⎭1+k≥②()323222112122=2kkk k⎛⎫++⎪+⎝⎭=322k⎛⎫⎝⎭≥⨯③22⨯==.当1k=时①处取等号,当12,2k t tk-+同号时②处取等号,当212k=时③处取等号,显然三处不能同时取等号,所以矩形ABCD的周长大于.由题意得31a c a c +=⎧⎨-=⎩,解得所以椭圆的方程为24x y +(2)由题意得,直线2A A P 的方程为y =第五节圆锥曲线综合探究型问题1.(2023全国甲卷理科20)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B 两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】(1)设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px -+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y y ==-=,解得2p =,32p =-(舍).所以2p =.(2)解法一(向量法):由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=,又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅=++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R△()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNF S =-△(当且仅当2t -=时,即32t y =-=时取最小值).解法二(极坐标法):如图所示,设MF 与x 轴正半轴的夹角为θ,则有21cos MF θ=-,21sin NF θ=+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4θ3π=,即4MFO π∠=时取等号.2.(2023全国甲卷文科21)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px-+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y ==-==,解得2p =,32p =-(舍).所以2p =.(2)解法一:由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭ ,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=.又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅==++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R △()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNFS-=-△2t -=时,即32t y =-=时取最小值).解法二(极坐标):如图所示,设MF 与x 轴正半轴的夹角为θ,则有22,1cos 1sin MF NF θθ==-+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4MFO π∠=时取等号.3.(2023全国乙卷理科20,文科21)已知椭圆()2222:10y x C a b a b+=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,求证:线段MN 中点为定点.【解析】(1)依题意,2b =,3c e a ==,则2224b a c =-=,得3a =,c =,曲线C 的方程为22194y x +=.(2)设()11,P x y ,()22,Q x y ,直线():32PQ y k x -=+,()11:22y AP y x x =++,令0x =,得1122M yy x =+,()22:22y AQ y x x =++,令0x =,得2222N yy x =+.MN 的中点坐标为12120,22y y x x ⎛⎫+ ⎪++⎝⎭,联立直线PQ 的方程和椭圆方程得()22239436y k x x y ⎧=++⎪⎨+=⎪⎩,消y 建立关于x 的一元二次方程,()229423360x k x +⎡++⎤-=⎣⎦,即()()222249162416480k x k k x k k +++++=,21222122162449164849k kx x k k k x x k ⎧++=-⎪⎪+⎨+⎪=⎪+⎩,又()()121212121223231123222222k x k x y y k x x x x x x ++++⎛⎫+=+=++ ⎪++++++⎝⎭()2221222121222162416364492323164832482444949k k k x x k k k k k k k x x x x k k --+++++=+⋅=+⋅+++++-+++3=.所以线段MN 过定点()0,3.【评注】本题为2022全国乙卷的变式题,难度有所降低,考查仍为极点、极线的性质,定点()0,3为()2,3P -关于椭圆22194y x +=的极线123x y +=-与y 轴的交点.本题以椭圆中极点极线理论的射影不变性为命题背景,考查椭圆中对称式的计算方法,要求考生具有较强的计算能力.除此之外,如果考生具有先猜再证的解题意识,本题中的定点可以通过极限思想进行猜想.4.(2023新高考II 卷21)已知双曲线C的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,求证:点P 在定直线上.【解析】(1)设双曲线方程为()22221,0x y a b a b-=>,且22220c a b =+=.又c e a a===,得2a =,因为c =,所以4b =,因此双曲线的方程为221416x y -=.(2)(设点设线).设()()1122,,,M x y N x y ,:4MN x ty =-.由(1)可得,()()122,0,2,0A A -,则()111:22y MA y x x =++,()222:22yNA y x x =--.联立12,MA NA 的方程,消y 得()()12122222y yx x x x +=-+-,即2121122212112122222266y x y ty ty y y x x x y ty y ty y y +--+=⋅=⋅=----.联立MN 的方程与双曲线221416x y -=,得224416x ty x y =-⎧⎨-=⎩,消x 得()224416ty y --=,即()224132480t y ty --+=.由韦达定理()()221221223244148032414841t t t y y t y y t ∆⎧=---⨯>⎪⎪⎪+=⎨-⎪⎪=⎪-⎩(非对称结构处理).()12122483412t ty y y y t ==+-,则()()1221212112331221222393236222y y y y y x x y y yy y +--+===--+--+,得1x =-.因此点P 在定直线1x =-上.5.(2023北京卷19)已知椭圆()2222:10x y E a b a b +=>>的离心率为53,,A C 分别是E 的上、下顶点,,B D分别是E 的左、右顶点,4AC =.(1)求椭圆E 的方程;(2)点P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线AP 与直线2y =-交于点N .求证://MN CD .【分析】(1)结合题意得到c a =24b =,再结合222a c b -=,解之即可;(2)依题意求得直线BC 、PD 与PA 的方程,从而求得点,M N 的坐标,进而求得MN k ,再根据题意求得CD k ,得到MN CD k k =,由此得解.【解析】(1)依题意,得53c e a ==,则53c a =,又,A C 分别为椭圆上下顶点,4AC =,所以24b =,即2b =,所以2224a c b -==,即22254499a a a -==,则29a =,所以椭圆E 的方程为22194x y +=.(2)因为椭圆E 的方程为22194x y +=,所以()()()()0,2,0,2,3,0,3,0A C B D --,因为P 为第一象限E 上的动点,设()(),03,02P m n m n <<<<,则22194m n +=,易得022303BC k +==---,则直线BC 的方程为223y x =--,033PD n n k m m -==--,则直线PD 的方程为()33n y x m =--,联立()22333y x n y x m ⎧=--⎪⎪⎨⎪=-⎪-⎩,解得()332632612326n m x n m n y n m ⎧-+=⎪⎪+-⎨-⎪=⎪+-⎩,即()332612,326326n m n M n m n m ⎛-+⎫- ⎪+-+-⎝⎭,而220PA n n k m m --==-,则直线PA 的方程为22n y x m-=+,令=2y -,则222n x m --=+,解得42m x n -=-,即4,22m N n -⎛⎫- ⎪-⎝⎭,又22194m n +=,则22994n m =-,2287218m n =-,所以()()()()()()12264122326332696182432643262MN n n m n n m k n m n m n m n m m n m n -+-+--+-==-+-+-++---+--222222648246482498612369612367218n mn m n mn m n m mn m n m n n m -+-+-+-+==++---++--()()22222324126482429612363332412n mn m n mn m n mn m n mn m -+-+-+-+===-+-+-+-+,又022303CD k +==-,即MN CD k k =,显然,MN 与CD 不重合,所以//MN CD .第六节平面几何性质在圆锥曲线中的应用1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25C.35【解析】因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.2.(2023新高考II 卷10)设O为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p =,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.。
高二年单元考试试卷(圆锥曲线)一、选择题(60分)1.已知双曲线()222:1016x y C a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( )A. 4312x y ±=B. 40x ±=C. 1690x y ±=D. 430x y ±=2.平面直角坐标系中,已知O 为坐标原点,点A 、B 的坐标分别为(1,1)、()3,3-. 若动点P 满足OP OA OB λμ=+,其中λ、R μ∈,且1λμ+=,则点P 的轨迹方程为 A. 0x y -= B. 0x y +=C. 230x y +-=D. ()()22125x y ++-=3.抛物线22(0)y px p =>上横坐标为6的点到焦点的距离是10,则焦点到准线的距离是( )A. 4B. 8C. 16D. 324.椭圆221mx y += ) A. 1 B. 1或2 C. 2 D. 2或45.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NFF ∆的面积为( )A.B. C. 2 D. 36.抛物线有如下光学性质:由焦点的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A. 43-B. 43C. 43±D. 169- 7.已知点12,F F 是椭圆2222x y +=的左、右焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A. 2B. 2C. 0D. 18.椭圆22221x y a b +=(0a b >>)上存在一点P 满足F 2π∠AP =, F 为椭圆的左焦点,A 为椭圆的右顶点,则椭圆的离心率的范围是( )A. 10,2⎛⎫⎪⎝⎭B. 0,2⎛ ⎝⎭C. 1,12⎛⎫⎪⎝⎭D. ,12⎛⎫⎪ ⎪⎝⎭9.把离心率12e =的曲线()2222:10,0x y C a b a b-=>>称之为黄金双曲线.若以原点为圆心,以虚半轴长为半径画圆O ,则圆O 与黄金双曲线C ( )A. 无交点B. 有1个交点C. 有2个交点D. 有4个交点10.已知,则方程是与在同一坐标系内的图形可能是( )A B C D11.设直线()1y k x =+与抛物线24y x =相交于M 、N 两点,抛物线的焦点为F ,若F 2F M =N ,则k 的值为( )A. 23±B. 3±C. 2±D. 12.已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是( )A. B. C. 2 D. 3二、填空题(20分)13.已知是抛物线 的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.14.抛物线的焦点为F ,其准线与双曲线相交于两点,若△为等边三角形,则=________15.已知椭圆 离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形面积为16,则椭圆的方程为_______________16.设椭圆2222x :1(a b 0)y C a b+=>>的左右焦点为12,F F ,过2F 作x 轴的垂线与C 相交于,A B 两点,1F B 与y 轴相交于D ,若1A D F B ⊥,则椭圆C 的离心率等于 .三、解答题17(10分).设命题p :方程221231x y k k -=++表示双曲线;命题q :斜率为k 的直线l 过定点()2,1,P -且与抛物线24y x =有两个不同的公共点.若p q ∧是真命题,求k 的取值范围.18(12分).(1)已知椭圆的离心率为,短轴一个端点到右焦点的距离为4,求椭圆的标准方程。
圆梦教育 高二圆锥曲线单元测试姓名: 得分: 一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.B. C. 2 D. 14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条"A. 1 C. 35.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( ) A .圆 B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A. 双曲线B.抛物线C. 椭圆D.以上都不对8.方程02=+ny mx 与)02+mx 的曲线在同一坐标系中的示意图应是( );A B C D二、填空题:9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点;③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 ; 10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 ; 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 ; 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 ;'13、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 ;14.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 。
高二年单元考试试卷(圆锥曲线)一、选择题(60分)1.已知双曲线()222:1016x y C a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( )A. 4312x y ±=B. 40x ±=C. 1690x y ±=D. 430x y ±=2.平面直角坐标系中,已知O 为坐标原点,点A 、B 的坐标分别为(1,1)、()3,3-. 若动点P 满足OP OA OB λμ=+,其中λ、R μ∈,且1λμ+=,则点P 的轨迹方程为 A. 0x y -= B. 0x y +=C. 230x y +-=D. ()()22125x y ++-=3.抛物线22(0)y px p =>上横坐标为6的点到焦点的距离是10,则焦点到准线的距离是( )A. 4B. 8C. 16D. 324.椭圆221mx y +=的离心率是2,则它的长轴长是( ) A. 1 B. 1或2 C. 2 D. 2或45.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NFF ∆的面积为( )A.B. C. 2 D. 36.抛物线有如下光学性质:由焦点的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A. 43-B. 43C. 43±D. 169- 7.已知点12,F F 是椭圆2222x y +=的左、右焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A. 2B.C. 0D. 18.椭圆22221x y a b +=(0a b >>)上存在一点P 满足F 2π∠AP =, F 为椭圆的左焦点,A 为椭圆的右顶点,则椭圆的离心率的范围是( )A. 10,2⎛⎫ ⎪⎝⎭B. ⎛⎝⎭ C. 1,12⎛⎫⎪⎝⎭ D. ⎫⎪⎪⎝⎭9.把离心率e =()2222:10,0x y C a b a b-=>>称之为黄金双曲线.若以原点为圆心,以虚半轴长为半径画圆O ,则圆O 与黄金双曲线C ( )A. 无交点B. 有1个交点C. 有2个交点D. 有4个交点10.已知,则方程是与在同一坐标系内的图形可能是( )A B C D11.设直线()1y k x =+与抛物线24y x =相交于M 、N 两点,抛物线的焦点为F ,若F 2F M =N ,则k 的值为( )A. 233±B. 3±C. 2± D. 2±12.已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是( )A. B. C. 2 D. 3二、填空题(20分)13.已知是抛物线 的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.14.抛物线的焦点为F ,其准线与双曲线相交于两点,若△为等边三角形,则=________15.已知椭圆 离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形面积为16,则椭圆的方程为_______________16.设椭圆2222x :1(a b 0)y C a b+=>>的左右焦点为12,F F ,过2F 作x 轴的垂线与C 相交于,A B 两点,1F B 与y 轴相交于D ,若1A D F B ⊥,则椭圆C 的离心率等于 .三、解答题17(10分).设命题p :方程221231x y k k -=++表示双曲线;命题q :斜率为k 的直线l 过定点()2,1,P -且与抛物线24y x =有两个不同的公共点.若p q ∧是真命题,求k 的取值范围.18(12分).(1)已知椭圆的离心率为,短轴一个端点到右焦点的距离为4,求椭圆的标准方程。
(2)已知双曲线过点(,且渐近线方程为12y x =±,求该双曲线的标准方程。
19(12分).已知双曲线C : 22221x y a b-=,点0)是双曲线的一个顶点。
(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线l ,直线l 与双曲线交于不同的A ,B 两点,求AB 的长。
20(12分).过抛物线()2:20C x py p =>的焦点F 作直线l 与抛物线C 交于,A B 两点,当点A 的纵坐标为1时, 2AF =.(1)求抛物线C 的方程;(2)若直线l 的斜率为2,问抛物线C 上是否存在一点M ,使得MA MB ⊥,并说明理由.21(12分).已知椭圆C 过点31,2A ⎛⎫⎪⎝⎭,两个焦点为()()1,0,1,0-. (1)求椭圆C 的方程;(2),E F 是椭圆C 上的两个动点,①如果直线AE 的斜率与AF 的斜率之和为2,证明:直线EF 恒过定点.22(12分).已知椭圆C A , B , F 分别为椭圆的右顶点、上顶点和右焦点,且1ABF S ∆=. (1)求椭圆C 的方程;(2)已知直线l : y kx m =+被圆O : 224x y +=所截得的弦长为若直线l 与椭圆C 交于M , N 两点,求MON ∆面积的最大值.参考答案1.D【解析】由题得c=5,则22169a c =-= ,即a=3,所以双曲线的渐近线方程为43y x =± ,即430x y ±= ,故选D 2.C【解析】设(),P x y ,则3,3,26x y y xx y λμλμλμ+-=-=+⇒==因此123026x y y xx y +-+=⇒+-=,选C. 3.B【解析】∵横坐标为6的点到焦点的距离是10,∴该点到准线的距离为10,抛物线的准线方程为 ,∴故选B . 4.D【解析】把椭圆221mx y +=方程转化为: 22111x y m+= 分两种情况:①11m>时椭圆的离心率则: 11314m m -=解得:m=14进一步得长轴长为4 ②11m <时椭圆的离心率,则:长轴长为2 故选:D点睛:在椭圆和双曲线中,焦点位置不确定时,勿忘分类讨论.5.D【解析】设等轴双曲线方程为22x y λ-= ,因为过点()2,1M ,所以212122133,26N F N F F λ=-=∴-从而22212121212||2|12|212NF NF NF NF F F NF NF ++=⇒-= 121212124212632NF NF NF NF S NF NF ⇒-=⇒=⇒==,选D. 6.A【解析】令y=1,代入24y x =,得14x =,即114A (,),由抛物线的光学性质可知,直线AB 经过焦点F(1,0),所以 直线AB 的斜率为1041314k -==--,故选A【答案】A【解析】椭圆2222x y +=,即为2212x y +=,则椭圆的1a b ==,则由OP 为12PF F ∆的中线,即有()1212PO PF PF =+,则122PF PF PO +=,可设(),P x y ,则2212x y +=,即有2221x x PO x ===≥,当0x =时,取得最小值1,则12PF PF +的最小值为2,故选A.8.C 【解析】设(),P x y ,则由F 2π∠AP =得()()()()2,,00x c y x a y x c x a y +⋅-=⇒+-+= ,因为22221x y a b +=,所以()2222,210ab a cx a x a a e e c -==∈-⇒+->或 10112e e <<∴<<,选C.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 9.D【解析】由题意知c a =,所以22611142b c a a +⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,因为2112b a ⎛⎫=> ⎪⎝⎭,所以1b a >,所以b a >,所以圆O 与黄金双曲线C 的左右两支各有2个交点,即圆O 与黄金双曲线C 由4个交点,故选D. 10.A【解析】方程即,表示抛物线,方程表示椭圆或双曲线,当和同号时,抛物线开口向左,方程表示椭圆,无符合条件的选项,当和异号时,抛物线开口向右,方程表示双曲线,故选A.11.B【解析】设()()1122,,,M x y N x y ,因为F 2F M =N ,所以由抛物线定义得22121211221212,24,44,x x y y y x y x x x -====∴=()11112,13y x y k x ∴==±==±--,选 B.12. A【解析】如图,设椭圆的长半轴长为,双曲线的半实轴长为,则根据椭圆及双曲线的定义:,,设,则,在中根据余弦定理可得到化简得:该式可变成:,故选点睛:本题综合性较强,难度较大,运用基本知识点结合本题椭圆和双曲线的定义给出与、的数量关系,然后再利用余弦定理求出与的数量关系,最后利用基本不等式求得范围。
13.【解析】如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.14.【解析】由抛物线可知焦点,准线,由于△为等边三角形,设AB与y轴交于M,FM=P,,即,填。
【点睛】对于圆锥曲线要先定位,再定量,本题的抛物线焦点是在y轴正半径。
所以求出抛物线的焦点坐标与准线方程,再把准线方程与双曲线组方程组算出B 点坐,再由等边三角形,可解的P,15.【解析】由题意,双曲线的渐近线方程为∵以这四个交点为顶点的四边形的面积为16,故边长为4,在椭圆上,,∴椭圆方程为:故答案为:16 【解析】试题分析:连接1AF ,∵AB OD ∥,O 为21F F 的中点,∴D 为1BF 的中点,又1AD F B ⊥,∴AB AF 1=.∴21AF 2AF =.设n AF 2=,则n 2AF 1=,n 3F F 21=,∴33n 3n 3AF AF F F a c e 2121==+==.考点:椭圆离心率.【方法点晴】本题考查的是椭圆的几何性质(离心率问题),属于中档题.本题的切入点就在原点O 上,利用平行关系,推出D 点也是中点,从而思路豁然开朗.解析几何的中心思想就是数形结合,善于抓图像的性质,是解好解析几何题的关键所在,特别是小题.离心率问题是重点题型,主要思路就是想方设法去建立c a 、的等或者不等的关系即可.17.【解析】试题分析:(1)命题p 中式子要表示双曲线,只需,对于命题q :直线与抛线有两上不同的公共点,即设直线21y kx k =++与抛物线方程组方程组,只需,解出两个不等式(组)中k 的范围,再求出交集。